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(Hydroxy)chloroquine ((H)CQ) is being investigated as a treatment
for COVID-19, but studies have so far demonstrated either no or a
small benefit. However, these studies have been mostly performed
in patients admitted to the hospital and hence likely already
(severely) affected. Another suggested approach uses prophylactic
(H)CQ treatment aimed at preventing either severe acute respiratory
syndrome coronavirus 2 infection or the development of disease. A
substantial number of clinical trials are planned or underway aimed
at assessing the prophylactic benefit of (H)CQ. However, (H)CQ may
lead to QT prolongation and potentially induce life-threatening ar-
rhythmias. This may be of particular relevance to patients with pre-
existing cardiovascular disease and those taking other QT-
prolonging drugs. In addition, it is known that a certain percentage
of the population carries genetic variant(s) that reduces their repo-
larization reserve, predisposing them to (H)CQ-induced QT prolon-
gation, and this may be more relevant to female patients who
already have a longer QT interval to start with. This review provides
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an overview of the current evidence on (H)CQ therapy in patients
with COVID-19 and discusses different strategies for prophylactic
(H)CQ therapy (ie, preinfection, postexposure, and postinfection).
In particular, the potential cardiac effects, including QT prolonga-
tion and arrhythmias, will be addressed. Based on these insights,
recommendations will be presented as to which preventive mea-
sures should be taken when giving (H)CQ prophylactically, including
electrocardiographic monitoring.

KEYWORDS Arrhythmia; Chloroquine; COVID-19; ECG; Hydroxy-
chloroquine; Prophylaxis; QT; Recommendations; SARS-CoV-2; Tor-
sades de pointes

(Heart Rhythm 2020;17:1480–1486) © 2020 The Authors. Pub-
lished by Elsevier Inc. on behalf of Heart Rhythm Society. This is
an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
A. Introduction
Since December 2019, severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) has infected .7 million people
worldwide as of June 8, 2020 (https://coronavirus.jhu.edu/
map.html), with some individuals (particularly those of older
age and/or with comorbidities) developing coronavirus dis-
ease 2019 (COVID-19), a critical pulmonary illness requiring
intensive treatment. In addition, patients with COVID-19 are
at an increased risk of cardiovascular complications
including myocardial ischemia, heart failure, myocarditis,
and arrhythmias.1 Generalized inflammation, cytokine storm,
and systemic failure may furthermore compromise cardiac
function in patients with COVID-19. Apart from supportive
care and mechanical ventilation, specific therapeutic options
are limited. Novel antiviral strategies such as remdesivir have
shown some promising results,2 but such compounds may
not be available for large-scale use in the near future. Simi-
larly, a vaccine is not expected to be successfully developed
within the next 6–12 months, necessitating the identification
of efficacious prophylactic strategies.

The aminoquinoline (hydroxy)chloroquine ((H)CQ) has
been heralded as a therapeutic candidate on the basis of prom-
ising in vitro effects, but more recent larger-scale studies in
patients with COVID-19 have shown little clinical benefit.3

While various reasons may underlie the observed lack of
therapeutic efficacy of (H)CQ, the main question left unan-
swered is whether (H)CQ used prophylactically and/or initi-
ated in the very early stages of the disease is more efficacious.
(H)CQ has potential serious side effects, including cardiac
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arrhythmia, but these may be of particular relevance to pa-
tients clinically affected by COVID-19 but less so to asymp-
tomatic healthy individuals. Indeed, the prophylactic use of
CQ is a commonly used antimalarial strategy (making CQ
one of the most widely used drugs worldwide),4 and in this
setting, significant cardiac toxicity has not been widely re-
ported. Similarly, patients with autoimmune disorders such
as systemic lupus erythematosus (SLE) and rheumatoid
arthritis use HCQ (a less toxic derivative of CQ) during pro-
longed periods of time, mostly without serious side effects.5

