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Abstract: Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used
in both research and engineering fields. However, the original PSO generally suffers from premature
convergence, especially in multimodal problems. In this paper, we propose a double-group PSO
(DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution
framework. The individuals are divided into two groups: an advantaged group and a disadvantaged
group. The advantaged group works according to the original PSO, while two new strategies are
developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing
it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various
benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in
terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing
image segmentation. The results show that the proposed algorithm outperforms five other popular
algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the
proposed algorithm.

Keywords: particle swarm optimization; multilevel thresholding; remote sensing image segmentation;
meta-heuristic; swarm intelligence

1. Introduction

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm based on swarm
intelligence. It is originally proposed by Kennedy and Eberhart in 1995 [1] and is known for its effectiveness
and simplicity. It has been proved to be outstanding in solving many complex optimization problems
such as power systems [2], neural network training [3], global path planning [4], and feature selection [5].

However, PSO also suffers from two limitations. One is that the original PSO tends to converge
to the local optima when applied to complex problems. On the other hand, the convergence speed
of the original PSO and most of its variants is slow, especially on high-dimensional problems [6].
Therefore, accelerating the convergence speed and avoiding the local optima convergence have become
the two most important and appealing goals in particle swarm optimization studies [7,8]. Specifically,
the studies can be classified into three strategies: parameter selection strategy, topology strategy and
learning strategy.

The parameter selection refers to the optimization of the inertial weight factor, convergence
factor, and the acceleration constant. The inertial weight factor is introduced by Shi and Eberhart to
improve the update of velocity [9]. Further studies also show that applying linear decreasing [10],
nonlinear [11], exponential [12] and Gaussian [13] strategy to optimize the inertia weight can enhance
the overall performance. The convergence factor is proposed by Clerc and Kennedy to enhance the
final convergence [14]. In addition, detailed studies [15–17] show that the acceleration constant takes
an important role on convergence performance.
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The topology strategy is generally employed to improve exploration and avoid premature
convergence. In topology strategy, individuals learn from the neighborhood rather than the whole
swarm. Therefore, more information would be shared during the search process, which is useful
to improve optimization performance. A number of topologies including ring or circle topology,
wheel topology, star topology, pyramid topology, Von Neumann topology and random topology are
suggested by Kennedy in [18]. Generally, a large neighborhood is good for simple problems, whereas
a small neighborhood is helpful for avoiding premature convergence on complex problems [19].
Reference [20] studied the topology extensively, which provides a useful guide of topology selection.
It points out that an optimal topology is both problem-specific and computational-budget-dependent
and two formulas have been introduced to estimate optimal topology parameters based on
numerical experiments.

In the original PSO, all individuals keep learning from the global best solution and their individual
best experience in the whole search process. This may lead to premature convergence [21]. To overcome
the problem, some novel learning strategies have been developed in recent years. A comprehensive
learning strategy is developed to improve the performance on complex multimodal functions in [22].
Reference [23] introduces a cooperative approach to solve high-dimensional optimization problems
with multiple swarms. A cooperatively coevolving strategy is proposed in [24] to further improve
the performance. Sun et al. introduce a global guaranteed convergence optimizer called quantum
behaved particle swarm optimization, which improves the performance by increasing the population
diversity [25]. A variant with double learning patterns is developed in [26], which employs the
master swarm and the slave swarm with different learning patterns to achieve a trade-off between the
convergence speed and the swarm diversity.

However, the three strategies above still face the following shortcomings. In parameter selection,
some strategies do improve the overall performance in many cases, but the effect is limited [19],
and it is hard to obtain an optimal parameter for all cases. In topology strategy and learning strategy,
although the exploration is improved to avoid premature convergence, the convergence speed is
reduced at the same time.

In this paper, we design a double-group particle swarm optimization (DG-PSO) to improve
the performance. The whole population is divided into two groups: an advantaged group and a
disadvantaged group. The modification is focused on the disadvantaged group. A novel learning
strategy is developed based on the comprehensive learning strategy and the self-pollination strategy
in another popular metaheuristic called Flower Pollination Algorithm (FPA). In addition, a diversity
enhancing strategy is also designed to avoid premature convergence. Compared with those published
works, the main contribution in this paper is that a novel variant called DG-PSO is proposed which
shows remarkable performance compared with five other popular variants and two meta-heuristics.
Two new ideas are developed in DG-PSO: a learning strategy, which combines the comprehensive
learning strategy [22] and the self-pollination strategy [27], and a diversity enhancing strategy, which
adds disturbance to the individuals in the disadvantaged group to avoid premature convergence
in multimodal problem. In addition, we also apply the algorithm to multilevel thresholding for
image segmentation, which verifies the effectiveness of DG-PSO and provides a good choice of the
metaheuristic algorithm to implement multilevel thresholding. The rest of the paper is organized as
follows: Section 2 reviews the original PSO and some related works. The strategies and framework of
the proposed algorithm are presented in detail in Section 3, followed by the experiments in Section 4.
Then, the further application on multilevel thresholding for image segmentation is shown in Section 5.

2. Background

In this section, firstly, we outline the original PSO. Then, two basic works for our algorithm
including the comprehensive learning strategy and the self-pollination strategy in FPA are
introduced, respectively.



Sensors 2018, 18, 1393 3 of 29

2.1. Particle Swarm Optimization

Similar to other meta-heuristics, PSO is based on swarm intelligence. The swarm is composed of
a set of particles i ∈ [1, 2, . . . n]. A particle moves in the search space with a velocity. The position and
velocity of the particle are dynamically adjusted according to its own and its companion’s historical
experience. Each particle’s position is associated with a candidate solution to the problem, and better
solutions are obtained via evolution. The performance of a solution is judged by a given fitness
function (e.g., smaller fitness function values indicate better solutions for the minimization problem).
For a D-dimensional problem, there are four main vectors:

1. The velocity (vi = [v1
i , v2

i . . . vD
i ]): vi denotes the moving speed and direction of the particle i.

2. Position (xi = [x1
i , x2

i . . . xD
i ]): xi is the current position of particle i. It is updated using its velocity

vi. It can be regarded as a candidate solution.
3. Previous best position (pbesti = [pbest1

i , pbest2
i . . . pbestD

i ]): Pbesti represents the historical best
position of particle i. It is updated using the best position that particle i has ever found.

4. Global best position (gbest = [gbest1, gbest2 . . . gbestD]): gbest is the best position the swarm has
ever found. It is updated with the best pbest in each generation. The final gbest corresponds to
the final solution of the whole algorithm.

Note that each of the solutions or candidate solutions represent a set of to-be-optimized
parameters, where D is the number of parameters. In the original PSO, the position and velocity are
updated by learning from the current global best solution and its previous best solution according to
Equations (1) and (2):

vd
i (t + 1) = w× vd

i (t) + c1r1 ×
(

pbestd
i − xd

i (t)
)
+ c2r2 × (gbestd − xd

i (t)), (1)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (2)

where i ∈ [1, 2, . . . n] is the ith particle; c1, c2 are called acceleration constants; r1, r2 are two uniformly
distributed random number within [0, 1]; and w is the inertial weight factor.

2.2. Comprehensive Learning Strategy

In the strategy of original PSO, the particles only learn from the global best solution, while its
personal best solution may lead to premature convergence. As a consequence, the Comprehensive
Learning PSO (CLPSO) is developed to improve the learning strategy [22]. It employs a comprehensive
learning strategy, which allows each particle to learn from many particles. Specifically, each dimension
of the particle in CLPSO learns from a random particle in the swarm as Equation (3) shows:

vd
i (t + 1) = w× vd

i (t) + c× rd
i ×

(
pbestd

f (i,d) − xd
i (t)

)
, (3)

where f (i, d) is the function to define which particle’s pbest we should choose (for the ith particle to
follow and learn from). Specifically, for each dimension d of particle i, a random number is generated.
If the number is larger than a certain threshold, then the corresponding dimension will learn from its
own pbest. Otherwise, f (i, d) works as follows:

1. Randomly choose two particles out of the whole population excluding the particle whose velocity
is updated;

2. Compare the fitness of the two particles’ pbest and choose the better one;
3. Use the winner’s pbest as the exemplar for the dth dimension of the particle to learn from using

Equation (3).

