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Abstract: Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used
in both research and engineering fields. However, the original PSO generally suffers from premature
convergence, especially in multimodal problems. In this paper, we propose a double-group PSO
(DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution
framework. The individuals are divided into two groups: an advantaged group and a disadvantaged
group. The advantaged group works according to the original PSO, while two new strategies are
developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing
it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various
benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in
terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing
image segmentation. The results show that the proposed algorithm outperforms five other popular
algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the
proposed algorithm.

Keywords: particle swarm optimization; multilevel thresholding; remote sensing image segmentation;
meta-heuristic; swarm intelligence

1. Introduction

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm based on swarm
intelligence. It is originally proposed by Kennedy and Eberhart in 1995 [1] and is known for its effectiveness
and simplicity. It has been proved to be outstanding in solving many complex optimization problems
such as power systems [2], neural network training [3], global path planning [4], and feature selection [5].

However, PSO also suffers from two limitations. One is that the original PSO tends to converge
to the local optima when applied to complex problems. On the other hand, the convergence speed
of the original PSO and most of its variants is slow, especially on high-dimensional problems [6].
Therefore, accelerating the convergence speed and avoiding the local optima convergence have become
the two most important and appealing goals in particle swarm optimization studies [7,8]. Specifically,
the studies can be classified into three strategies: parameter selection strategy, topology strategy and
learning strategy.

The parameter selection refers to the optimization of the inertial weight factor, convergence
factor, and the acceleration constant. The inertial weight factor is introduced by Shi and Eberhart to
improve the update of velocity [9]. Further studies also show that applying linear decreasing [10],
nonlinear [11], exponential [12] and Gaussian [13] strategy to optimize the inertia weight can enhance
the overall performance. The convergence factor is proposed by Clerc and Kennedy to enhance the
final convergence [14]. In addition, detailed studies [15-17] show that the acceleration constant takes
an important role on convergence performance.
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The topology strategy is generally employed to improve exploration and avoid premature
convergence. In topology strategy, individuals learn from the neighborhood rather than the whole
swarm. Therefore, more information would be shared during the search process, which is useful
to improve optimization performance. A number of topologies including ring or circle topology,
wheel topology, star topology, pyramid topology, Von Neumann topology and random topology are
suggested by Kennedy in [18]. Generally, a large neighborhood is good for simple problems, whereas
a small neighborhood is helpful for avoiding premature convergence on complex problems [19].
Reference [20] studied the topology extensively, which provides a useful guide of topology selection.
It points out that an optimal topology is both problem-specific and computational-budget-dependent
and two formulas have been introduced to estimate optimal topology parameters based on
numerical experiments.

In the original PSO, all individuals keep learning from the global best solution and their individual
best experience in the whole search process. This may lead to premature convergence [21]. To overcome
the problem, some novel learning strategies have been developed in recent years. A comprehensive
learning strategy is developed to improve the performance on complex multimodal functions in [22].
Reference [23] introduces a cooperative approach to solve high-dimensional optimization problems
with multiple swarms. A cooperatively coevolving strategy is proposed in [24] to further improve
the performance. Sun et al. introduce a global guaranteed convergence optimizer called quantum
behaved particle swarm optimization, which improves the performance by increasing the population
diversity [25]. A variant with double learning patterns is developed in [26], which employs the
master swarm and the slave swarm with different learning patterns to achieve a trade-off between the
convergence speed and the swarm diversity.

However, the three strategies above still face the following shortcomings. In parameter selection,
some strategies do improve the overall performance in many cases, but the effect is limited [19],
and it is hard to obtain an optimal parameter for all cases. In topology strategy and learning strategy,
although the exploration is improved to avoid premature convergence, the convergence speed is
reduced at the same time.

In this paper, we design a double-group particle swarm optimization (DG-PSO) to improve
the performance. The whole population is divided into two groups: an advantaged group and a
disadvantaged group. The modification is focused on the disadvantaged group. A novel learning
strategy is developed based on the comprehensive learning strategy and the self-pollination strategy
in another popular metaheuristic called Flower Pollination Algorithm (FPA). In addition, a diversity
enhancing strategy is also designed to avoid premature convergence. Compared with those published
works, the main contribution in this paper is that a novel variant called DG-PSO is proposed which
shows remarkable performance compared with five other popular variants and two meta-heuristics.
Two new ideas are developed in DG-PSO: a learning strategy, which combines the comprehensive
learning strategy [22] and the self-pollination strategy [27], and a diversity enhancing strategy, which
adds disturbance to the individuals in the disadvantaged group to avoid premature convergence
in multimodal problem. In addition, we also apply the algorithm to multilevel thresholding for
image segmentation, which verifies the effectiveness of DG-PSO and provides a good choice of the
metaheuristic algorithm to implement multilevel thresholding. The rest of the paper is organized as
follows: Section 2 reviews the original PSO and some related works. The strategies and framework of
the proposed algorithm are presented in detail in Section 3, followed by the experiments in Section 4.
Then, the further application on multilevel thresholding for image segmentation is shown in Section 5.

2. Background

In this section, firstly, we outline the original PSO. Then, two basic works for our algorithm
including the comprehensive learning strategy and the self-pollination strategy in FPA are
introduced, respectively.
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2.1. Particle Swarm Optimization

Similar to other meta-heuristics, PSO is based on swarm intelligence. The swarm is composed of
a set of particles i € [1,2,...n]. A particle moves in the search space with a velocity. The position and
velocity of the particle are dynamically adjusted according to its own and its companion’s historical
experience. Each particle’s position is associated with a candidate solution to the problem, and better
solutions are obtained via evolution. The performance of a solution is judged by a given fitness
function (e.g., smaller fitness function values indicate better solutions for the minimization problem).
For a D-dimensional problem, there are four main vectors:

1. The velocity (v; = [v},07...0P
Position (x; = [x},xi2 .. xlD

v;. It can be regarded as a candidate solution.

]): v; denotes the moving speed and direction of the particle i.
|): x; is the current position of particle i. It is updated using its velocity

3.  Previous best position (pbest; = [pbest}, pbest? ... pbest?]): Pbest; represents the historical best
position of particle i. It is updated using the best position that particle i has ever found.

4.  Global best position (gbest = [gbest!, gbest? ... gbestP]): gbest is the best position the swarm has
ever found. It is updated with the best pbest in each generation. The final gbest corresponds to
the final solution of the whole algorithm.

Note that each of the solutions or candidate solutions represent a set of to-be-optimized
parameters, where D is the number of parameters. In the original PSO, the position and velocity are
updated by learning from the current global best solution and its previous best solution according to
Equations (1) and (2):

v‘f(t +1)=wx U‘f(t) 4 cqr1 X (pbest? — xfl(t)) 4 corg X (gbestd - x?(t)), (1)

xF(t+1) = x4(8) + o4 (t+1), )

where i € [1,2,...n] is the ith particle; ¢q, ¢, are called acceleration constants; 71, 1, are two uniformly
distributed random number within [0, 1]; and w is the inertial weight factor.

2.2. Comprehensive Learning Strategy

In the strategy of original PSO, the particles only learn from the global best solution, while its
personal best solution may lead to premature convergence. As a consequence, the Comprehensive
Learning PSO (CLPSO) is developed to improve the learning strategy [22]. It employs a comprehensive
learning strategy, which allows each particle to learn from many particles. Specifically, each dimension
of the particle in CLPSO learns from a random particle in the swarm as Equation (3) shows:

v (t+1) =wx vl (t) e xrf x (pbest;f(ild) - x?(t)), (©)]

where f(i,d) is the function to define which particle’s pbest we should choose (for the ith particle to
follow and learn from). Specifically, for each dimension d of particle i, a random number is generated.
If the number is larger than a certain threshold, then the corresponding dimension will learn from its
own pbest. Otherwise, f(i,d) works as follows:

1. Randomly choose two particles out of the whole population excluding the particle whose velocity
is updated;

2. Compare the fitness of the two particles” pbest and choose the better one;

3. Use the winner’s pbest as the exemplar for the dth dimension of the particle to learn from using
Equation (3).

Specially, if all the winners are the pbest of their own (pbest;), it will randomly choose one
dimension from the pbest of another particle to learn from. The framework of CLPSO is very similar to
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the original PSO, and it has been well tested that CLPSO is effective in optimizing benchmark functions
and real-world problems [22,28-31].

2.3. Self-Pollination Strategy in the Flower Pollination Algorithm

Flower pollination algorithm is a popular nature inspired meta-heuristic in [27]. It has been
widely used in many fields such as sizing optimization of truss structures [27], economic load dispatch
problem in power systems [32], Sudoku Puzzles [33] and feature selection [34] since being published
in 2012.