However, it is known that a certain percentage of the general
population carries genetic variant(s) that may predispose
them to (H)CQ-induced proarrhythmia. We here explore
the potential prophylactic use of (H)CQ in SARS-CoV-2
infection, the expected side effects and toxicity in the popu-
lation to be targeted, and the recommended safety measures
to prevent life-threatening arrhythmias.
B. Antiviral effects of (H)CQ and mechanism of
action
Both CQ andHCQ are efficiently absorbed, reach peak serum
concentrations within hours, and have a half-life of up to 1
month. Therapeutic doses of (H)CQ typically result in plasma
concentrations of 2–5 mM, but accumulation in plasma and
tissues occurs after chronic use, which is more pronounced
for CQ than for HCQ. Both CQ and HCQ accumulate in ly-
sosomes, destabilizing lysosomal membranes, altering lyso-
somal and endosomal pH, and interfering with lysosomal
activity and autophagosome function.6 Both compounds
may furthermore reduce antigen presentation, inhibit cyto-
kine production (interleukin [IL]-1, interferon [IFNa], and
tumor necrosis factor [TNF]), and affect Toll-like receptor
signaling and cyclic guanosine monophosphate-adenosine
monophosphate [GMP-AMP] synthase activity.6 These
immunomodulatory and anti-inflammatory effects of (H)
CQ have proven beneficial in the chronic treatment of pa-
tients with SLE and rheumatoid arthritis. In addition, their ly-
sosomotropic action is thought to account for their
antimalarial activity.

Like SARS-CoV, SARS-CoV-2 infects cells by binding to
the angiotensin-converting enzyme 2 (ACE-2) receptor through
its spike domain whereas the Middle East respiratory syndrome
coronavirus useshumanCD26ordipeptidyl peptidase-4 (DPP4)
receptors for cell entry. SARS-CoV-2 entry into the cell depends
on pH-dependent internalization and fusionwith intracellular or-
ganelles such as endosomes and lysosomes. In addition to
elevating the pHof acidic endosomes anddisrupting the intracel-
lular transport of the virus, (H)CQ may affect the glycosylation
ofACE-2, potentially reducingSARS-CoV-2 binding toACE-2
and preventing entry of the virus into the cell.Wang et al7 tested
the in vitro antiviral efficiency of a number of drugs in African
green monkey kidney Vero E6 cells (ATCC-1586) inoculated
with SARS-CoV-2 and found that CQ potently blocked virus
infection. Importantly, CQ was shown to decrease virus yield
by 80% when cells pretreated with the drug for 1 hour before
viral infection and still by 50%–60% when it was added to the
cells 2 hours postinfection, indicating that the drug functioned
at both entry and postentry stages of infection.7 Similarly, previ-
ous studies had demonstrated antiviral activity ofCQ inVeroE6
cells inoculated with SARS-CoVwhen administered both at the
time of inoculation or postinfection.8,9 Anti–SARS-CoV-2
activity was subsequently also demonstrated for HCQ in Vero
E6 cells in 2 studies.10,11 However, both an apparent lower
potency of HCQ than of CQ10 and a higher antiviral activity
for HCQ than for CQ was demonstrated.11 Similar to CQ,
administration ofHCQwas found to inhibit both entry and post-
entry stages of SARS-CoV-2 infection.10

In addition to its direct effects on SARS-CoV-2 replica-
tion, (H)CQ may modulate the innate and adaptive immune
response. As previously discussed,12 HCQ may on one
hand dampen the overactive immune response during the in-
flammatory phase of the infection and modulate IFNg pro-
duction and on the other hand weaken the innate immune
response to the virus and impair adaptive immune responses.
Importantly, these various effects of (H)CQ may differ de-
pending on dosing and disease stage and severity; however,
such effects on immune modulation in patients with
COVID-19 are as yet unknown.
C. Limited therapeutic efficacy of (H)CQ in
patients with symptomatic COVID-19
Various studies have looked at the therapeutic potential of
(H)CQ in patients hospitalized for symptomatic COVID-
19. Initial studies reported (H)CQ to be effective in reducing
viral replication13,14 or in reducing time to clinical recov-
ery.15 However, these studies had small sample sizes
(,100) and various methodological flaws (nonrandomized,
nonblinded) and were underpowered for primary end points
such as mortality.16 Meanwhile, more recent larger studies
have not been able to confirm the beneficial effects of (H)
CQ.17–20 These studies found that in patients hospitalized
for COVID-19, HCQ therapy was not associated with a
reduction in intensive care unit admission or death,17 a reduc-
tion in intubation or death,18 or a reduction in death alone.19