Specially, if all the winners are the pbest of their own (pbesti), it will randomly choose one
dimension from the pbest of another particle to learn from. The framework of CLPSO is very similar to
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the original PSO, and it has been well tested that CLPSO is effective in optimizing benchmark functions
and real-world problems [22,28–31].

2.3. Self-Pollination Strategy in the Flower Pollination Algorithm

Flower pollination algorithm is a popular nature inspired meta-heuristic in [27]. It has been
widely used in many fields such as sizing optimization of truss structures [27], economic load dispatch
problem in power systems [32], Sudoku Puzzles [33] and feature selection [34] since being published
in 2012.

As a swarm-based metaheuristic algorithm, each individual i in the swarm is called a pollen
individual. Each pollen individual is associated with a candidate solution (soli = [sol1

i , sol2
i . . . solD

i ])

in the search space. FPA searches using the global and local search techniques, where the local
search simulates the self-pollination process. The self-pollination strategy is one of the basic ideas
in FPA (the other one is cross-pollination). Self-pollination occurs when there are no pollen vectors
(Pollen vectors, or called pollinators, can be very diverse. It is estimate there are at least 200,000 variety
of pollen vectors such as insects, bats and birds [27]) such as wind or insects or when the pollen
individuals are pollinated within the same plant. Such self-pollination behaviors are concluded in the
following two rules below:

1. Self-pollination corresponds to the local pollination.
2. Pollinators can develop flower constancy, which is regarded as a reproduction probability that is

proportional to the similarity of two flowers involved.

Based on the two rules above, the self-pollination strategy is drawn as Equation (4) shows.
Different from PSO, soli is the only vector that associates with each pollen individual. soli not only
represents the position of the pollen individual i, but also plays the role of the best solution this
individual has ever found (to understand what is the “sol”, we can refer to the solutions in PSO such
as the position x and the previous best solution pbest). It generates the new solutions by using the
previous one and two other solutions chosen randomly from the population:

sold
i = sold

i + ε(sold
r1 − sold

r2), (4)

where solr1 and solr2 are two random solutions in the current generation, which mimics the flower
constancy in a limited neighborhood. ε is a uniformly distributed random number within [0,1] used
to implement a local random walk. As rule 1 indicates, the self-pollination is considered as local
pollination, which often occurs in a limited neighborhood of the particle itself. It can be regarded as
the local search around the current position of the pollen individual.

3. The Proposed Algorithm

In this section, we describe the proposed algorithm. Figure 1 shows the overall flowchart, where the
process colored by yellow is the core idea of our algorithm. Different from the original PSO, we separate
all particles into two groups in DG-PSO: an advantaged group (with the population of x1, x2 . . . xm) and
a disadvantaged group (with the population of xm+1, xm+2 . . . xn, where n > m). The advantaged group
evolves according to the same theory as the original PSO (Equations (1) and (2)), while the disadvantaged
group is updated with two novel strategies: a learning strategy and a diversity enhancing strategy.
We focus on the explanation of how the disadvantaged group works. As shown in Figure 2, the two
new strategies work as two sequential processing stages in the update of the disadvantaged group,
which will be discussed carefully in the following two subsections. In addition, the detailed steps and
the whole framework of the proposed method are given in Section 3.3. Finally, we discuss and compare
the proposed algorithm with other related works in Section 3.4.
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3.1. The Learning Strategy

The learning strategy is based on the self-pollination strategy introduced in Section 2. We firstly
employ the previous best solution pbest to be the solution “sol” in Equation (4) (rather than the position
x, this is because pbest represent the best historical experience of each particle, which is more worthy
to learn from compared with the position x). Then, it becomes Equation (5) for the particle i:

xd
i = pbestd

i + ε× (pbestd
r1 − pbestd

r2), (5)

where i = m + 1, . . . , n denotes the particles in the disadvantaged group; pbestr1 and pbestr2 are two
solutions chosen randomly from the pbest of the whole population (Specifically, r1 and r2 are two
random integers chosen from sequence 1, 2, . . . n (r1 6= r2). These two parameters keep the same for
all dimensions when updating a particle i. In addition, they are regenerated for different particles.).
ε represents the scaling factor to perform a random walk satisfying a uniform distributed within [0, 1].
Similar to the original self-pollination strategy, Equation (5) can be considered as the local search
around the solution (position) pbesti.

On the other hand, as the comprehensive learning strategy generally defines a more suitable
solution for the particles to learn from, we additionally replaced the pbestd

i in Equation (5) with
pbestd

f (i,d) given in Equation (6), where f (i, d) ∈ [1, 2 . . . m] is the strategy to identify a particle’s pbest
for the dth dimension of particle i to learn from:

xd
i = pbestd

f (i,d) + ε× (pbestd
r1 − pbestd

r2), (6)

f (i, d) works according to the comprehensive learning strategy. For the dth dimension of particle
i, the specific procedure to identify the pbestd

f (i,d) is shown as follows:

1. Randomly choose two particles out of the advantaged group;
2. Compare the fitness of the two particles’ pbest and choose the better one;
3. Use the dth dimension of the winner’s pbest as the pbestd

f (i,d) for the corresponding dimension of
the ith particle to learn from.
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Then, a new position is generated using Equation (6) for the particle i in the disadvantaged
group to update. Using (6), the particles in the disadvantaged group can learn from the information
derived from different particles’ historical best position. The strategy is different from the original
self-pollination because we perform local search around the new generated position pbestd

f (i,d)
rather than the particle itself. The reason is that always searching the area around the position
itself may reduce the search efficiency because some particles may be located in the low-promising
area. In contrast, making more use of the good information from the advantaged group (using the
comprehensive learning strategy) is inductive to the search efficiency.

3.2. The Diversity Enhancing Strategy

PSO often suffers from premature convergence, especially when optimizing the multimodal
problem. It is because the original PSO algorithm only employs an attraction phase Equation (1),
in which all particles in the swarm move quickly to the same area and the diversity decreases
quickly [35]. This generally leads to converging to the local optima due to the loss of diversity [22].
In such case, improving diversity becomes an important issue in PSO research [22,36]. As diversity is
lost due to particles getting clustered together [37], adding disturbance to the particles is helpful for
them to escape from the local optimal and enhance diversity. Therefore, we developed a strategy to
push the particle away from their current position by adding disturbance given in Equation (7):

xi,d = xi,d + rand1 × s, (7)

where s is the scaling factor that controls the intensity of the disturbance. As shown in Equation (8),
it is identified using the whole search range of the corresponding dimension (which denotes the strong
disturbance) or the Euclidean distance of the two pbest chosen in the learning strategy (which denotes
a relatively weak disturbance). The strong disturbance is designed for the case that the particle falls
rand1 into a large-area local optimum. Therefore, a big jump is needed to escape. The weak disturbance
is designed for the case that the particle is close to the global optimum. In such case, a small random
walk is more helpful to approaching the optimum.

s =

{
|Ubd − Lbd|, rand2 < 0.5,
‖pbestr1 − pbestr2‖, otherwise,

(8)

where, rand1 and rand2 are two random number uniformly generated within [0, 1] and Ub and Lb
represents the upper and lower bounds of the search space.

Specifically, the strategy works as follows. For each dimension of particle i, we generate a random
number within [0, 1]. If the number is smaller than the given threshold P, the diversity of the corresponding
dimension will be enhanced by adding a random disturbance using (7) and (8). With the disturbance,
the particles are more capable to escape from the local optimal and avoid premature convergence.

3.3. The Framework

Algorithm 1 shows the detailed steps of updating the disadvantaged group, which is the
core of our modification. Apart from Algorithm 1, another minor modification in the proposed
algorithm is that all particles in the two groups should be redistributed according to their fitness
at the end of each generation. m particles with better fitness (for minimization problem, “better”
means “smaller”) are distributed to the advantaged group, whereas others are distributed to the
disadvantaged group. The overall framework and the detailed steps are shown in Figure 1 and
Algorithm 2, respectively, where MaxFEs is the maximum number of function evaluations that represent
the maximum computation cost.
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Algorithm 1. The Steps for Updating the Disadvantaged Group

1 For i = m + 1 : n
2 Randomly choose two pbest:pbestr2 and pbestr2 out of the whole population;
3 /* Learning stage */
4 For d = 1 : D
5 1 Generate two different integers a and b within [1,2 . . . m];
6 2 If f pbesta < f pbestb

7 pbestd
f (i,d) = pbestd

a ;

8 Else
9 pbestd

f (i,d) = pbestd
b ;

10 End
11 xd

i = pbestd
f (i,d) + ε× (pbestd

r1 − pbestd
r2);

12 End
13 /* Diversity Enhancing stage */
14 For j = 1 : D
15 If rand < p
16 Draw a scaling factor using Equation (8);
17 Add disturbance for the current dimension using Equation (7);
18 End
19 End
20 End

1 This step aims to choose two pbest from the advantaged group; 2 fpbest stands for the fitness value of
the pbest, which has been recorded before.