As a swarm-based metaheuristic algorithm, each individual 7 in the swarm is called a pollen
individual. Each pollen individual is associated with a candidate solution (sol; = [sol},sol?.. . so0lP])
in the search space. FPA searches using the global and local search techniques, where the local
search simulates the self-pollination process. The self-pollination strategy is one of the basic ideas
in FPA (the other one is cross-pollination). Self-pollination occurs when there are no pollen vectors
(Pollen vectors, or called pollinators, can be very diverse. It is estimate there are at least 200,000 variety
of pollen vectors such as insects, bats and birds [27]) such as wind or insects or when the pollen
individuals are pollinated within the same plant. Such self-pollination behaviors are concluded in the
following two rules below:

1. Self-pollination corresponds to the local pollination.
Pollinators can develop flower constancy, which is regarded as a reproduction probability that is
proportional to the similarity of two flowers involved.

Based on the two rules above, the self-pollination strategy is drawn as Equation (4) shows.
Different from PSO, sol; is the only vector that associates with each pollen individual. sol; not only
represents the position of the pollen individual i, but also plays the role of the best solution this
individual has ever found (to understand what is the “sol”, we can refer to the solutions in PSO such
as the position x and the previous best solution pbest). It generates the new solutions by using the
previous one and two other solutions chosen randomly from the population:

sold = sol? + g(sol% — sol%), 4)

where sol, and sol,; are two random solutions in the current generation, which mimics the flower
constancy in a limited neighborhood. ¢ is a uniformly distributed random number within [0,1] used
to implement a local random walk. As rule 1 indicates, the self-pollination is considered as local
pollination, which often occurs in a limited neighborhood of the particle itself. It can be regarded as
the local search around the current position of the pollen individual.

3. The Proposed Algorithm

In this section, we describe the proposed algorithm. Figure 1 shows the overall flowchart, where the
process colored by yellow is the core idea of our algorithm. Different from the original PSO, we separate
all particles into two groups in DG-PSO: an advantaged group (with the population of x1, x; . .. x;;) and
a disadvantaged group (with the population of x,, 11, X;42 . . . x4, where n > m). The advantaged group
evolves according to the same theory as the original PSO (Equations (1) and (2)), while the disadvantaged
group is updated with two novel strategies: a learning strategy and a diversity enhancing strategy.
We focus on the explanation of how the disadvantaged group works. As shown in Figure 2, the two
new strategies work as two sequential processing stages in the update of the disadvantaged group,
which will be discussed carefully in the following two subsections. In addition, the detailed steps and
the whole framework of the proposed method are given in Section 3.3. Finally, we discuss and compare
the proposed algorithm with other related works in Section 3.4.
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Figure 1. The overall framework of the proposed algorithm.

3.1. The Learning Strategy

The learning strategy is based on the self-pollination strategy introduced in Section 2. We firstly
employ the previous best solution pbest to be the solution “sol” in Equation (4) (rather than the position
x, this is because pbest represent the best historical experience of each particle, which is more worthy
to learn from compared with the position x). Then, it becomes Equation (5) for the particle i:

x] = pbest] + & x (pbesty; — pbest}y), ©

wherei = m +1,...,n denotes the particles in the disadvantaged group; pbest,; and pbest,, are two
solutions chosen randomly from the pbest of the whole population (Specifically, r1 and r2 are two
random integers chosen from sequence 1,2, ...n (rl # r2). These two parameters keep the same for
all dimensions when updating a particle i. In addition, they are regenerated for different particles.).
€ represents the scaling factor to perform a random walk satisfying a uniform distributed within [0, 1].
Similar to the original self-pollination strategy, Equation (5) can be considered as the local search
around the solution (position) pbest;.

On the other hand, as the comprehensive learning strategy generally defines a more suitable
solution for the particles to learn from, we additionally replaced the pbest;’l in Equation (5) with
pbest}d((i’ 0) given in Equation (6), where f(i,d) € [1,2...m] is the strategy to identify a particle’s pbest
for the dth dimension of particle i to learn from:

xf = pbest?(i,d) + & x (pbestd, — pbest?), (6)

f(i,d) works according to the comprehensive learning strategy. For the dth dimension of particle
i, the specific procedure to identify the pbestjl[ (i) is shown as follows:

1. Randomly choose two particles out of the advantaged group;

Compare the fitness of the two particles’ pbest and choose the better one;
3. Use the dth dimension of the winner’s pbest as the pbestjf (i) for the corresponding dimension of
the ith particle to learn from.
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Then, a new position is generated using Equation (6) for the particle i in the disadvantaged
group to update. Using (6), the particles in the disadvantaged group can learn from the information
derived from different particles’” historical best position. The strategy is different from the original
self-pollination because we perform local search around the new generated position pbest?(i, 4)
rather than the particle itself. The reason is that always searching the area around the position
itself may reduce the search efficiency because some particles may be located in the low-promising
area. In contrast, making more use of the good information from the advantaged group (using the
comprehensive learning strategy) is inductive to the search efficiency.

3.2. The Diversity Enhancing Strategy

PSO often suffers from premature convergence, especially when optimizing the multimodal
problem. It is because the original PSO algorithm only employs an attraction phase Equation (1),
in which all particles in the swarm move quickly to the same area and the diversity decreases
quickly [35]. This generally leads to converging to the local optima due to the loss of diversity [22].
In such case, improving diversity becomes an important issue in PSO research [22,36]. As diversity is
lost due to particles getting clustered together [37], adding disturbance to the particles is helpful for
them to escape from the local optimal and enhance diversity. Therefore, we developed a strategy to
push the particle away from their current position by adding disturbance given in Equation (7):

Xig = Xjq+rand; X s, (7)

where s is the scaling factor that controls the intensity of the disturbance. As shown in Equation (8),
it is identified using the whole search range of the corresponding dimension (which denotes the strong
disturbance) or the Euclidean distance of the two pbest chosen in the learning strategy (which denotes
a relatively weak disturbance). The strong disturbance is designed for the case that the particle falls
rand; into a large-area local optimum. Therefore, a big jump is needed to escape. The weak disturbance
is designed for the case that the particle is close to the global optimum. In such case, a small random
walk is more helpful to approaching the optimum.

®)

_J |Ubg — Lby|, randy < 0.5,

| lpbest,; — pbest,,||, otherwise,
where, rand, and rand, are two random number uniformly generated within [0, 1] and Ub and Lb
represents the upper and lower bounds of the search space.

Specifically, the strategy works as follows. For each dimension of particle i, we generate a random
number within [0, 1]. If the number is smaller than the given threshold P, the diversity of the corresponding
dimension will be enhanced by adding a random disturbance using (7) and (8). With the disturbance,
the particles are more capable to escape from the local optimal and avoid premature convergence.

3.3. The Framework

Algorithm 1 shows the detailed steps of updating the disadvantaged group, which is the
core of our modification. Apart from Algorithm 1, another minor modification in the proposed
algorithm is that all particles in the two groups should be redistributed according to their fitness
at the end of each generation. m particles with better fitness (for minimization problem, “better”
means “smaller”) are distributed to the advantaged group, whereas others are distributed to the
disadvantaged group. The overall framework and the detailed steps are shown in Figure 1 and
Algorithm 2, respectively, where MaxFEs is the maximum number of function evaluations that represent
the maximum computation cost.
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Algorithm 1. The Steps for Updating the Disadvantaged Group

N =

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fori=m+1:n

Randomly choose two pbest:pbest,; and pbest,, out of the whole population;
/* Learning stage */
Ford=1:D
Generate two different integers a and b within [1,2 ... m];
If fpbest, < fpbest,
pbest?(i/d) = pbest?;
Else
pbest?(ild) = pbestz;
End
xd = pbestfw,d) + & x (pbest?; — pbest?,);
End
/* Diversity Enhancing stage */
Forj=1:D
If rand < p
Draw a scaling factor using Equation (8);
Add disturbance for the current dimension using Equation (7);
End
End

End

7 of 29

! This step aims to choose two pbest from the advantaged group; 2 fpbest stands for the fitness value of
the pbest, which has been recorded before.