In fact, Magagnoli et al20 reported an increased risk of mor-
tality for HCQ, although this may have been biased because
of baseline differences between the control and the interven-
tion group. In addition, various studies have looked at the
potential benefit of adding a macrolide, such as azithromycin
or clarithromycin, to (H)CQ. However, again no benefit was
observed in any of the studies.19,20

A variety of reasons could underlie the fact that the above-
mentioned studies were unsuccessful in finding a positive ef-
fect of (H)CQ therapy. All studies investigated the effects of
(H)CQ in patients hospitalized for COVID-19, meaning that
treatment was initiated at a relatively advanced stage of the
disease. As described above, in vitro studies demonstrated
that part of the antiviral effects of (H)CQ is mediated by in-
hibition of receptor binding and membrane fusion of SARS-
CoV-2, that is, during early stages of virus infection. In
contrast, patients hospitalized for COVID-19 are likely
already advanced beyond the early disease stage, and hence
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it is possible that treatment with (H)CQ simply initiated too
late in these studies. In addition, the deleterious immune
modulatory effects of (H)CQ (on the innate and adaptive im-
mune responses) may in fact have mitigated some of its bene-
ficial effects. Finally, it must not be overseen that
discordances between in vitro and in vivo observations of
(H)CQ may also occur in SARS-CoV-2, as has been the
case for other viruses.21
Figure 1 Baseline corrected QT (QTc) interval in the population with co-
ronavirus disease 2019 (COVID-19) compared to the control population.
Manually measured QTc values were used unless unavailable or unspecified;
the latter are indicated by a red outline.24–26 Error bars indicate standard
deviations of each separate study (not available for 2 studies23,29). The filled
symbols (circles and squares) represent the sample size of the studies (see
inset color scale). The horizontal black line indicates the overall mean value
of all the studies for each group.
D. Increased vulnerability to (H)CQ-induced
corrected QT prolongation in patients with
COVID-19?
Another interesting possibility could be that patients with
COVID-19 are more vulnerable for drug-induced corrected
QT (QTc) prolongation and accompanying potentially lethal
side effects, thereby (partly) masking a potential benefit of
(H)CQ treatment. (H)CQ is a moderate inhibitor of the hu-
man ether-�a-go-go related gene encoding the potassium
channel responsible for the delayed rectifier current.22 The
drug furthermore inhibits the inward-rectifier potassium
channel Kir2.1. (H)CQ-induced block of cardiac potassium
currents impairs ventricular repolarization and consequently
leads to action potential and QT prolongation, thereby
increasing the risk of malignant arrhythmias (torsades de
pointes [TdP]). In general, the risk of drug-induced QT pro-
longation and TdP is increased by the concomitant use of
other QT-prolonging drugs, electrolyte disturbances, and car-
diac disease. Crucially, from the available electrocardio-
graphic (ECG) data in studies published so far, it appears
that patients with COVID-19 already have a prolonged
QTc interval, even without (H)CQ use: the baseline mean
QTc interval in patients with COVID-19, as presented in pre-
vious studies,23–26 is much longer (in the 425–455 ms range)
than that reported in healthy volunteers (6400 ms)
(Figure 1).27,28