Algorithm 2. The Steps of the Proposed Algorithm

1 Randomly initialize n particles;

2
m particles with better fitness value for the advantaged group; others for the
disadvantaged;

3 While f es < MaxFEs
4 For i = 1 : m
5 Update the particle i in the advantaged group using Equations (1) and (2);
6 End
7 Evaluate the fitness of the advantaged group;
8 Update pbest and record the corresponding fitness as fpbest.
9 Update the disadvantaged group using Algorithm I;
10 Evaluate the fitness of the disadvantaged group;
11 Update pbest and record the corresponding fitness as fpbest.
12 f es = f es + n;
13 Redistribute the whole population;
14 End

3.4. Discussion and Comparison of the Proposed Algorithm with Other Related Works

As mentioned above, we combined the current existing comprehensive learning strategy with
the self-pollination strategy in FPA. Specifically, we firstly applied the self-pollination strategy to PSO.
Then, the comprehensive learning strategy is used to identify an exemplar for the particles in the
disadvantaged group to learn from. Note that we choose the exemplar in the advantaged group rather
than in the whole swarm. This strategy aims to improve the learning efficiency of the disadvantaged
group. Obviously, such strategy is different from CLPSO (because CLPSO uses the comprehensive
learning to modify the learning strategy of the original PSO as introduced in Section 2, whereas we
proposed a new learning strategy).
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Based on the analysis above, CLPSO, FPA would be used to compare with the proposed one.
In addition, since we also developed a diversity enhancing strategy to further improve the performance,
it is also necessary to evaluate its effectiveness. We firstly define:

1. dg-PSO: the proposed algorithm that only employs the learning strategy;
2. DG-PSO: the proposed algorithm that employs both the learning strategy and the diversity

enhancing strategy.

Then, the effectiveness of the diversity enhancing strategy can be evaluated by comparing the
performance of dg-PSO with DG-PSO.

4. Experiments on Benchmark Functions

In this section, we first describe the 20 benchmark functions used for performance evaluation.
Then, the algorithms and the necessary parameters for comparison are introduced. Finally, the results
are shown and discussed in detail.

4.1. The Benchmark Functions

The 20 benchmark functions employed in the experiments are presented in Table 1. All the
functions are the minimization problem, which is defined according to [38,39] in the search space
[−100, 100]. The functions can be categorized into four classes, namely (1) basic problems; (2) rotated
problems; (3) shifted problems; and (4) complex problems. The basic problems include not only the
basic unimodal and multimodal problems, but also a noisy problem (F4), an expanded (F8) and an
expanded hybrid problem (F9). The rotated problems are designed to overcome the drawback in
the basic functions that the variables are separable and the local optima are regularly distributed.
In these rotated problems, the original variable x is rotated by left multiplying the orthogonal matrix
M, i.e.,y = M× x. Shifted problems are designed to overcome two other problems (in basic functions)
including: each dimension value of the global optimum is always the same, and the global optimum
is usually located at the centre of the search space. In addition, the complex problems include both
rotation and shift.

4.2. Algorithms and Parameters

Table 2 shows the five PSO variants and two other popular meta-heuristics used in the comparison.
These algorithms include not only the algorithms we mentioned before (CLPSO, FPA), but also some
other state-of-the-art algorithms, which are chosen according to the three strategies introduced in
Section 1. We give a brief description of them here. First, Modified PSO (MPSO) [36] uses parameter
selection based strategy, of which the population size and inertial weight are adaptively adjusted
within the search process. Second, Unified PSO (UPSO) [40] and Fully Informed PSO (FIPS) [41] are
two neighbourhood topology strategy based variants. UPSO represents the unified PSO, which is a
combination of the original PSO and the topology strategy based PSO. FIPS means the fully informed
PSO, which employs the fully informed neighbourhood topology. Finally, Fitness-distance-Ratio PSO
(FDR-PSO) [42] and CLPSO [22] are chosen from learning strategy based variants, where FDR-PSO
employs a fitness-distance-ratio strategy to identify a “fittest-and-closest” particle to modify the
learning strategy. In addition, another novel meta-heuristic called Social Spider Optimization (SSO) [43]
is also chosen to give the comparison as comprehensive as possible. In addition, DG-PSO and dg-PSO
are the proposed algorithms, where only DG-PSO has diversity enhancing strategy.

The parameters of the involved algorithm are set as follows. For dg-PSO and DG-PSO,
the population size of the advantaged group and the disadvantage group are set to 30 and 25
respectively; the possibility p of diversity enhancing is set to 1/D. The population size for other
PSO variants are set to 40 [44], except MPSO, which employs the adaptive population strategy
(initial value, minimum and maximum are 5, 5 and 40, respectively) [36]. Other parameters are listed
in Table 2. We performed the evaluation in both 30 dimensions with MaxFEs = 4× 105 [45] and
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50 dimensions with MaxFEs = 7× 105. Thirty runs are conducted for each function, and the mean
fitness error and the corresponding deviation are calculated (the error is defined by the difference
between the fitness function value and the minimum, i.e., Error = Fitness− Fmin). All the experiments
are carried out using MATLAB 2016 on the same machine with an Intel I5-4590 CPU @ 3.3 GHz
processor (Intel, Santa Clara, CA, USA), 4.00 GB memory, and Windows 7 Professional operating
system (Microsoft, Redmond, WA, USA).

4.3. Results and Discussion

The mean fitness error values and the corresponding standard deviation are shown in Tables 3
and 4, respectively, where “Mean” represents the mean fitness error of which the best one in each case
is shown in bold; “Std” means the standard deviation. We perform the Wilcoxon Signed Rank test to
give a rigorous comparison, in which the significance level is set as 0.05. The results are represented
by “C” in the tables, where the three kinds of symbols indicate the performance of DG-PSO: “+”
means DG-PSO is relatively better, “=“ means insignificant and “-” means DG-PSO is relatively worse.
We make a sum of the comparison results and showed the final results in the form of “W/T/L” in
the bottom of each table, where “W/T/L” means the number of problems DG-PSO win, tie and lose
respectively compared with the corresponding algorithm.

We firstly compare DG-PSO with other published algorithms. According to the statistical results
in Table 3 (30D), DG-PSO showed better or close performance in all functions when comparing with
CLPSO (W/T/L = 18/2/0) and FPA (W/T/L = 19/1/0). In addition, in the comparison with other
PSO variants, FDR-PSO (W/T/L = 18/1/1) seems to be the most competitive one to the proposed
algorithm (except dg-PSO), however, it only wins in one case. In addition, DG-PSO even wins in
all 20 comparisons compared with the recently published meta-heuristic SSO. Similar results are
obtained in 50D where DG-PSO still shows great advantages over all other algorithms. The most
competitive algorithm to the proposed algorithm is FDR-PSO (W/T/L = 17/2/1) (except dg-PSO),
but, obviously, the results still show the superiority of our algorithm. Then, comparing DG-PSO with
dg-PSO, the results are W/T/L = 13/1/6 in both 30D and 50D. Specifically, DG-PSO shows much
better performance on multimodal problems such as F3, F5, F6, F8, F9, F14, F15, F16, F19 and F20.
However, by comparing DG-PSO with dg-PSO, we can find that the diversity enhancing also brings
significant inefficiency to DG-PSO on unimodal problems (F1, F2, F4, F10, F17 and F18). This is mainly
because the diversity enhancing strategy weakens the exploitation.
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Table 1. Description of the benchmark functions.