Algorithm 2. The Steps of the Proposed Algorithm

1

Randomly initialize n particles;

m particles with better fitness value for the advantaged group; others for the
disadvantaged;

While fes < MaxFEs

Fori=1:m
Update the particle i in the advantaged group using Equations (1) and (2);
End
Evaluate the fitness of the advantaged group;
Update pbest and record the corresponding fitness as fpbest.
Update the disadvantaged group using Algorithm I;
Evaluate the fitness of the disadvantaged group;
Update pbest and record the corresponding fitness as fpbest.
fes = fes+n;
Redistribute the whole population;

End

3.4. Discussion and Comparison of the Proposed Algorithm with Other Related Works

As mentioned above, we combined the current existing comprehensive learning strategy with

the self-pollination strategy in FPA. Specifically, we firstly applied the self-pollination strategy to PSO.
Then, the comprehensive learning strategy is used to identify an exemplar for the particles in the
disadvantaged group to learn from. Note that we choose the exemplar in the advantaged group rather
than in the whole swarm. This strategy aims to improve the learning efficiency of the disadvantaged
group. Obviously, such strategy is different from CLPSO (because CLPSO uses the comprehensive
learning to modify the learning strategy of the original PSO as introduced in Section 2, whereas we
proposed a new learning strategy).
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Based on the analysis above, CLPSO, FPA would be used to compare with the proposed one.
In addition, since we also developed a diversity enhancing strategy to further improve the performance,
it is also necessary to evaluate its effectiveness. We firstly define:

1.  dg-PSO: the proposed algorithm that only employs the learning strategy;
2. DG-PSO: the proposed algorithm that employs both the learning strategy and the diversity
enhancing strategy.

Then, the effectiveness of the diversity enhancing strategy can be evaluated by comparing the
performance of dg-PSO with DG-PSO.

4. Experiments on Benchmark Functions

In this section, we first describe the 20 benchmark functions used for performance evaluation.
Then, the algorithms and the necessary parameters for comparison are introduced. Finally, the results
are shown and discussed in detail.

4.1. The Benchmark Functions

The 20 benchmark functions employed in the experiments are presented in Table 1. All the
functions are the minimization problem, which is defined according to [38,39] in the search space
[—100, 100]. The functions can be categorized into four classes, namely (1) basic problems; (2) rotated
problems; (3) shifted problems; and (4) complex problems. The basic problems include not only the
basic unimodal and multimodal problems, but also a noisy problem (F4), an expanded (F8) and an
expanded hybrid problem (F9). The rotated problems are designed to overcome the drawback in
the basic functions that the variables are separable and the local optima are regularly distributed.
In these rotated problems, the original variable x is rotated by left multiplying the orthogonal matrix
M, ie.,y = M x x. Shifted problems are designed to overcome two other problems (in basic functions)
including: each dimension value of the global optimum is always the same, and the global optimum
is usually located at the centre of the search space. In addition, the complex problems include both
rotation and shift.

4.2. Algorithms and Parameters

Table 2 shows the five PSO variants and two other popular meta-heuristics used in the comparison.
These algorithms include not only the algorithms we mentioned before (CLPSO, FPA), but also some
other state-of-the-art algorithms, which are chosen according to the three strategies introduced in
Section 1. We give a brief description of them here. First, Modified PSO (MPSO) [36] uses parameter
selection based strategy, of which the population size and inertial weight are adaptively adjusted
within the search process. Second, Unified PSO (UPSO) [40] and Fully Informed PSO (FIPS) [41] are
two neighbourhood topology strategy based variants. UPSO represents the unified PSO, which is a
combination of the original PSO and the topology strategy based PSO. FIPS means the fully informed
PSO, which employs the fully informed neighbourhood topology. Finally, Fitness-distance-Ratio PSO
(FDR-PSO) [42] and CLPSO [22] are chosen from learning strategy based variants, where FDR-PSO
employs a fitness-distance-ratio strategy to identify a “fittest-and-closest” particle to modify the
learning strategy. In addition, another novel meta-heuristic called Social Spider Optimization (SSO) [43]
is also chosen to give the comparison as comprehensive as possible. In addition, DG-PSO and dg-PSO
are the proposed algorithms, where only DG-PSO has diversity enhancing strategy.

The parameters of the involved algorithm are set as follows. For dg-PSO and DG-PSO,
the population size of the advantaged group and the disadvantage group are set to 30 and 25
respectively; the possibility p of diversity enhancing is set to 1/D. The population size for other
PSO variants are set to 40 [44], except MPSO, which employs the adaptive population strategy
(initial value, minimum and maximum are 5, 5 and 40, respectively) [36]. Other parameters are listed
in Table 2. We performed the evaluation in both 30 dimensions with MaxFEs = 4 X 10° [45] and
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50 dimensions with MaxFEs = 7 x 10°. Thirty runs are conducted for each function, and the mean
fitness error and the corresponding deviation are calculated (the error is defined by the difference
between the fitness function value and the minimum, i.e., Error = Fitness — Fn). All the experiments
are carried out using MATLAB 2016 on the same machine with an Intel 15-4590 CPU @ 3.3 GHz
processor (Intel, Santa Clara, CA, USA), 4.00 GB memory, and Windows 7 Professional operating
system (Microsoft, Redmond, WA, USA).

4.3. Results and Discussion

The mean fitness error values and the corresponding standard deviation are shown in Tables 3
and 4, respectively, where “Mean” represents the mean fitness error of which the best one in each case
is shown in bold; “Std” means the standard deviation. We perform the Wilcoxon Signed Rank test to
give a rigorous comparison, in which the significance level is set as 0.05. The results are represented
by “C” in the tables, where the three kinds of symbols indicate the performance of DG-PSO: “+”
means DG-PSO is relatively better, “=" means insignificant and “-” means DG-PSO is relatively worse.
We make a sum of the comparison results and showed the final results in the form of “W/T/L” in
the bottom of each table, where “W/T/L” means the number of problems DG-PSO win, tie and lose
respectively compared with the corresponding algorithm.

We firstly compare DG-PSO with other published algorithms. According to the statistical results
in Table 3 (30D), DG-PSO showed better or close performance in all functions when comparing with
CLPSO (W/T/L =18/2/0) and FPA (W/T/L =19/1/0). In addition, in the comparison with other
PSO variants, FDR-PSO (W/T/L = 18/1/1) seems to be the most competitive one to the proposed
algorithm (except dg-PSO), however, it only wins in one case. In addition, DG-PSO even wins in
all 20 comparisons compared with the recently published meta-heuristic SSO. Similar results are
obtained in 50D where DG-PSO still shows great advantages over all other algorithms. The most
competitive algorithm to the proposed algorithm is FDR-PSO (W/T/L =17/2/1) (except dg-PSO),
but, obviously, the results still show the superiority of our algorithm. Then, comparing DG-PSO with
dg-PSO, the results are W/T/L = 13/1/6 in both 30D and 50D. Specifically, DG-PSO shows much
better performance on multimodal problems such as F3, F5, F6, F8, F9, F14, F15, F16, F19 and F20.
However, by comparing DG-PSO with dg-PSO, we can find that the diversity enhancing also brings
significant inefficiency to DG-PSO on unimodal problems (F1, F2, F4, F10, F17 and F18). This is mainly
because the diversity enhancing strategy weakens the exploitation.
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Table 1. Description of the benchmark functions.

10 of 29

No. Name Definition Frin Modality
D d 2
F1 Schwefel 1.2 F(x)= Y Xj 0 Unimodal
d=1\j=1
D
F2 Bent Cigar F(x) =x24+10°- ¥ x3 0 Unimodal
d=2
D
F3(x) = 4189829 D — ¥ g(24), 24 = xq + 4.2096874622750362
d=1

: 1/2

F3 Modified Schwefel Zd Sm<|zd | ) 0 Multimodal
2
8(24) = { (500 — mod(z,4,500)) sin 1/[500 — mod(z4,500) | — Z2 200" 2
(mod(|z4,500) — 500) sin 1/[mod(]z4], 500) — 500] — Z4500)
F4 Schwefel 1.2 with Noise Fy(x)=F-(14+04-|N(0,1)|) 0 Unimodal
D-1 5 2 2 .
F5 Rosenbrock FEx)= Y <100 (63— x441)" + (x4 — 1) ) 0 Multimodal
d=1
D
F6 Rastrigin Fs(x) = ¥ (x3 —10cos(2mxy) + 10 0 Multimodal
g d d
d=1
oz
i i Dl-
F7 Katsuura F(x) = 10 2 1+d 2 M _ 1o 0 Multimodal
7( ) D2 I1 +d}. i D12
d=1 j=1

Fs(x) = g(x1,22) + g(ECz, x(s) + ‘>+ g(;o, xp)
F8 Expanded Scaffer F6 sin?(4/22+y%)—0.5 0 Multimodal

where g(x,y) =05+ S A0 A

Expanded Griewank plus Foy(x) = 8(F5(9%/ x2)) +ggF5(x2, x3)) + ...+ g(Fs5(xp, x1)) .
F9 . v Ya 0 Multimodal
Rosenbrock Function where g(y) = ¥ g0 — 11 cos(\T) +1
=1 =1 d

F10 Rotated Bent Cigar Fio(x) = FR(z),z=Mxx 0 Unimodal
F11 Rotated Rosenbrock F1(x) = F4(z),z=M x x 0 Multimodal
F12 Rotated Expanded Scaffer F6 Fip(x) = F(z),z=Mx x 0 Multimodal
F13 Rotated Expanded Griewank Fis(x) = Fy(2),z = M x x 0 Multimodal

plus Rosenbrock
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Table 1. Cont.