Severalmechanismsmay underlie the high baselineQTc in-
terval in patients with COVID-19. First, patients with COVID-
19 are frequently burdenedwith various comorbidities, such as
diabetes, obesity, and cardiovascular diseases (coronary artery
disease, heart failure, or cardiac arrhythmias). These comorbid-
ities can causeQTcprolongation as such,30 but also through the
medication subscribed for these comorbidities.31 Second, spe-
cific componentsof theCOVID-19pathophysiological process
may play a role. Patients with COVID-19 display an excessive
immune response, leading to a cytokine storm with high
plasma levels of IL-1, IL-6, and TNFa, which can all prolong
the action potential and consequently the QTc interval.32 In
addition, electrolyte disturbances (ie, hypokalemia or magne-
semia) and hypoxia, often seen in patients with COVID-19,
can prolong the QTc interval.33 Moreover, patients with
COVID-19 may use other antiviral QT-prolonging drugs,
such as azithromycin. Overall, these factors may reduce repo-
larization reserve, leading to a prolonged baseline QTc interval
in patients with COVID-19 as well as a more pronounced QTc
prolongation after (H)CQ therapy. Indeed, recent studies have
reported average increases in a QTc interval of w28–35 ms
after (H)CQ treatment in patients hospitalized for COVID-
19,23–25 and these results are in line with other published data
summarized in a recent review.34 Crucially, up to 20% of pa-
tients had QTc prolongation in the range of �500 ms, which
is generally considered the cutoff value for discontinuing treat-
ment. Although TdP arrhythmias appeared to occur infre-
quently, this has been reported35 and it is clear that (severely)
ill patients hospitalized for COVID-19 may be more suscepti-
ble to (H)CQ-induced cardiotoxicity. However, the question
remains whether preventive treatment initiated early in the
disease course is of clinical benefit.
E. Prophylactic use of (H)CQ in COVID-19:
Potential strategies and initial findings
According to the in vitro findings, early use of (H)CQ may
prevent virus infection and/or reduce disease severity,
similar to its previous use as antimalarial therapy. As
such, early treatment with (H)CQ in COVID-19 as a pro-
phylactic therapy is conceivable. Various strategies can be
considered, depending on whether therapy is given prein-
fection or postinfection, for example, targeted vs mass
prophylaxis. Preinfection relates either to individuals
who are “preexposed,” such as health care workers or



Figure 2 Overview of (sub)trials listed on ClinicalTrials.gov assessing the
prophylactic use of (hydroxy)chloroquine in severe acute respiratory syn-
drome coronavirus 2. Trials are listed by estimated sample size and prophy-
laxis strategy. Trials not conducting any electrocardiography (ECG) are
depicted in gray, trials conducting baseline ECG in red, and trials conducting
baseline and follow-up ECG in green.
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high-risk patient groups, or to individuals “postexposed”
to confirmed cases. Postinfection prophylaxis is aimed at
recently infected, nonhospitalized, SARS-CoV-2–positive
individuals who are still asymptomatic or only mildly
affected. Currently, 60 studies listed on ClinicalTrials.
gov are using such a prophylactic approach, enlisting a cu-
mulative estimated sample size of 175,000 individuals
(Figure 2). Of these, 36 (sub)studies initiate therapy in pre-
exposed individuals, 13 in confirmed postexposed individ-
uals, and 17 in postinfected individuals. Depending on the
proposed strategy, different dosing strategies and duration
of (H)CQ use will be used, varying from days to months.
Figure 3 Schematic diagram of the recommendations for electrocardiographic (
risk are defined as those with a known history of congenital or acquired long QT
drugs, and conditions with an increased risk of electrolyte disorders (such as chr
ensuring awareness of potential arrhythmic symptoms (eg, dizziness, syncope, and
So far, results from only 2 studies asserting the effect of
HCQ on post–exposure-confirmed SARS-CoV-2 cases
have been published. One small nonrandomized,
noncontrolled study administered HCQ in 211 SARS-
CoV-2–negative individuals, who were all exposed to 1
index patient, and found that none of these cases had a
positive polymerase chain reaction test after 14 days of
quarantine.36 However, this study is severely limited by
the lack of a control group and the fact that almost none
of the exposed individuals fell in the high-risk exposure
group. More recently, the first randomized controlled trial
testing (H)CQ as prophylaxis has been published.37 In this
study, 821 postexposed individuals, who were recruited
via social media, were treated with HCQ or placebo within
4 days of exposure. The incidence of developing COVID-
19, which was defined through clinical evaluation in the
vast majority of cases (w80%) because of a limited access
to diagnostic tests, was relatively low and not different be-
tween the groups (ie, 12%–14%). However, the study was
limited by the fact that polymerase chain reaction diag-
nosis was not performed in most participants, and
follow-up data collection was through self-reporting.
Overall, the study design may not have been optimal to
identify a beneficial, preventive effect of HCQ in mildly
affected patients. In addition, whether (H)CQ is effective
in preexposed individuals remains unknown, and it will
be interesting to see the results of other ongoing random-
ized controlled trials on this topic.
F. (H)CQ prophylaxis for COVID-19: Cardiac
considerations and recommendations
When considering potential large-scale (H)CQ prophylaxis,
the potential off-target effects should be taken into account.
†