No. Name Definition Fmin Modality

F1 Schwefel 1.2 F1(x) =
D
∑

d=1

(
d
∑

j=1
xj

)2

0 Unimodal

F2 Bent Cigar F2(x) = x2
1 + 106 ·

D
∑

d=2
x2

d 0 Unimodal

F3 Modified Schwefel

F3(x) = 418.9829 · D−
D
∑

d=1
g(zd), zd = xd + 4.209687462275036e2

g(zd) =


zd sin

(
|zd|1/2

)
(500−mod(zd, 500)) sin

√
|500−mod(zd, 500)| − (zd−500)2

10000D

(mod(|zd|, 500)− 500) sin
√
|mod(|zd|, 500)− 500| − (zd+500)2

10000D

0 Multimodal

F4 Schwefel 1.2 with Noise F4(x) = F1 · (1 + 0.4 · |N(0, 1)|) 0 Unimodal

F5 Rosenbrock F5(x) =
D−1
∑

d=1

(
100
(
x2

d − xd+1
)2

+ (xd − 1)2
)

0 Multimodal

F6 Rastrigin F6(x) =
D
∑

d=1

(
x2

d − 10 cos(2πxd) + 10
)

0 Multimodal

F7 Katsuura F7(x) = 10
D2

D
∏

d=1

(
1 + d

32
∑

j=1

2i xd−round(2i xd)
2i

) 10
D1.2

− 10
D1.2

0 Multimodal

F8 Expanded Scaffer F6
F8(x) = g(x1, x2) + g(x2, x3) + . . . + g(xD, x1)

where g(x, y) = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(1+0.001(x2+y2))2

0 Multimodal

F9 Expanded Griewank plus
Rosenbrock Function

F9(x) = g(F5(x1, x2)) + g(F5(x2, x3)) + . . . + g(F5(xD, x1))

where g(y) =
D
∑

d=1

y2
d

4000 −
D
∏

d=1
cos
(

yd√
d

)
+ 1

0 Multimodal

F10 Rotated Bent Cigar F10(x) = F2(z), z = M× x 0 Unimodal

F11 Rotated Rosenbrock F11(x) = F4(z), z = M× x 0 Multimodal

F12 Rotated Expanded Scaffer F6 F12(x) = F8(z), z = M× x 0 Multimodal

F13 Rotated Expanded Griewank
plus Rosenbrock F13(x) = F9(z), z = M× x 0 Multimodal



Sensors 2018, 18, 1393 11 of 29

Table 1. Cont.

No. Name Definition Fmin Modality

F14 Shifted Rastrigin F14(x) = F6(z) + fbias1, z = x− o, fbias1 = 800 800 Multimodal

F15 Shifted Expanded Scaffer F6 F15(x) = F8(z) + fbias2, z = x− o, fbias2 = 1600 1600 Multimodal

F16 Shifted Expanded Griewank
plus Rosenbrock F16(x) = F9(z) + fbias3, z = x− o, fbias3 = 1500 1500 Multimodal

F17 Shifted Rotated Bent Cigar F18(x) = F2(x) + fbias5, z = M(x− o), fbias5 = 200 200 Unimodal

F18 Shifted Rotated Discus
F17(x) = g(x) + fbias4, z = M(x− o), fbias4 = 200

g(y) = 106 · y2
1 +

D
∑

d=2
y2

d
300 Unimodal

F19 Shifted Rotated Expanded
Scaffer F6 F19(x) = F8(x) + fbias6, z = M(x− o), fbias6 = 1600 1600 Multimodal

F20 Shifted Rotated Expanded
Griewank plus Rosenbrock F20(x) = F9(x) + fbias7, z = M(x− o), fbias7 = 1500 1500 Multimodal

Table 2. Parameters and references of the involved algorithms.

PSO Variants Parameters Reference

FDR-PSO w = 0.9− 0.5× g/Max_iter; c1 = c2 = 2.0 [42]
UPSO w = 0.7298; c1 = c2 = 1.49445 [46]
FIPS w = 0.7298; c1 = c2 = 1.49445 [41]

CLPSO w = 0.9− 0.5× g/Max_iter; c1 = c2 = 2.0 [22]
MPSO wmin = 0.3 wmax = 0.9; c1 = c2 = 2.0; [36]

Other State-of-the-Art
Meta-Heuristics Parameters Reference

FPA Population size
Switch possibility

n = 25
p = 0.8 [27]

SSO Population size
The threshold

n = 50
PF = 0.7 [47]

The Proposed Variants Parameters Reference

dg-PSO w = 0.9− 0.5× g/Max_iter;c1 = c2 = 2.0 Ours (without diversity enhancing)
DG-PSO w = 0.9− 0.5× g/Max_iter;c1 = c2 = 2.0 Ours (with diversity enhancing)
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Table 3. Statistical results on 30 dimensions.

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F1 Mean 3.07 × 10−19 3.72 × 10−12 7.05 × 10+00 7.10 × 10−03 1.12 × 10−02 3.60 × 10−03 2.71 × 10−02 1.23 × 10−39 3.45 × 10−29

Std 1.25 × 10−19 1.94 × 10−12 2.47 × 10+00 4.96 × 10−03 5.30 × 10−03 2.57 × 10−03 1.41 × 10−02 2.72 × 10−39 1.79 × 10−29

C + + + + + + + - /

F2 Mean 5.90 × 10−206 9.59 × 10−176 4.32 × 10−27 6.75 × 10−78 9.84 × 10−15 3.81 × 10−05 8.18 × 10+02 1.28 × 10−226 1.68 × 10−126

Std 0.00 × 10+00 0.00 × 10+00 1.14 × 10−27 3.68 × 10−78 6.75 × 10−15 3.59 × 10−05 1.67 × 10+02 0.00 × 10+00 1.88 × 10−126

C - - + + + + + - /

F3 Mean 3.00 × 10+02 2.48 × 10+03 2.58 × 10+03 3.79 × 10+02 2.43 × 10+03 2.49 × 10+03 1.50 × 10+03 1.47 × 10+03 1.66 × 10+02

Std 1.71 × 10+02 2.75 × 10+02 2.28 × 10+02 1.35 × 10+02 1.73 × 10+02 7.24 × 10+01 2.60 × 10+02 7.50 × 10+02 7.96 × 10+01

C + + + + + + + + /

F4 Mean 2.14 × 10+03 1.12 × 10+03 1.80 × 10+02 3.24 × 10+02 5.00 × 10+03 4.39 × 10+01 4.88 × 10+00 7.73 × 10−03 1.37 × 10−01

Std 1.56 × 10+03 4.92 × 10+02 5.49 × 10+01 1.23 × 10+02 2.49 × 10+03 8.42 × 10+00 4.00 × 10+00 1.20 × 10−02 6.15 × 10−02

C + + + + + + + - /

F5 Mean 4.01 × 10−04 1.49 × 10+00 2.20 × 10+01 2.04 × 10+01 3.19 × 10+01 6.60 × 10+00 1.00 × 10+01 1.05 × 10+00 4.22 × 10−16

Std 1.51 × 10−04 1.02 × 10+00 2.55 × 10−01 6.99 × 10−01 1.39 × 10+01 4.55 × 10+00 8.67 × 10−01 1.95 × 10+00 2.16 × 10−16

C + + + + + + + + /

F6 Mean 3.04 × 10+01 6.93 × 10+01 6.11 × 10+01 7.76 × 10+00 3.42 × 10+01 3.67 × 10+01 4.31 × 10+01 3.08 × 10+01 0.00 × 10+00

Std 2.65 × 10+00 8.09 × 10+00 4.66 × 10+00 1.66 × 10+00 4.86 × 10+00 3.33 × 10+00 7.74 × 10+00 1.41 × 10+01 0.00 × 10+00

C + + + + + + + + /

F7 Mean 0.00 × 10+00 6.70 × 10−02 1.89 × 10+00 0.00 × 10+00 1.96 × 10−01 0.00 × 10+00 8.92 × 10−01 0.00 × 10+00 0.00 × 10+00

Std 0.00 × 10+00 1.39 × 10−02 1.40 × 10−01 0.00 × 10+00 1.10 × 10−01 0.00 × 10+00 1.14 × 10−01 0.00 × 10+00 0.00 × 10+00

C = + + = + = + = /

F8 Mean 5.34 × 10+00 9.98 × 10+00 9.98 × 10+00 3.36 × 10+00 8.27 × 10+00 1.13 × 10+01 8.64 × 10+00 4.27 × 10+00 3.43 × 10−01