11 of 29

No. Name Definition Frin Modality
F14 Shifted Rastrigin Fi4(x) = Fs(2) + fpias1, 2 = X — 0, fpias1 = 800 800 Multimodal
F15 Shifted Expanded Scaffer F6 Fi5(x) = F3(2) + fpias2,2 = X — 0, fyiasp = 1600 1600 Multimodal
Shifted Expanded Griewank _ ) . S .
F16 plus Rosenbrock Fig(x) = Fo(2) + fpias3 2 = X — 0, fpiasz = 1500 1500 Multimodal
F17 Shifted Rotated Bent Cigar Fig(x) = Fa(x) + fpiass, 2 = M(x — 0), fpiass = 200 200 Unimodal
Fi7(x) = g(x) + friasa, 2 = M(x = 0), fpiasa = 200
F18 Shifted Rotated Discus D 300 Unimodal
sH) =10°yi+ X v
Shifted Rotated Expanded .
F19 Scaffer F6 P Fio(x) = F3(x) + fpiase, 2 = M(x — 0), friase = 1600 1600 Multimodal
Shifted Rotated Expanded _ ) _ _ S .
F20 Griewank plus Rosenbrock Foo(x) = Fo(x) + fpiasy, 2 = M(x = 0), fpiasy = 1500 1500 Multimodal
Table 2. Parameters and references of the involved algorithms.
PSO Variants Parameters Reference
FDR-PSO w=0.9—05x g/Max_iter;cy = c3 = 2.0 [42]
UPSO w = 0.7298; ¢ = cy = 1.49445 [46]
FIPS w = 0.7298; ¢c; = cy = 1.49445 [41]
CLPSO w=09—05x g/Max_iter;c; = cp =2.0 [22]
MPSO Winin = 0.3 Wmax = 0.9; ¢1 = ¢3 = 2.0; [36]
Other State-of-the-Art Parameters Reference
Meta-Heuristics
Population size n =25
FPA Switch possibility p=08 271
Population size n =50 .
550 The threshold PF =07 471
The Proposed Variants Parameters Reference
dg-PSO w =09 —05x g/Max_iter;c; = cp = 2.0 Ours (without diversity enhancing)
DG-PSO w =09 —0.5 x g/Max_iter;cy = c; = 2.0 Ours (with diversity enhancing)
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Table 3. Statistical results on 30 dimensions.

12 of 29

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F1 Mean 3.07 x 10719 372x 10712 705%x 100 710x107%® 112x10792 360x 1078 271 x10792 | 123 x1073%° 345 x 107%
Std 1.25 x 10719 194 x 10712 247 x 10t 496 x 10798 530x 1079 257 x 107 141 x10792 272 x10°% 1.79 x 1072
C + + + + + + + - /

F2 Mean 590 x 107206 959 x 107176 432 x107% 675x10778 984 x 10715 381 x107% 818 x10%02 | 1.28 X 10-226  1.68 x 107126
Std 0.00 x 10+00 0.00 x 10100 114 x107% 368 x 1078 675x 107 359 x107% 1.67 x 1072  0.00 x 10*00  1.88 x 107126
C - - + + + + + - /

F3 Mean 3.00 x 10+02 248 x 10103 258 x 10" 379 x 102 243 x 1003 249 x 10t 150 x 10" 1.47 x 10*03 1.66 X 10*02
Std 1.71 x 10*92 275 x 10102 228 x 10792 135 x 1092 1.73 x 1002 724 x 10*00 2,60 x 10792 750 x 10*02 7.96 x 10+01
C + + + + + + + + /

F4 Mean 214 x10%% 112 x 1070 1.80 x 10"2 324 x 10"2 500 x 1078 439 x 107! 488 x 10"%° | 778 X 10=% 137 x 107!
Std 156 x 109 492 % 10%2 549 x 10" 123 x 10*92 249 x 10*® 842 x 10*0 400 x 10*°  120x 1079 615 x 107%
C + + + + + + + - /

F5 Mean 401 x 10704 149 x 10790 220 x 101 2,04 x 10t 3.19 x 100! 6.60 x 107°  1.00 x 10*%1  1.05 x 10*%0 4.22 x 10~16
Std 1.51 x 10~% 1.02 x 100 255 x 10797 6.99 x 1079 1.39 x 1001 455 x 10" 867 x 10791 1.95 x 10*% 2.16 x 101¢
C + + + + + + + + /

F6 Mean 3.04 x 1070 693 x 10" 611 x 10" 776 x 1070 342 x 10701 3,67 x 1070 431 x 10*°!  3.08 x 107! [ 0.00 X 10*%°
Std 2.65 x 1000 8.09 x 10*00 4,66 x 100  1.66 x 1070 486 x 10t 333 x 100  7.74 x 10t0  1.41 x 10*% 0.00 x 10*00
C + + + + + + + + /

F7 Mean 0.00 x 10+%0 670 x 10792 1.89 x 100 [ 0.00 x 109 196 x 107 | 0.00 x 10*%° 892 x 10~°1 | 0.00 x 10*° 0.00 x 10+%0
Std 0.00 x 10*00 139 x 10792 140 x 1079 0.00 x 1099  1.10 x 10797 0.00 x 10*%°  1.14 x 10797 0.00 x 100 0.00 x 10*00
C = + + = + = + = /

F8 Mean 5.34 x 1000 998 x 1000 998 x 100 336 x 1070 827 x 10t  1.13 x 10"01  8.64 x 10t 427 x 10+ 3.43 x 1071
Std 1.26 x 10790 982 x 1079 399 x 1079 111 x 10t 193 x 10*00 269 x 1079 243 x 10791 2.84 x 10+ 2.39 x 10791
C + + + + + + + + /

F9 Mean 299 x 107 643 x 10" 115 x 10" 218 x 10" 335 x 10" 853 x 10" 1.95 x 107! 577 x 10" | 9.93 X 10~
Std 701 x 10700 141 x 100 973 x 107 675 x 10701 839 x 10701 292 x 10*% 229 x 10*° 123 x10*% 153 x 107
C + + + + + + + + /

F10 Mean 2.62 x 1000 477 x 10¥02 115 x 10t 6.10 x 100  1.98 x 10"91 222 x 10*®  1.78 x 10*%% | 4.30 x 10=2° | 7.30 x 107
Std 1.74 x 10790 3.15 x 10102 259 x 1002 275 x 1070 526 x 10t 507 x 10797 943 x 10"91 413 x 1072 483 x 1079
C + + + + + + + - /