ECG) monitoring during (hydroxy)chloroquine prophylaxis. *Individuals at
syndrome, structural heart disease, bradycardia, use of other QT-prolonging
onic diarrhea or chronic kidney disease). †Symptom education for patients,
palpitations). QTc 5 corrected QT.
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Cardiac rhythm disorders such as sinus bradycardia or con-
duction disorders (atrioventricular block and bundle branch
blocks) have been reported in (H)CQ users.38 As discussed
above, (H)CQ may furthermore lead to potentially dangerous
QTc prolongation in patients with COVID-19, although this
may be less problematic in healthy individuals given (H)CQ
prophylactically. In healthy volunteers, 600 mg of CQ
increased the QTc interval on average by 16 ms.27 The wide-
spread use of CQ for antimalarial prophylaxis has not been
associated with an increased risk of ventricular arrhythmias
such as TdP or significant QTc prolongation.4,39 Here, poten-
tial confounding effects of high fever and/or its deferves-
cence on cardiac repolarization may also be of relevance
but are as yet incompletely understood.40 In 85 patients
with SLE or other connective tissue diseases treated with
HCQ for .1 year, the average QTc interval was 410 ms
(range 349–464 ms) and no other significant effects on
ECG parameters were observed.5 In another study of 409 pa-
tients with SLE treated chronically with (H)CQ, a prolonged
QTc interval (according to the Minnesota criteria) was re-
ported in only 3 patients (0.7%).41 Moreover, in 76,822
adverse drug reaction cases from theWorld Health Organiza-
tion pharmacovigilance database (VigiBase), only 53 cases
of QT prolongation (0.07%) and 83 cases of ventricular
tachycardia including TdP (0.11%) were recently reported,42

whereas no safety signal for TdP/QT interval was observed
for (H)CQ in an analysis of the US Food and Drug Adminis-
tration Adverse Event Reporting System.43 It must be noted,
however, that the latter 2 databases likely underestimate the
true cardiac toxicity as a result of potential underreporting
of adverse events. In general, the specificity and sensitivity
of the reported incidence of cardiac adverse events varies
significantly depending on the type of study involved (spon-
taneous reporting, observational studies, randomized
controlled trials, or hospital metadata) as well as the sample
size.44 These are important considerations when considering
the apparent conflicting results reported in relation to
COVID-19.

Despite the seemingly low prevalence of serious side
effects associated with (H)CQ use, particularly in healthy
individuals and when used for a short period of time,
certain individuals may be at an increased risk of poten-
tially life-threatening side effects. CQ and HCQ are both
metabolized by cytochrome P450 (CYP3A4), and hence
plasma levels may be increased during the concomitant
use of CYP3A4-inhibiting drugs. (H)CQ metabolism is
also compromised in individuals with inherited glucose-
6-phosphate dehydrogenase deficiency.45 A certain per-
centage of the population furthermore carries genetic
variant(s) that reduces their repolarization reserve, predis-
posing them to drug-induced QT prolongation. Such
genetic factors that predispose to QTc prolongation in
response to certain drugs include the KCNE2 variant
D85N, which is present in 62% of the general population
and importantly enriched in cohorts with drug-induced
adverse events.46 Additionally, w10% of African Amer-
ican individuals carry the SCN5A allele 1103Y, which is
also associated with a strong predisposition for excessive
QTc prolongation.47 Even considering the lowest estima-
tion of 2% of the population carrying QT-prolonging
alleles, this would mean that of the 175,000 individuals
being enrolled in the various (H)CQ prophylactic studies,
1750 of them are at an increased risk of (H)CQ-induced
excessive QTc prolongation and potentially life-
threatening arrhythmias (assuming 1:1 randomization).48