Std 1.26 × 10+00 9.82 × 10−01 3.99 × 10−01 1.11 × 10+00 1.93 × 10+00 2.69 × 10−01 2.43 × 10−01 2.84 × 10+00 2.39 × 10−01

C + + + + + + + + /

F9 Mean 2.99 × 10+00 6.43 × 10+00 1.15 × 10+01 2.18 × 10+00 3.35 × 10+00 8.53 × 10+00 1.95 × 10+01 5.77 × 10+00 9.93 × 10−01

Std 7.01 × 10−01 1.41 × 10+00 9.73 × 10−01 6.75 × 10−01 8.39 × 10−01 2.92 × 10+00 2.29 × 10+00 1.23 × 10+00 1.53 × 10−01

C + + + + + + + + /

F10 Mean 2.62 × 10+00 4.77 × 10+02 1.15 × 10+03 6.10 × 10+00 1.98 × 10+01 2.22 × 10+00 1.78 × 10+03 4.30 × 10−26 7.30 × 10−09

Std 1.74 × 10+00 3.15 × 10+02 2.59 × 10+02 2.75 × 10+00 5.26 × 10+00 5.07 × 10−01 9.43 × 10+01 4.13 × 10−26 4.83 × 10−09

C + + + + + + + - /

F11 Mean 1.29 × 10+01 1.98 × 10+01 2.51 × 10+01 5.05 × 10+01 3.22 × 10+01 2.06 × 10+00 2.37 × 10+01 2.15 × 10+01 1.19 × 10−01

Std 3.64 × 10+00 1.24 × 10+00 3.49 × 10−01 1.61 × 10+01 1.84 × 10+01 1.06 × 10+00 7.37 × 10+00 1.82 × 10+01 6.20 × 10−02

C + + + + + + + + /
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Table 3. Cont.

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F12 Mean 5.42 × 10+00 6.47 × 10+00 1.46 × 10+01 5.28 × 10+00 1.20 × 10+01 9.28 × 10+00 2.00 × 10+01 1.10 × 10+01 2.84 × 10+00

Std 9.36 × 10−01 4.13 × 10−01 5.10 × 10−01 6.47 × 10−01 2.18 × 10+00 7.55 × 10−01 1.22 × 10+00 9.25 × 10−01 3.91 × 10−01

C + + + + + + + + /

F13 Mean 9.38 × 10+00 1.14 × 10+01 1.13 × 10+01 1.01 × 10+01 1.02 × 10+01 1.21 × 10+01 8.76 × 10+00 1.68 × 10+01 7.71 × 10+00

Std 5.11 × 10−01 1.20 × 10−01 2.99 × 10−01 3.96 × 10−01 7.00 × 10−01 1.54 × 10−01 3.22 × 10−01 2.22 × 10+00 5.43 × 10−01

C + + + + + + + + /

F14 Mean 2.13 × 10+01 8.88 × 10+01 6.23 × 10+01 3.05 × 10+01 1.29 × 10+02 7.82 × 10+01 9.59 × 10+01 7.76 × 10+01 9.09 × 10−14

Std 2.10 × 10+00 4.66 × 10+00 4.09 × 10+00 4.22 × 10+00 2.74 × 10+01 6.16 × 10+00 1.27 × 10+01 2.36 × 10+01 2.54 × 10−14

C + + + + + + + + /

F15 Mean 3.07 × 10+00 7.44 × 10+00 1.23 × 10+01 4.61 × 10+00 1.23 × 10+01 1.37 × 10+01 2.10 × 10+01 7.55 × 10+00 1.09 × 10+00

Std 2.63 × 10−01 6.44 × 10−01 5.58 × 10−01 1.95 × 10+00 8.38 × 10+00 2.09 × 10+00 1.69 × 10+00 6.22 × 10−01 1.21 × 10−01

C + + + + + + + + /

F16 Mean 7.15 × 10+00 1.08 × 10+01 1.04 × 10+01 3.69 × 10+00 1.08 × 10+01 1.20 × 10+01 1.22 × 10+01 3.70 × 10+00 2.91 × 10−01

Std 5.17 × 10−01 2.38 × 10−01 1.36 × 10−01 6.79 × 10−01 7.00 × 10−01 9.60 × 10−02 1.15 × 10−01 7.70 × 10−01 2.65 × 10−12

C + + + + + + + + /

F17 Mean 2.89 × 10+08 1.39 × 10+04 1.60 × 10+03 4.79 × 10+08 1.11 × 10+09 6.83 × 10+03 6.98 × 10+07 6.11 × 10−12 1.88 × 10−02

Std 1.62 × 10+08 6.35 × 10+03 5.97 × 10+02 2.14 × 10+08 5.35 × 10+08 3.55 × 10+03 1.19 × 10+07 6.16 × 10−12 7.65 × 10−03

C + + + + + + + - /

F18 Mean 6.14 × 10+00 5.65 × 10+02 1.63 × 10+03 1.78 × 10+03 2.08 × 10+04 1.50 × 10+01 2.13 × 10+04 6.82 × 10−13 3.55 × 10−07

Std 3.43 × 10+00 4.07 × 10+02 1.50 × 10+02 1.12 × 10+03 1.15 × 10+04 2.81 × 10+00 1.87 × 10+03 3.38 × 10−13 1.75 × 10−07

C + + + + + + + - /

F19 Mean 1.05 × 10+01 1.18 × 10+01 1.18 × 10+01 1.02 × 10+01 1.22 × 10+01 1.21 × 10+01 1.24 × 10+01 1.15 × 10+01 1.01 × 10+01

Std 2.05 × 10−01 2.31 × 10−01 8.86 × 10−02 3.08 × 10−01 5.40 × 10−01 1.25 × 10−01 1.04 × 10−01 3.52 × 10−01 3.28 × 10−01

C + + + = + + + + /

F20 Mean 7.67 × 10+00 7.22 × 10+00 1.33 × 10+01 5.70 × 10+00 1.56 × 10+01 1.65 × 10+01 2.38 × 10+01 4.77 × 10+00 4.18 × 10+00

Std 1.93 × 10+00 1.10 × 10+00 7.55 × 10−01 1.01 × 10+00 5.62 × 10+00 2.66 × 10+00 2.29 × 10+00 3.01 × 10−01 4.65 × 10−01

C + + + + + + + + /

W/T/L 18/1/1 19/0/1 B 18/2/0 20/0/0 19/1/0 20/0/0 13/1/6 /

Note: the gray bacground highlights the best result on each function.
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Table 4. Statistical results on 50 dimensions.

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F1 Mean 6.98 × 10−08 2.52 × 10−05 3.22 × 10+03 1.27 × 10+02 7.10 × 10+00 4.24 × 10−01 1.13 × 10−02 7.35 × 10−22 6.46 × 10−18

Std 3.53 × 10−08 1.22 × 10−05 8.23 × 10+02 5.25 × 10+01 5.24 × 10+00 2.32 × 10−01 6.12 × 10−03 7.50 × 10−22 2.54 × 10−18

C + + + + + + + - /

F2 Mean 4.28 × 10−164 5.86 × 10−200 2.00 × 10−22 8.77 × 10−74 6.04 × 10−13 6.44 × 10−05 1.50 × 10+03 6.55 × 10−216 1.44 × 10−121

Std 0.00 × 10+00 0.00 × 10+00 5.27 × 10−23 6.05 × 10−74 2.97 × 10−13 3.84 × 10−05 1.85 × 10+02 3.63 × 10−216 9.20 × 10−122

C - - + + + + + + /

F3 Mean 1.31 × 10+03 5.27 × 10+03 7.77 × 10+03 7.57 × 10+02 4.11 × 10+03 4.81 × 10+03 3.38 × 10+03 3.68 × 10+03 4.50 × 10+02

Std 4.86 × 10+02 4.04 × 10+02 2.29 × 10+02 2.90 × 10+02 6.46 × 10+02 1.55 × 10+02 5.58 × 10+02 1.88 × 10+03 1.21 × 10+02

C + + + + + + + + /

F4 Mean 5.10 × 10+03 1.66 × 10+04 1.05 × 10+04 1.25 × 10+04 4.37 × 10+02 3.76 × 10+02 5.04 × 10+03 8.21 × 10+01 1.45 × 10+02

Std 3.72 × 10+03 4.01 × 10+03 1.34 × 10+03 5.04 × 10+03 1.74 × 10+02 1.09 × 10+02 2.49 × 10+03 3.57 × 10+01 7.05 × 10+01