F11 Mean 129 x 10" 198 x 1090 251 x 10" 505 x 100 322 x 10" 206 x 10" 237 x 10" 215 x 10*" |19 x 10°%
Std 3.64 x 1070 124 x 10" 349 x 1079 1.61 x 10" 1.84 x 10701 1.06 x 10" 7.37 x 10" 1.82 x 1070 6.20 x 10~
C + + + + + + + + /
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Table 3. Cont.
No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO
F12 Mean 5.42 x 1000 6.47 x 10+00 1.46 x 10791 528 x 10*00 120 x 10*01 928 x 1070 2,00 x 10+0! 1.10 x 10*91 2.84 x 10+90
Std 9.36 x 10701 413 x 1079 510x 1079 647 x 1079 218 x 10*0 755 x 10791 122 x 1070 925 x 10~ 391 x 107V
C + + + + + + + + /
F13 Mean 9.38 x 10+00 1.14 x 10797 113 x 10t 1.01 x 1071 1.02 x 1097 121 x 10*01 876 x 1010  1.68 x 10*0! 7.71 x 10*00
Std 5.11 x 10791 120 x 1079 299 x 10797 396 x 10791 7.00 x 1079 154 x 10791 322 x 10701 222 x 100 543 x 10791
C + + + + + + + + /
F14 Mean 213 x 100 8388 x 1071 623 x 10" 305 x 10"1 129 x 1072 7.82 x 107! 959 x 107! 7.76 x 10"*! | 9.09 X 10~
Std 210 x 100 466 x 10700 409 x 1070 422 x 1070 274 x 10700 616 x 107 127 x 1000 236 x 10700 254 x 10~
C + + + + + + + + /
F15 Mean 3.07 x 10+00 744 x 100 123 x 10t01 461 x 1070 123 x 1007 137 x 10*01 2,10 x 10t91  7.55 x 1000 1.09 x 10+00
Std 2.63 x 10701 644 x 10791 558 x 10701 1.95 x 1070 838 x 100  2.09 x 10*00  1.69 x 10t 622 x 1070 1.21 x 10~
C + + + + + + + + /
F16 Mean 7.15 x 1000 1.08 x 10701 1.04 x 10791 3,69 x 10t 1.08 x 10*%7  1.20 x 10"91  1.22 x 10*91  3.70 x 10*% 2.91 x 10~
Std 5.17 x 10701 238 x 10790 136 x 1077 679 x 1079 7.00 x 10797 960 x 10792 115 x 1079 7.70 x 10~% 2.65 x 10712
C + + + + + + + + /
F17 Mean 289 x 10*% 139 x 10" 160 x 10" 479 x 10"%® 111 x 10"*  6.83 x 10" 698 x 10" 611 X 107> | 1.88 x 10~*
Std 162 x 10*% 635 x 10" 597 x 1092 214 x 10*% 535 x 10*% 355 x 10*® 119 x 10" 616 x 10712 7.65 x 107
C + + + + + + + - /
F18 Mean 6.14 x 1000 5.65 x 10102 163 x 10" 1.78 x 107 2,08 x 10*%* 150 x 100! 213 x 10"%* | 6.82 x 10~ | 355 x 10~%
Std 3.43 x 1000 407 x 10¥92 150 x 10*92  1.12 x 10"  1.15 x 10"%*  2.81 x 10*®  1.87 x 10"  3.38 x 1013 1.75 x 10797
C + + + + + + + - /
F19 Mean 105 x 10*1 118 x 10" 1.18 x 1070 1.02 x 10" 122 x 101 121 x 10" 124 x 10" 115 x 1091 1,01 X 10%*
Std 205x 1079  231x107%  886x107% 3.08x107% 540x107% 125x107%  1.04x 107" 352x 107" 328 x 107"
C + + + = + + + + /
F20 Mean 7.67 x 1000 722 x 100 133 x 101 570 x 10t 156 x 1001 1.65 x 10791 238 x 10*01  4.77 x 10*%0 4.18 x 10+%0
Std 1.93 x 10790 110 x 100 755 x 10797 1.01 x 10t 562 x 1000 2,66 x 1070 229 x 10t  3.01 x 10~% 465 x 10791
C + + + + + + + + /
WI/T/L 18/1/1 19/0/1 B 18/2/0 20/0/0 19/1/0 20/0/0 13/1/6 /

Note: the gray bacground highlights the best result on each function.
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Table 4. Statistical results on 50 dimensions.

14 of 29

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F1 Mean 6.98 x 10798 252 x107% 322 x10M% 127 x 10t92 710 x 1000 424 x 10791 113 x 10792 | 7.35 x 10~ 22 6.46 x 10718
Std 353 x 10798 122 x107% 823 x 10t92 525 x 10*01 524 x 100 232 x 1079 612 x 10708 750 x 10722 254 x 10718
C + + + + + + + - /

F2 Mean 428 x 107164 586 x 107200 200 x 1072 877 x1077* 6.04x 10713 644 x107% 150 x 10*%® | 6.55 x 10-216 1.44 x 1012
Std 0.00 x 10+00 0.00 x 10100 527 x 1072  6.05x 10774 297 x 10713 384 x107% 1.85x 102 363 x 10726 920 x 107122
C - - + + + + + + /

F3 Mean 1.31 x 1093 527 x 10103 777 x 1079 757 x 1092 411 x 1003 4.81 x 10t 338 x 10" 3.68 x 1003 4.50 x 10*02
Std 4.86 x 10102 404 x 10102 229 x 1092 290 x 1002 646 x 10t02 155 x 10792 558 x 10*92  1.88 x 10*% 1.21 x 10*02
C + + + + + + + + /

F4 Mean 510 x 109 1.66 x 107 1.05 x 10" 125 x 10" 437 x 1072 376 x 10" 5.04 x 10"® | 821 X 10*% | 1.45 x 10**
Std 372 x10%% 401 x 1070 134 x10"8 504 x 10"8 174 x 1072 1.09 x 1072 249 x 10*® 357 x 10°1  7.05 x 10*%!
C + + + + + + + - /

F5 Mean 2.49 x 10+01 192 x 1079 422 x 10t97 921 x 1001 725 x 10792  9.03 x 10t  3.79 x 10*01  1.85 x 10*00 7.21 x 10—02
Std 1.27 x 10*01 925 x 10792 196 x 10791 278 x 10t01 475 x 10792  5.00 x 10" 311 x 10*%  1.72 x 10*%0 446 x 10791
C + + + + = + + + /

F6 Mean 629 x 10701 131 x10*2 167 x 10*? 143 x 10" 7.02 x 10" 694 x 10" 695 x 10"°0 594 x 107! [ "6.04 X 10~ "
Std 6.33 x 1000 172 x 1091 978 x 1070 567 x 10791 1.65 x 1007 8.82 x 10t 757 x 10t 1.48 x 10*0! 7.94 x 10~1e
C + + + + + + + + /

F7 Mean 0.00 x 10+%0 145 x 10791 2,60 x 10t | 0.00 x 10™°  3.05 x 10791 | 0.00 x 10*%° 1.46 x 10 | 0.00 x 10*% 0.00 x 10+%0
Std 0.00 x 10*00 128 x 10792 952 x 10792 0.00 x 1099 175 x 10797 0.00 x 10*% 125 x 10790 0.00 x 100 0.00 x 10*00
C = + + = + = + + /

F8 Mean 1.16 x 10*01 2.00 x 1001 1.96 x 10791 493 x 10t 198 x 107 1.91 x 10"91 154 x 10t 1.05 x 10*0! 8.74 x 10~ 01
Std 2.37 x 1000 487 x 1079  552x 1079 173 x 100 746 x 1079 988 x 1079 530x 1079 485 x 107N 1.76 x 1001
C + + + + + + + + /

F9 Mean 7.66 x 1070 158 x 10*1 283 x 109 385 x 10" 1.08 x 10*1 221 x 10"0 353 x 107! 6.36 x 1070 | 1.88 X 10*%°
Std 116 x 10* 302 x 10" 1.05 x 10 9.01 x 107%0 279 x 10*° 353 x 10*% 268 x 10*° 990 x 1079 346 x 107!
C + + + + + + + + /

F10 Mean 1.02 x 10792 146 x 103 812 x 10™3 446 x 10t92 281 x 1002 1.14 x 10792 3,08 x 10*% | 2.69 X 10=%7  9.16 x 10~
Std 1.68 x 10*01 409 x 10¥92 763 x 10*02 717 x 107 1.01 x 1072 514 x 10*01  1.87 x 10*02 224 x 107% 3.04 x 1079
C + + + + + + + + /

F11 Mean 6.08 x 10701 525 x 109 449 x 10 116 x 10*2 598 x 10" 461 x 10792 553 x 1070 1.70 x 107! [ 72,02 x 10~ %
Std 135 x 10*1 127 x 10 352 x 10700 443 x 10 1.63 x 10" 1.62x 1079 707 x 10" 132 x 10" 1.05 x 1077
C + + + + + + + + /
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Table 4. Cont.

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F12 Mean 115 x 1091 242 x 100 313 x 1000 1.19 x 1090 238 x 1001 219 x 10?1 423 x 10*0! | 1.78 X 10*% | 8.18 x 10"
Std 133 x 10*0 359 x 10" 274 x 1070 1.09 x 10*° 257 x 10" 840 x 1079 323 x 10*® 658 x 1079 6.69 x 1070
C + + + + + + + - /

F13 Mean 1.73 x 1001 2.03 x 10101 213 x 101 1.89 x 1097 1.87 x 10*01 211 x 10"9  1.60 x 1091 2.62 x 10*0! 1.58 x 10*01
Std 5.78 x 10791 440 x 10790 164 x 1079 340x 1079 767 x10700 184 x 1079 561 x 1079 6.18 x 10*% 5.60 x 10791
C + + + + + + = + /

F14 Mean 773 x 1000 193 x 10" 173 x 10*2 677 x 10*1  2.82 x 10*2 155 x 10"02 283 x 10" 248 x 10*2 | 1.59 x 10~ 13
Std 770 x 100 176 x 10*1 120 x 1091 442 x 10*0 304 x 10*1 1,07 x 10*00 223 x 10" 2.04 x 10" 311 x 107
C + + + + + + + + /

F15 Mean 2.50 x 10%01 216 x 10101 271 x 10™1 584 x 109 1.07 x 10¥01 538 x 10"91 495 x 1091 2.14 x 10*0! 1.62 x 10+00
Std 1.03 x 10*01 316 x 10100 978 x 10701 423 x 10"® 173 x 10*00  9.85 x 10t  1.06 x 100  3.81 x 100! 7.70 x 10792
C + + + + + + + + /