The functional impact of such genetic variants may be
more relevant to female patients who already have a longer
QT interval to start with.

Despite these considerations, only 12 of the 60 studies of
(H)CQ prophylaxis listed on ClinicalTrials.gov explicitly
state that baseline ECGs will be collected and only 5 also
mention follow-up ECG(s). The vast majority does not
list QTc prolongation as an exclusion criterion or only
exclude individuals with known QTc prolongation; those
with a positive family history for long QT syndrome,
TdP, or sudden death; or those using other QTc-
prolonging drugs. Six studies mention specific QTc cutoffs
in their exclusion criteria, but do not specify whether this
relates to previously available ECGs or whether an ECG
will be performed in each included individual. On the basis
of the considerations discussed above, we recommend that
the prophylactic use of (H)CQ for COVID-19 should
include some form of ECG monitoring. In accordance
with our previous recommendations,49 an ECG before the
initiation of treatment is advised in patients with a known
history of congenital or acquired long QT syndrome, struc-
tural heart disease, bradycardia, or use of other QT-
prolonging drugs, and in these patients (H)CQ should not
be initiated when the baseline ECG shows QTc interval �
500 ms. If the QTc interval is ,500 ms, an ECG shortly
after the initiation of treatment is advised in addition to a
repeated ECG after a few days. Long-term use would
require a follow-up ECG after a few weeks, since (H)CQ
plasma accumulation may occur. An ECG showing QTc in-
terval � 500 ms or an increase of 60 ms is an indication to
discontinue therapy. In all other individuals receiving (H)
CQ prophylaxis, we do not consider a pretreatment ECG
necessary but do recommend at least 1 ECG 12–24 hours
after the first dose in order to identify those at an increased
risk of (H)CQ-induced excessive QT prolongation and TdP.
If the QTc interval exceeds 500 ms, (H)CQ should be dis-
continued; if the QTc interval is �480 ms, a second follow-
up ECG is advised within 1–2 days. Again, when the QTc
interval exceeds 500 ms or is increased by 60 ms, therapy
should be discontinued. No follow-up ECG is necessary if
the QTc interval is ,480 ms. However, these individuals
should be educated about possible arrhythmic symptoms
(eg, dizziness, syncope, and palpitations) and reassessment
of their arrhythmogenic risk is prompted when such symp-
toms are experienced. During treatment, all patients should
be informed about other potential QT-prolonging risk fac-
tors, such as other QT-prolonging drugs and hypokalemia
secondary to, for example, chronic diarrhea. Naturally, in
the case of COVID-19–related illness, appropriate measures

http://ClinicalTrials.gov
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should be taken when necessary, including careful electro-
lyte monitoring. A schematic overview of these recommen-
dations is presented in Figure 3.
Conclusion
While (H)CQ treatment has so far not shown therapeutic
benefit in patients with COVID-19, (H)CQ prophylaxis
may prove beneficial and a large number of clinical
studies are planned and underway to address this issue.
Given the known QT-prolonging effects of (H)CQ, its
prophylactic use may potentially induce life-threatening
arrhythmias, particularly in patients with preexisting car-
diovascular disease and those taking other QT-
prolonging drugs. In addition, a certain percentage of
the population carries genetic variant(s) that reduces their
repolarization reserve, and this may be more relevant to
female patients. Based on these insights, ECG monitoring
after (H)CQ is recommended.
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