C + + + + + + + - /

F5 Mean 2.49 × 10+01 1.92 × 10−01 4.22 × 10+01 9.21 × 10+01 7.25 × 10−02 9.03 × 10+00 3.79 × 10+01 1.85 × 10+00 7.21 × 10−02

Std 1.27 × 10+01 9.25 × 10−02 1.96 × 10−01 2.78 × 10+01 4.75 × 10−02 5.00 × 10+00 3.11 × 10+00 1.72 × 10+00 4.46 × 10−01

C + + + + = + + + /

F6 Mean 6.29 × 10+01 1.31 × 10+02 1.67 × 10+02 1.43 × 10+01 7.02 × 10+01 6.94 × 10+01 6.95 × 10+01 5.94 × 10+01 6.04 × 10−15

Std 6.33 × 10+00 1.72 × 10+01 9.78 × 10+00 5.67 × 10−01 1.65 × 10+01 8.82 × 10+00 7.57 × 10+00 1.48 × 10+01 7.94 × 10−16

C + + + + + + + + /

F7 Mean 0.00 × 10+00 1.45 × 10−01 2.60 × 10+00 0.00 × 10+00 3.05 × 10−01 0.00 × 10+00 1.46 × 10+00 0.00 × 10+00 0.00 × 10+00

Std 0.00 × 10+00 1.28 × 10−02 9.52 × 10−02 0.00 × 10+00 1.75 × 10−01 0.00 × 10+00 1.25 × 10−01 0.00 × 10+00 0.00 × 10+00

C = + + = + = + + /

F8 Mean 1.16 × 10+01 2.00 × 10+01 1.96 × 10+01 4.93 × 10+00 1.98 × 10+01 1.91 × 10+01 1.54 × 10+01 1.05 × 10+01 8.74 × 10−01

Std 2.37 × 10+00 4.87 × 10−01 5.52 × 10−01 1.73 × 10+00 7.46 × 10−01 9.88 × 10−01 5.30 × 10−01 4.85 × 10−01 1.76 × 10−01

C + + + + + + + + /

F9 Mean 7.66 × 10+00 1.58 × 10+01 2.83 × 10+01 3.85 × 10+00 1.08 × 10+01 2.21 × 10+01 3.53 × 10+01 6.36 × 10+00 1.88 × 10+00

Std 1.16 × 10+00 3.02 × 10+00 1.05 × 10+00 9.01 × 10−01 2.79 × 10+00 3.53 × 10+00 2.68 × 10+00 9.90 × 10−01 3.46 × 10−01

C + + + + + + + + /

F10 Mean 1.02 × 10+02 1.46 × 10+03 8.12 × 10+03 4.46 × 10+02 2.81 × 10+02 1.14 × 10+02 3.08 × 10+03 2.69 × 10−07 9.16 × 10−05

Std 1.68 × 10+01 4.09 × 10+02 7.63 × 10+02 7.17 × 10+01 1.01 × 10+02 5.14 × 10+01 1.87 × 10+02 2.24 × 10−07 3.04 × 10−05

C + + + + + + + + /

F11 Mean 6.08 × 10+01 5.25 × 10+01 4.49 × 10+01 1.16 × 10+02 5.98 × 10+01 4.61 × 10−02 5.53 × 10+01 1.70 × 10+01 2.02 × 10−02

Std 1.35 × 10+01 1.27 × 10+01 3.52 × 10−01 4.43 × 10+01 1.63 × 10+01 1.62 × 10−02 7.07 × 10+00 1.32 × 10+01 1.05 × 10−02

C + + + + + + + + /
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Table 4. Cont.

No. Item FDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

F12 Mean 1.15 × 10+01 2.42 × 10+01 3.13 × 10+01 1.19 × 10+01 2.38 × 10+01 2.19 × 10+01 4.23 × 10+01 1.78 × 10+00 8.18 × 10+00

Std 1.33 × 10+00 3.59 × 10+00 2.74 × 10−01 1.09 × 10+00 2.57 × 10+00 8.40 × 10−01 3.23 × 10+00 6.58 × 10−01 6.69 × 10−01

C + + + + + + + - /

F13 Mean 1.73 × 10+01 2.03 × 10+01 2.13 × 10+01 1.89 × 10+01 1.87 × 10+01 2.11 × 10+01 1.60 × 10+01 2.62 × 10+01 1.58 × 10+01

Std 5.78 × 10−01 4.40 × 10−01 1.64 × 10−01 3.40 × 10−01 7.67 × 10−01 1.84 × 10−01 5.61 × 10−01 6.18 × 10+00 5.60 × 10−01

C + + + + + + = + /

F14 Mean 7.73 × 10+01 1.93 × 10+02 1.73 × 10+02 6.77 × 10+01 2.82 × 10+02 1.55 × 10+02 2.83 × 10+02 2.48 × 10+02 1.59 × 10−13

Std 7.70 × 10+00 1.76 × 10+01 1.20 × 10+01 4.42 × 10+00 3.04 × 10+01 1.07 × 10+01 2.23 × 10+01 2.04 × 10+01 3.11 × 10−14

C + + + + + + + + /

F15 Mean 2.50 × 10+01 2.16 × 10+01 2.71 × 10+01 5.84 × 10+03 1.07 × 10+01 5.38 × 10+01 4.95 × 10+01 2.14 × 10+01 1.62 × 10+00

Std 1.03 × 10+01 3.16 × 10+00 9.78 × 10−01 4.23 × 10+03 1.73 × 10+00 9.85 × 10+00 1.06 × 10+00 3.81 × 10−01 7.70 × 10−02

C + + + + + + + + /

F16 Mean 1.26 × 10+01 2.02 × 10+01 2.03 × 10+01 5.43 × 10+00 2.09 × 10+01 2.10 × 10+01 2.17 × 10+01 1.40 × 10+01 8.70 × 10−01

Std 1.01 × 10+00 2.30 × 10−01 6.67 × 10−02 5.09 × 10−01 9.02 × 10−01 2.92 × 10−01 8.77 × 10−02 5.39 × 10+00 2.86 × 10−01

C + + + + + + + + /

F17 Mean 1.41 × 10+09 1.96 × 10+03 4.83 × 10+04 3.83 × 10+09 2.03 × 10+10 1.51 × 10+04 2.89 × 10+08 7.71 × 10+08 1.58 × 10+04

Std 7.06 × 10+08 9.96 × 10+02 3.28 × 10+04 1.15 × 10+09 1.38 × 10+10 5.62 × 10+03 6.63 × 10+07 8.60 × 10+08 8.68 × 10+03

C + - + + + = + + /

F18 Mean 1.88 × 10+03 4.90 × 10+03 1.09 × 10+04 3.05 × 10+03 3.73 × 10+03 1.48 × 10+03 6.35 × 10+04 6.23 × 10−09 3.37 × 10−03

Std 1.28 × 10+03 5.95 × 10+02 9.56 × 10+02 1.00 × 10+03 1.57 × 10+03 3.26 × 10+02 3.80 × 10+03 2.11 × 10−09 1.52 × 10−03

C + + + + + + + - /

F19 Mean 1.95 × 10+01 2.12 × 10+01 2.17 × 10+01 1.92 × 10+01 2.07 × 10+01 2.17 × 10+01 2.22 × 10+01 2.07 × 10+01 1.93 × 10+01

Std 5.51 × 10−01 1.08 × 10−01 1.44 × 10−01 3.62 × 10−01 1.55 × 10−01 2.64 × 10−01 6.31 × 10−02 8.82 × 10−01 2.37 × 10−01

C = + + = + + + +

F20 Mean 7.71 × 10+01 2.70 × 10+01 3.19 × 10+01 1.15 × 10+02 3.94 × 10+02 4.45 × 10+01 5.55 × 10+01 1.19 × 10+01 8.64 × 10+00

Std 4.93 × 10+01 4.94 × 10+00 6.65 × 10−01 5.86 × 10+01 1.99 × 10+02 7.92 × 10+00 4.90 × 10+00 7.90 × 10+00 9.42 × 10−01

C + + + + + + + + /

W/T/L 17/2/1 19/0/1 20/0/0 19/1/0 19/1/0 19/2/0 19/1/0 13/1/6 /

Note: the gray bacground highlights the best result on each function.
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To rank the algorithms clearly, the Friedman test is used to compare the involved algorithms
using all the data of mean fitness error values on the 20 problems. The Friedman test is the best-known
procedure for testing the differences between more than two related samples [48], which can detect
significant differences between the behavior of two or more algorithms. We conduct two tests that rank
the algorithms on the 30D and 50D, respectively. The significance level is set to 0.05. Table 5 presents
the numerical rankings obtained by the test. In addition, the corresponding graphical ranking results
are shown in Figures 2 and 3, where the center square indicates the average rank of the corresponding
algorithm and the line denotes the confidence intervals. Smaller ranks mean better performance
and, when there is no overlap on the intervals of any two algorithms, they are significantly different.
The results in these two figures clearly demonstrate that the proposed algorithm outperforms all other
algorithms including dg-PSO, CLPSO and FPA in both 30D and 50D.
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Figure 3. Friedman test of 50D problems.