F16 Mean 1.26 x 1001 2.02 x 10101 2,03 x 1091 543 x 1070 2,09 x 10t 2.10 x 10"9? 217 x 10t91  1.40 x 10+ 8.70 x 10~ 01
Std 1.01 x 10790 230 x 10790 667 x 10792 509 x 1079 9.02x 1079 292 x 107" 877 x 10792 539 x 10+ 2.86 x 10791
C + + + + + + + + /

F17 Mean 1.41 x 109 1.96 X 100 | 483 x 10t%*  3.83 x 10 2.03 x 10710 151 x 10*%*  2.89 x 10*08  7.71 x 10*08 1.58 x 10704
Std 7.06 x 1008 996 x 1002 328 x 10"  1.15 x 107  1.38 x 10*10 562 x 10"  6.63 x 107  8.60 x 10*%8 8.68 x 1003
C + - + + + = + + /

F18 Mean 1.88 x 10793 490 x 10t 1.09 x 10*%*  3.05 x 10"% 373 x 10"3 148 x 10t 6.35 x 10" | 623 x 1079 | 337 x 1079
Std 1.28 x 10793 595 x 1002 956 x 1092 1.00 x 103 157 x 10t 326 x 102  3.80 x 1083 2,11 x 10~ 1.52 x 1079
C + + + + + + + - /

F19 Mean 195 x 10*1 212 x 10" 217 x 1070 192 X 10¥" | 2.07 x 1071 217 x 1091 222 x 10" 2,07 x 10* 1.93 x 100
Std 551 x 1079 1.08x 107 144 x 1070 362x107%  155x 107 264 x 107 631 x 1072 882 x 107" 237 x107%
C = + + = + + + +

F20 Mean 7.71 x 1001 270 x 1001 3.19 x 1001 1.15 x 10792 394 x 10*02 445 x 100! 555 x 10t91  1.19 x 10+ 8.64 x 10+00
Std 493 x 10*01 494 x 10t 665 x 10701 586 x 107 1.99 x 10792 792 x 10*0 490 x 10"  7.90 x 1000 942 x 10791
C + + + + + + + + /

WI/T/L 17/2/1 19/0/1 20/0/0 19/1/0 19/1/0 19/2/0 19/1/0 13/1/6 /

Note: the gray bacground highlights the best result on each function.
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To rank the algorithms clearly, the Friedman test is used to compare the involved algorithms
using all the data of mean fitness error values on the 20 problems. The Friedman test is the best-known
procedure for testing the differences between more than two related samples [48], which can detect
significant differences between the behavior of two or more algorithms. We conduct two tests that rank
the algorithms on the 30D and 50D, respectively. The significance level is set to 0.05. Table 5 presents
the numerical rankings obtained by the test. In addition, the corresponding graphical ranking results
are shown in Figures 2 and 3, where the center square indicates the average rank of the corresponding
algorithm and the line denotes the confidence intervals. Smaller ranks mean better performance
and, when there is no overlap on the intervals of any two algorithms, they are significantly different.
The results in these two figures clearly demonstrate that the proposed algorithm outperforms all other
algorithms including dg-PSO, CLPSO and FPA in both 30D and 50D.
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Figure 2. Friedman test of 30D problems.
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Figure 3. Friedman test of 50D problems.

Table 5. Numerical rankings of the Friedman test.

Dimensions FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO
30-D 3.45 5.625 6.725 42 6.95 59 7.3 3.35 1.5
50-D 425 5.6 7.075 5 6.025 5275 6.85 3.275 1.65

For further evaluation, the convergence performance and average time consumption are also
compared in Figures 4 and 5, respectively. The results of F8, F10, and F14 in 50-D are given to exemplify
the performance. From Figure 4, we observe that DG-PSO has outstanding performance on the
multimodal problems (F8 and F14), while dg-PSO obtained the best result in unimodal function F10.
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From Figure 5, it can be found that DG-PSO consumes slightly more than the two related algorithms:
CLPSO and FPA. However, the time consumption of DG-PSO is still acceptable when compared with
the other algorithms such as FDR-PSO, UPSO, MPSO and SSO.

20

Mean error
Mean error

-------- FDR-PSO
——UPSO
FIPS
- - CLPSO
~-=-MPSO
10°F FPA
——s50
——dg-PSO
——DG-PSO

——dg-PSO
——DG-PSO
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" . . 3
Fitness function evaluations (x103) Fitness function evaluations (x10 °)

(a) (b)

........ FDR-PSO
—+—UPSO
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W FPA
5007, —o—550
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Mean error
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(©)

Figure 4. Convergence performance. (a) F8, multimodal; (b) F10, rotated unimodal; (c) F14, shifted multimodal.
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Figure 5. Average time consumption. (a) F8, multimodal; (b) F10, rotated unimodal; (c) F14,
shifted multimodal.
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5. DG-PSO Based Remote Sensing Image Segmentation

Image segmentation is a fundamental task in remote sensing applications [49], such as change
detection and object-based classification. It is used with the expectation that it will divide the image into
semantically significant regions, or objects, to be recognized by further processing steps [50]. This work
attracts a lot of researchers in the past decade but is still an intractable problem [51]. In terms of all the
existing segmentation methods, one of the most popular segmentation techniques is thresholding due
to its simplicity, robustness and accuracy [52].

The thresholding methods can be divided into two categories: the bi-level thresholding and
multilevel thresholding. If the object in an image is separated from the background using a single
threshold value, it is called the bi-level thresholding. In contrast, the multilevel thresholding means
that the given image are classified into several different regions according to multiple thresholds.
In remote sensing image segmentation, bi-level thresholding does not give appropriate performance,
and there are strong requirements of multilevel thresholding [53]. Therefore, numerous studies have
been reported [47,53-58] in multilevel thresholding.

The most popular way [53-61] to search the optimal thresholds is to maximize some discriminating
criteria (fitness function). The traditional method searches the optimal thresholds using exhaustive
search strategies, which lead to high computation costs. In recent years, meta-heuristics based
methods gained the attention of researchers because of the high computation inefficiency. Quantities
of algorithms have been introduced to this area such as PSO [36], Differential Evolution (DE) [62],
Artificial Bee Colony (ABC) [59,63,64], Wind Driven Optimization (WDO) [56], Cuckoo Search (CS) [65]
and SSO [47]. However, the remote sensing images are very difficult to segment accurately due to
multimodality of the histograms [53]. Therefore, improving the performance of the metaheuristic
algorithms is necessary for the remote sensing image segmentation.

In this section, we applied the proposed algorithm to multilevel thresholding for optical remote
sensing image segmentation. We first describe the problem. Then, the experimental setup is introduced
carefully in Section 5.2. Finally, the results and analysis are given in detail.

5.1. Problem Definition

This subsection deals with the problem definition of multilevel thresholding problem. As we
mention above, multilevel thresholding methods generally search the optimal thresholds by
maximizing some criteria. In the literature, Otsu’s criterion [66] has been widely employed [36,67,68].
It generally provides image segmentation with satisfactory results [69] and is known for its simplicity
and effectivity with respect to uniformity and shape measures and can usually obtain optimal global
threshold value [58].

Let! € [0,1...L — 1] be the gray level of a given an image I, where L is the total gray levels,
the problem is then defined as follows. Firstly, the image histogram is calculated and normalized,
which is denoted by P;, I = 0,1,...L — 1. For the (D + 1) — class thresholding problem, there are
D thresholds kg, (d = 1,2, ... D) that segment the image into D + 1 classes. Assume that ky(ky = 0)
and kp41(kp+1 = L) denote the upper and lower bound. Then, the thresholds can be sorted with
ko <k; <...<ks<...kpt1,and the problem is defined using (9):

(k7,k5 ... .kp) = arg max{F(ky,ky...kp)}, )

k0<k1<...<kd<...kD+1

where F = Y5 wa(pg — yT)z, Uy = Z;(sz L—P; Here, w; = Z;cfki D, is the probability of the occurrence

of the dth class. yur = Y-, I - P, is the total mean intensity of the original image.
5.2. Experimental Setup

To demonstrate the superiority of the proposed method, five popular meta-heuristic algorithms
in multilevel thresholding including DE, ABC, CS, MPSO, SSO are chosen to compare with the
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proposed algorithm. All of these algorithms are demonstrated to have good performance in multilevel
thresholding in the corresponding reference in Table 6. Specifically, ABC performs better than PSO
when the level of thresholds is higher than two in [59]. Reference [53] demonstrates that CS showed
remarkable performances in multilevel thresholding problems and could outperform the other known
algorithms, such as DE, PSO, WDO and ABC. MPSO shows better performance than Genetic Algorithm
(GA) and the original PSO [36]. SSO is applied to multilevel thresholding in [47] and it clearly
outperforms PSO, BAT algorithm and FPA in [47]. The parameters of these algorithms are set according
to the corresponding work shown in Table 6. The parameters of our proposed algorithm are the same
as that in Section 4.

All populations are uniformly randomly initialized. Thirty independent runs are carried out for
each algorithm on each image on 2, 3,4, 5,7, 9, 15 and 20 thresholds [68,69], respectively. All algorithms
are conducted with the same maximum function evaluation: MaxFEs = 3000 * D in identical search
space: [0,256). All methods are adapted for integer optimization problems using the rounding method.
Specifically, the search space is defined as [0, 256) for 8-bit gray-scale images, and the integer is obtained
by rounding down (e.g., 255.6 is rounded to 255). Figure 6 shows the test images (These images are
taken from a very-high-resolution remote sensing image dataset constructed by Gong Cheng et al.
from Northwestern Polytechnical University [70].

Table 6. Parameters and references of the algorithms.

Algorithm Parameters Value Reference
Population size 40
DE Scaling factor 0.8 [62]
Crossover possibility 0.25
Swam size 20
ABC Max trial limit 50 [59]
Number of nests 25
Step size 1
s Mutation probability value 0.25 [531
Scale factor 15
Maximum, minimum swarm size 40,5
MPSO acceleration constants ¢y, ¢ 2,2 [36]
Maximum, minimum inertial weight 09,03
Population size 50
550 The threshold PF 07 [47]

Figure 6. Cont.
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Figure 6. Images used in the experiments. (a) Image a; (b) Image b; (c) Image c; (d) Image d; (e) Image e.

5.3. Results and Discussion

In detail, the mean fitness and the corresponding standard deviation are given in Table 7, where the
best one in each case of the mean fitness is shown in bold. It is easy to find that our algorithm obtains
the best results in all cases in terms of the mean fitness, except the case of 7-level thresholding (D =7)
of image C. To evaluate the effectiveness of our algorithm’s improvement over other ones, the involved
algorithms are also ranked with the Friedman test. We conduct two tests that ranked the algorithms
on the normal (D = 2, 3, 4 and 5) level and high level (The high level thresholding is popularly
employed in multilevel thresholding [68,69]) (D =7, 9, 15 and 20), respectively. Therefore, 40 variables
(i x t x m = 40) are used in each comparison in each test, where i = 5 is the number of images, t = 4
denoted the number of levels, and m = 2 denoted the number of used measures including the meant
fitness and the corresponding standard deviation. The significance level is set to 0.05. Table 8 and the
two figures (Figures 7 and 8) present the numerical rankings and graphical results obtained by the test,
where better performance is denoted by smaller ranks.

From the results of normal level thresholding shown in Figure 7, the proposed algorithm
significantly outperforms DE, ABC and MPSO, and also showed an advantage over the other two
algorithms. It can be observed from Figure 8 that the proposed algorithm ranks even better in high
level thresholding, which showed a significant difference from all algorithms except CS (our algorithm
also ranks better than CS). Figures 9 and 10 show the segmentation results. The pseudo color image
shows the whole thresholding results, where each level of the image is represented by the regions with
the same color. The binary images show some of the objects separated from the original image, which
proved the effectiveness of the segmentation.

In conclusion, the results demonstrated that the proposed algorithm shows remarkable
performance in multilevel thresholding when compared with other popular meta-heuristics in this
research area.
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Table 7. Statistical results.

Image D Item DE ABC CS MPSO SSO Ours

2 Mean 1.79165 X 10*%  1.79165 x 10"  1.79165 x 10*%®  1.79165 x 10*%®  1.79165 x 10*%  1.79165 x 10
Std 467 x 10713 467 x 10713 467 x 10713 467 x 10713 467 x 10713 467 x 10713

3 Mean 1.94917 x 10*0%  1.94918 x 10*% = 1.94919 x 10*%®  1.94919 x 10*%  1.94919 x 10"  1.94919 x 10*03
Std 6.90 x 10702 1.59 x 10702 933 x 10713 933 x 10713 933 x 10713 933 x 10713

4 Mean 2.03403 x 1003 2.03416 x 10793 = 2.03427 x 10t9  2.03427 x 10"%  2.03427 x 10*0®  2.03427 x 10*%3
Std 6.01 x 10791 5.45 x 10792 0.00 x 10*%0 0.00 x 10*9%0 0.00 x 10+ 0.00 x 10*90

a 5 Mean 2.06635 x 10753 2.06618 x 10*0 = 2.06648 x 10™%%  2.06648 x 10*%®  2.06648 x 10*%  2.06648 x 100
Std 2.74 x 10701 1.79 x 10701 450 x 10703 5.84 x 10703 0.00 x 10*90 0.00 x 1090

7 Mean 2.09715 x 1003 2.09653 x 1073 2.09734 x 1003 2.09739 x 10*%®  2.09739 x 10"  2.09739 x 10*%3
Std 2.25 x 10701 438 x 1079 4.63 x 10792 420 x 10794 1.42 x 10703 467 x 10713

9 Mean 211153 x 103 211097 x 10*%% 211188 x 10*%  2.11158 x 10*3 = 2.11192 x 10*%  2.11192 x 10*%
Std 420 x 1079 3.52 x 1079 6.55 x 10702 243 x 1079 8.36 x 10702 9.06 x 10702

15 Mean 212912 x 1003 212857 x 10™3 212965 x 1003 212976 x 1073 212922 x 10*03 = 212995 x 10*03
Std 8.17 x 10701 2.30 x 10701 1.69 x 10701 3.25 x 10701 6.58 x 10701 1.40 x 10701

20 Mean 213280 x 10™3 213370 x 10*03 213444 x 10*03  2.13464 x 10"3  2.13333 x 10" = 2.13472 x 100
Std 7.99 x 10701 2.01 x 1070 1.18 x 10701 5.27 x 1070 6.86 x 10701 1.44 x 10701

2 Mean 227112 X 10t 227112 x 10" 227112 x 10*0® 227112 x 10*%® 227112 x 10t  2.27112 x 10*%
Std 9.33 x 10713 9.33 x 10713 9.33 x 10713 9.33 x 10713 9.33 x 10713 9.33 x 10713

3 Mean 250343 x 10™3 250346 x 10*03 = 2.50347 x 10™0% 250347 x 10*%®  2.50347 x 10*%  2.50347 x 100
Std 1.37 x 10701 1.40 x 10702 467 x 10718 467 x 10713 467 x 10713 467 x 10718

4 Mean 2.58706 x 1003 258695 x 107 = 2.58710 x 10" 258709 x 107 = 2.58710 x 10"  2.58710 x 10*%3
Std 1.12 x 10701 1.30 x 10701 467 x 10713 467 x 10713 467 x 10713 467 x 10713

b 5 Mean 2.62673 x 103 2.62643 x 10*03 262685 x 10t = 2.62686 x 103  2.62686 x 10*%  2.62686 x 1070
Std 1.49 x 10701 2.85 x 10701 1.39 x 10702 6.24 x 10702 933 x 10718 933 x 10718

7 Mean 2.66456 x 10t03 266401 x 1073 266481 x 10*03  2.66488 x 1073 = 2.66490 x 10"  2.66490 x 10*%3
Std 2.78 x 10701 2.76 x 10701 5.67 x 10702 2.08 x 10701 467 x 10713 467 x 10713

9 Mean 2.68400 x 1073 268338 x 10*03 268448 x 10*03  2.68458 x 1073  2.68457 x 10"9% = 2.68459 x 103
Std 471 x 10791 459 x 10701 5.68 x 10702 3.55 x 1070 2.69 x 10702 8.48 x 10703

15 Mean 2.70493 x 1003 270461 x 1073 270564 x 1003  2.70564 x 107  2.70535 x 10*03 = 2.70588 x 10*03
Std 7.97 x 10701 2.72 x 10701 1.34 x 10701 3.15 x 1079 1.10 x 10+00 7.63 x 10702

20 Mean 2.70907 x 10793 271046 x 10*0%® 271127 x 10*%  2.71168 x 10*3  2.71019 x 10" = 2.71153 x 10
Std 1.30 x 10%%0 2.09 x 1079 1.54 x 10701 5.25 x 1070 7.90 x 10701 2.79 x 10701
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Table 7. Cont.