Table 5. Numerical rankings of the Friedman test.

DimensionsFDR UPSO FIPS CLPSO MPSO FPA SSO dg-PSO DG-PSO

30-D 3.45 5.625 6.725 4.2 6.95 5.9 7.3 3.35 1.5
50-D 4.25 5.6 7.075 5 6.025 5.275 6.85 3.275 1.65

For further evaluation, the convergence performance and average time consumption are also
compared in Figures 4 and 5, respectively. The results of F8, F10, and F14 in 50-D are given to exemplify
the performance. From Figure 4, we observe that DG-PSO has outstanding performance on the
multimodal problems (F8 and F14), while dg-PSO obtained the best result in unimodal function F10.
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From Figure 5, it can be found that DG-PSO consumes slightly more than the two related algorithms:
CLPSO and FPA. However, the time consumption of DG-PSO is still acceptable when compared with
the other algorithms such as FDR-PSO, UPSO, MPSO and SSO.
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5. DG-PSO Based Remote Sensing Image Segmentation

Image segmentation is a fundamental task in remote sensing applications [49], such as change
detection and object-based classification. It is used with the expectation that it will divide the image into
semantically significant regions, or objects, to be recognized by further processing steps [50]. This work
attracts a lot of researchers in the past decade but is still an intractable problem [51]. In terms of all the
existing segmentation methods, one of the most popular segmentation techniques is thresholding due
to its simplicity, robustness and accuracy [52].

The thresholding methods can be divided into two categories: the bi-level thresholding and
multilevel thresholding. If the object in an image is separated from the background using a single
threshold value, it is called the bi-level thresholding. In contrast, the multilevel thresholding means
that the given image are classified into several different regions according to multiple thresholds.
In remote sensing image segmentation, bi-level thresholding does not give appropriate performance,
and there are strong requirements of multilevel thresholding [53]. Therefore, numerous studies have
been reported [47,53–58] in multilevel thresholding.

The most popular way [53–61] to search the optimal thresholds is to maximize some discriminating
criteria (fitness function). The traditional method searches the optimal thresholds using exhaustive
search strategies, which lead to high computation costs. In recent years, meta-heuristics based
methods gained the attention of researchers because of the high computation inefficiency. Quantities
of algorithms have been introduced to this area such as PSO [36], Differential Evolution (DE) [62],
Artificial Bee Colony (ABC) [59,63,64], Wind Driven Optimization (WDO) [56], Cuckoo Search (CS) [65]
and SSO [47]. However, the remote sensing images are very difficult to segment accurately due to
multimodality of the histograms [53]. Therefore, improving the performance of the metaheuristic
algorithms is necessary for the remote sensing image segmentation.

In this section, we applied the proposed algorithm to multilevel thresholding for optical remote
sensing image segmentation. We first describe the problem. Then, the experimental setup is introduced
carefully in Section 5.2. Finally, the results and analysis are given in detail.

5.1. Problem Definition

This subsection deals with the problem definition of multilevel thresholding problem. As we
mention above, multilevel thresholding methods generally search the optimal thresholds by
maximizing some criteria. In the literature, Otsu’s criterion [66] has been widely employed [36,67,68].
It generally provides image segmentation with satisfactory results [69] and is known for its simplicity
and effectivity with respect to uniformity and shape measures and can usually obtain optimal global
threshold value [58].

Let l ∈ [0, 1 . . . L− 1] be the gray level of a given an image I, where L is the total gray levels,
the problem is then defined as follows. Firstly, the image histogram is calculated and normalized,
which is denoted by Pl , l = 0, 1, . . . L− 1. For the (D + 1)− class thresholding problem, there are
D thresholds kd, (d = 1, 2, . . . D) that segment the image into D + 1 classes. Assume that k0(k0 = 0)
and kD+1(kD+1 = L) denote the upper and lower bound. Then, the thresholds can be sorted with
k0 < k1 < . . . < kd < . . . kD+1, and the problem is defined using (9):

(k∗1, k∗2 . . . k∗D) = arg
k0<k1<...<kd<...kD+1

max{F(k1, k2 . . . kD)}, (9)

where F = ∑D
d=0 ωd(µd − µT)

2, µd = ∑
kd+1
l=kd

l·Pl
ωd

. Here, ωd = ∑
kd+1
l=kd

Pl is the probability of the occurrence

of the dth class. µT = ∑L
l=1 l · Pl is the total mean intensity of the original image.

5.2. Experimental Setup

To demonstrate the superiority of the proposed method, five popular meta-heuristic algorithms
in multilevel thresholding including DE, ABC, CS, MPSO, SSO are chosen to compare with the
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proposed algorithm. All of these algorithms are demonstrated to have good performance in multilevel
thresholding in the corresponding reference in Table 6. Specifically, ABC performs better than PSO
when the level of thresholds is higher than two in [59]. Reference [53] demonstrates that CS showed
remarkable performances in multilevel thresholding problems and could outperform the other known
algorithms, such as DE, PSO, WDO and ABC. MPSO shows better performance than Genetic Algorithm
(GA) and the original PSO [36]. SSO is applied to multilevel thresholding in [47] and it clearly
outperforms PSO, BAT algorithm and FPA in [47]. The parameters of these algorithms are set according
to the corresponding work shown in Table 6. The parameters of our proposed algorithm are the same
as that in Section 4.

All populations are uniformly randomly initialized. Thirty independent runs are carried out for
each algorithm on each image on 2, 3, 4, 5, 7, 9, 15 and 20 thresholds [68,69], respectively. All algorithms
are conducted with the same maximum function evaluation: MaxFEs = 3000 ∗ D in identical search
space: [0, 256). All methods are adapted for integer optimization problems using the rounding method.
Specifically, the search space is defined as [0, 256) for 8-bit gray-scale images, and the integer is obtained
by rounding down (e.g., 255.6 is rounded to 255). Figure 6 shows the test images (These images are
taken from a very-high-resolution remote sensing image dataset constructed by Gong Cheng et al.
from Northwestern Polytechnical University [70].

Table 6. Parameters and references of the algorithms.

Algorithm Parameters Value Reference

DE
Population size 40

[62]Scaling factor 0.8
Crossover possibility 0.25

ABC
Swam size 20

[59]Max trial limit 50

CS

Number of nests 25

[53]
Step size 1
Mutation probability value 0.25
Scale factor 1.5

MPSO
Maximum, minimum swarm size 40, 5

[36]acceleration constants c1, c2 2, 2
Maximum, minimum inertial weight 0.9, 0.3

SSO
Population size 50

[47]The threshold PF 0.7
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5.3. Results and Discussion

In detail, the mean fitness and the corresponding standard deviation are given in Table 7, where the
best one in each case of the mean fitness is shown in bold. It is easy to find that our algorithm obtains
the best results in all cases in terms of the mean fitness, except the case of 7-level thresholding (D = 7)
of image C. To evaluate the effectiveness of our algorithm’s improvement over other ones, the involved
algorithms are also ranked with the Friedman test. We conduct two tests that ranked the algorithms
on the normal (D = 2, 3, 4 and 5) level and high level (The high level thresholding is popularly
employed in multilevel thresholding [68,69]) (D = 7, 9, 15 and 20), respectively. Therefore, 40 variables
(i× t×m = 40) are used in each comparison in each test, where i = 5 is the number of images, t = 4
denoted the number of levels, and m = 2 denoted the number of used measures including the meant
fitness and the corresponding standard deviation. The significance level is set to 0.05. Table 8 and the
two figures (Figures 7 and 8) present the numerical rankings and graphical results obtained by the test,
where better performance is denoted by smaller ranks.