Image D Item DE ABC CS MPSO SSO Ours

2 Mean 2.67669 X 10t  2.67669 x 10" 267669 x 10*03  2.67669 x 10t  2.67669 x 10*%  2.67669 x 100
Std 933 x10°1 933 x10°1 933 x 10~ 13 933 x 10~ 13 933 x 10~ 13 933 x 10~ 13

3 Mean 2.87034 x 10*%  2.87040 x 10" = 2.87042 X 10*®  2.87042 x 10*?®  2.87042 x 10*®*  2.87042 x 10*%
Std 2.80 x 10701 294 x 10702 933 x 10713 933 x 10713 933 x 10713 933 x 10713

4 Mean 2.93107 x 10*% 293110 x 1073 293128 x 10*% = 2.93129 x 10" 293129 x 10*%®  2.93129 x 10*%3
Std 5.24 x 10701 1.69 x 10701 2.87 x 1079 2.36 x 10701 1.40 x 10712 1.40 x 10712

c 5 Mean 296630 x 10*% 296622 x 1070 = 2.96645 X 10"  2.96645 x 10*?®  2.96645 X 10"  2.96645 x 10**
Std 3.08 x 1079 1.72 x 10701 1.90 x 10703 1.65 x 10701 1.40 x 10712 1.57 x 10703

7 Mean 299969 x 1003 299923 x 1073  2.99982 x 10™%3 299979 x 10"  2.99980 x 103 299981 x 1003
Std 2.09 x 10701 2.68 x 10701 474 x 10792 9.48 x 1079 8.60 x 10792 8.25 x 10792

9 Mean 3.01430 x 1093 301377 x 10" 3.01450 x 10*%®  3.01462 x 10*3  3.01467 x 10" = 3.01474 x 10*%3
Std 431 x 1079 3.59 x 10701 2.06 x 10701 3.49 x 1079 3.39 x 1079 245 x 10701

15 Mean 3.02911 x 1003 3.02886 x 10™3  3.02963 x 1003 3.02973 x 103  3.02936 x 10*03 = 3.02989 x 10*03
Std 8.23 x 10701 1.91 x 10701 1.53 x 10701 2.02 x 10701 8.09 x 10701 2.10 x 10701

20 Mean 3.03250 x 1003 3.03354 x 1073 3.03409 x 1003 3.03443 x 1073  3.03310 x 10*03 = 3.03447 x 10*%®
Std 7.16 x 10701 1.50 x 10701 1.07 x 10701 5.52 x 10701 6.31 x 1079 1.05 x 10701

2 Mean 3.50826 x 10*%3  3.50826 x 10"%  3.50826 x 10*03  3.50826 x 10*%®  3.50826 x 10*%  3.50826 x 103
Std 1.40 x 10712 1.40 x 10712 1.40 x 10712 1.40 x 10712 1.40 x 10712 1.40 x 10712

3 Mean 3.65657 x 1003 3.65661 x 1073  3.65665 x 1019  3.65665 x 10™%  3.65665 x 10*%®  3.65665 x 10103
Std 231 x 1079 5.15 x 10702 233 x 10712 2.05 x 10702 233 x 10712 233 x 10712

4 Mean 3.73546 x 1003 3.73537 x 107 = 3.73562 x 10"  3.73562 x 10*%®  3.73562 x 10"  3.73562 x 10*03
Std 2.28 x 10701 1.56 x 10701 467 x 10713 2.78 x 10702 467 x 10713 467 x 10713

d 5 Mean 3.78074 x 1003 378052 x 107  3.78100 x 10t%  3.78099 x 10*%3 = 3.78100 x 10*%®  3.78100 x 10*%3
Std 410 x 1079 2.56 x 10701 1.23 x 10702 3.15 x 1079 933 x 10718 933 x 10718

7 Mean 3.81857 x 1003 3.81818 x 10" = 3.81897 x 10™%  3.81864 x 10"  3.81865 x 10*%®  3.81883 x 100
Std 6.02 x 10701 410 x 1079 3.38 x 10702 435 x 1079 1.11 x 10+00 8.17 x 10701

9 Mean 3.83628 x 1003 3.83555 x 10™3  3.83665 x 1003 3.83681 x 1073  3.83680 x 10*03 = 3.83682 x 10*03
Std 5.38 x 1070 448 x 10791 8.98 x 10702 5.02 x 1079 1.62 x 10702 3.18 x 10793

15 Mean 3.85501 x 1003 3.85465 x 1073  3.85558 x 1003  3.85598 x 107  3.85543 x 10*03 = 3.85593 x 10*03
Std 9.03 x 10701 248 x 10701 1.44 x 10701 8.12 x 10701 6.33 x 10701 1.62 x 10701

20 Mean 3.85891 x 1003 3.86036 x 1073  3.86097 x 1003  3.86131 x 1073  3.86011 x 10*0® = 3.86135 x 10*03
Std 9.91 x 107" 252 x 1070 1.64 x 10701 6.12 x 1079 7.65 x 10701 1.97 x 10701
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Table 7. Cont.

Image D Item DE ABC CS MPSO SSO Ours
2 Mean 1.07218 x 10t  1.07218 x 10"  1.07218 x 10*%®  1.07218 x 10*%®  1.07218 x 10*®  1.07218 x 10*%
Std 0.00 x 10*%0 0.00 x 10+ 0.00 x 10*%0 0.00 x 10+ 0.00 x 10*%0 0.00 x 10+
3 Mean 1.17024 x 10*0%  1.17021 x 10*% = 1.17025 x 10*%®  1.17024 x 10*%® = 1.17025 x 10"  1.17025 x 10*03
Std 1.49 x 10702 497 x 10702 233 x 10718 233 x 10718 233 x 10718 233 x 10713
4 Mean 121391 x 10*03 121383 x 109 1.21398 x 107 = 1.21399 x 10t  1.21399 x 10"  1.21399 x 1003
Std 1.29 x 10701 1.23 x 10701 6.60 x 10793 3.89 x 10792 233 x 10713 233 x 10713
e 5 Mean 1.24246 x 1070 1.24221 x 10%% 124261 x 10"% = 1.24265 X 10*%®  1.24265 x 10**®  1.24265 X 10*%
Std 3.18 x 1079 1.81 x 10701 6.27 x 10702 1.95 x 10701 467 x 10713 467 x 10713
7 Mean 127623 x 10" 1.27577 x 10t%  1.27656 x 10" 1.27660 x 107 = 1.27661 x 10"  1.27661 x 10*%3
Std 5.52 x 10701 412 x 1079 5.43 x 10792 2.55 x 10701 233 x 10713 233 x 10713
9 Mean 1.29227 x 10*03  1.29152 x 1093 1.29254 x 10"  1.29267 x 10"  1.29267 x 10?3 = 1.29268 x 10*03
Std 455 x 10791 468 x 10791 7.29 x 10702 3.04 x 1079 1.42 x 10702 3.65 x 10703
15 Mean 1.30947 x 10" 1.30914 x 10t%  1.30986 x 10"  1.31018 x 107  1.30972 x 10*03 = 1.31035 x 10*%3
Std 7.66 x 10701 3.43 x 10701 249 x 1070 3.64 x 10701 6.56 x 10701 1.45 x 10701
20 Mean 1.31345 x 10*03  1.31412 x 10*%  1.31467 x 10"  1.31501 x 10*%®  1.31379 x 10*%® = 1.31522 x 10*03
Std 891 x 1079 2.70 x 100 1.94 x 10701 425 x 10701 7.16 x 10701 1.09 x 10701

Note: the gray bacground highlights the best result on each function.
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Table 8. Numerical rankings of the Friedman tests.

24 of 29

Level DE ABC CS MPSO Ours
Normal level 5.25 4.775 2.8625 3.3125 2.025
High level 5.3125 4.7625 2.6625 3.1125 1.95
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Figure 7. Friedman test of the normal level.
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Figure 8. Friedman test of the high level.

Figure 9. Cont.
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Figure 10. The segmentation results of the Image d. (a) 3-level thresholding; (b) 9-level thresholding,
which separated the target better.
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6. Conclusions

This paper proposes a variant of particle swarm optimization called DG-PSO. DG-PSO uses
a double-group based evolution framework. The individuals in DG-PSO are divided into two
groups according to their fitness values. Two main ideas are introduced in the evolution of the
disadvantaged group: a hybrid strategy for learning and a diversity enhancing strategy for avoiding
premature convergence. The experimental results on various benchmark functions demonstrate that:
although DG-PSO consumes slightly more time than the two related algorithms of the proposed
algorithm: CLPSO and FPA; DG-PSO achieves a significant improvement in terms of mean fitness
error, the corresponding standard deviation and convergence performance over all contrast algorithms.
In addition, we further apply the proposed algorithm to multilevel thresholding for remote sensing
image segmentation. The results also show the effectiveness of DG-PSO.

Author Contributions: L.S. designed the experiments and write the paper; X.H. analyzed the data and results;
C.F. performed the experiments.

Conflicts of Interest: The authors declare no conflict of interest.
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