From the results of normal level thresholding shown in Figure 7, the proposed algorithm
significantly outperforms DE, ABC and MPSO, and also showed an advantage over the other two
algorithms. It can be observed from Figure 8 that the proposed algorithm ranks even better in high
level thresholding, which showed a significant difference from all algorithms except CS (our algorithm
also ranks better than CS). Figures 9 and 10 show the segmentation results. The pseudo color image
shows the whole thresholding results, where each level of the image is represented by the regions with
the same color. The binary images show some of the objects separated from the original image, which
proved the effectiveness of the segmentation.

In conclusion, the results demonstrated that the proposed algorithm shows remarkable
performance in multilevel thresholding when compared with other popular meta-heuristics in this
research area.
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Table 7. Statistical results.

Image D Item DE ABC CS MPSO SSO Ours

a

2 Mean 1.79165 × 10+03 1.79165 × 10+03 1.79165 × 10+03 1.79165 × 10+03 1.79165 × 10+03 1.79165 × 10+03

Std 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13

3 Mean 1.94917 × 10+03 1.94918 × 10+03 1.94919 × 10+03 1.94919 × 10+03 1.94919 × 10+03 1.94919 × 10+03

Std 6.90 × 10−02 1.59 × 10−02 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13

4 Mean 2.03403 × 10+03 2.03416 × 10+03 2.03427 × 10+03 2.03427 × 10+03 2.03427 × 10+03 2.03427 × 10+03

Std 6.01 × 10−01 5.45 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

5 Mean 2.06635 × 10+03 2.06618 × 10+03 2.06648 × 10+03 2.06648 × 10+03 2.06648 × 10+03 2.06648 × 10+03

Std 2.74 × 10−01 1.79 × 10−01 4.50 × 10−03 5.84 × 10−03 0.00 × 10+00 0.00 × 10+00

7 Mean 2.09715 × 10+03 2.09653 × 10+03 2.09734 × 10+03 2.09739 × 10+03 2.09739 × 10+03 2.09739 × 10+03

Std 2.25 × 10−01 4.38 × 10−01 4.63 × 10−02 4.20 × 10−04 1.42 × 10−03 4.67 × 10−13

9 Mean 2.11153 × 10+03 2.11097 × 10+03 2.11188 × 10+03 2.11158 × 10+03 2.11192 × 10+03 2.11192 × 10+03

Std 4.20 × 10−01 3.52 × 10−01 6.55 × 10−02 2.43 × 10−01 8.36 × 10−02 9.06 × 10−02

15 Mean 2.12912 × 10+03 2.12857 × 10+03 2.12965 × 10+03 2.12976 × 10+03 2.12922 × 10+03 2.12995 × 10+03

Std 8.17 × 10−01 2.30 × 10−01 1.69 × 10−01 3.25 × 10−01 6.58 × 10−01 1.40 × 10−01

20 Mean 2.13280 × 10+03 2.13370 × 10+03 2.13444 × 10+03 2.13464 × 10+03 2.13333 × 10+03 2.13472 × 10+03

Std 7.99 × 10−01 2.01 × 10−01 1.18 × 10−01 5.27 × 10−01 6.86 × 10−01 1.44 × 10−01

b

2 Mean 2.27112 × 10+03 2.27112 × 10+03 2.27112 × 10+03 2.27112 × 10+03 2.27112 × 10+03 2.27112 × 10+03

Std 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13

3 Mean 2.50343 × 10+03 2.50346 × 10+03 2.50347 × 10+03 2.50347 × 10+03 2.50347 × 10+03 2.50347 × 10+03

Std 1.37 × 10−01 1.40 × 10−02 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13

4 Mean 2.58706 × 10+03 2.58695 × 10+03 2.58710 × 10+03 2.58709 × 10+03 2.58710 × 10+03 2.58710 × 10+03

Std 1.12 × 10−01 1.30 × 10−01 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13 4.67 × 10−13

5 Mean 2.62673 × 10+03 2.62643 × 10+03 2.62685 × 10+03 2.62686 × 10+03 2.62686 × 10+03 2.62686 × 10+03

Std 1.49 × 10−01 2.85 × 10−01 1.39 × 10−02 6.24 × 10−02 9.33 × 10−13 9.33 × 10−13

7 Mean 2.66456 × 10+03 2.66401 × 10+03 2.66481 × 10+03 2.66488 × 10+03 2.66490 × 10+03 2.66490 × 10+03

Std 2.78 × 10−01 2.76 × 10−01 5.67 × 10−02 2.08 × 10−01 4.67 × 10−13 4.67 × 10−13

9 Mean 2.68400 × 10+03 2.68338 × 10+03 2.68448 × 10+03 2.68458 × 10+03 2.68457 × 10+03 2.68459 × 10+03

Std 4.71 × 10−01 4.59 × 10−01 5.68 × 10−02 3.55 × 10−01 2.69 × 10−02 8.48 × 10−03

15 Mean 2.70493 × 10+03 2.70461 × 10+03 2.70564 × 10+03 2.70564 × 10+03 2.70535 × 10+03 2.70588 × 10+03

Std 7.97 × 10−01 2.72 × 10−01 1.34 × 10−01 3.15 × 10−01 1.10 × 10+00 7.63 × 10−02

20 Mean 2.70907 × 10+03 2.71046 × 10+03 2.71127 × 10+03 2.71168 × 10+03 2.71019 × 10+03 2.71153 × 10+03

Std 1.30 × 10+00 2.09 × 10−01 1.54 × 10−01 5.25 × 10−01 7.90 × 10−01 2.79 × 10−01
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Table 7. Cont.

Image D Item DE ABC CS MPSO SSO Ours

c

2 Mean 2.67669 × 10+03 2.67669 × 10+03 2.67669 × 10+03 2.67669 × 10+03 2.67669 × 10+03 2.67669 × 10+03

Std 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13

3 Mean 2.87034 × 10+03 2.87040 × 10+03 2.87042 × 10+03 2.87042 × 10+03 2.87042 × 10+03 2.87042 × 10+03

Std 2.80 × 10−01 2.94 × 10−02 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13 9.33 × 10−13

4 Mean 2.93107 × 10+03 2.93110 × 10+03 2.93128 × 10+03 2.93129 × 10+03 2.93129 × 10+03 2.93129 × 10+03

Std 5.24 × 10−01 1.69 × 10−01 2.87 × 10−03 2.36 × 10−01 1.40 × 10−12 1.40 × 10−12

5 Mean 2.96630 × 10+03 2.96622 × 10+03 2.96645 × 10+03 2.96645 × 10+03 2.96645 × 10+03 2.96645 × 10+03

Std 3.08 × 10−01 1.72 × 10−01 1.90 × 10−03 1.65 × 10−01 1.40 × 10−12 1.57 × 10−03

7 Mean 2.99969 × 10+03 2.99923 × 10+03 2.99982 × 10+03 2.99979 × 10+03 2.99980 × 10+03 2.99981 × 10+03

Std 2.09 × 10−01 2.68 × 10−01 4.74 × 10−02 9.48 × 10−03 8.60 × 10−02 8.25 × 10−02

9 Mean 3.01430 × 10+03 3.01377 × 10+03 3.01450 × 10+03 3.01462 × 10+03 3.01467 × 10+03 3.01474 × 10+03

Std 4.31 × 10−01 3.59 × 10−01 2.06 × 10−01 3.49 × 10−01 3.39 × 10−01 2.45 × 10−01

15 Mean 3.02911 × 10+03 3.02886 × 10+03 3.02963 × 10+03 3.02973 × 10+03 3.02936 × 10+03 3.02989 × 10+03

Std 8.23 × 10−01 1.91 × 10−01 1.53 × 10−01 2.02 × 10−01 8.09 × 10−01 2.10 × 10−01

20 Mean 3.03250 × 10+03 3.03354 × 10+03 3.03409 × 10+03 3.03443 × 10+03 3.03310 × 10+03 3.03447 × 10+03

Std 7.16 × 10−01 1.50 × 10−01 1.07 × 10−01 5.52 × 10−01 6.31 × 10−01 1.05 × 10−01

d

2 Mean 3.50826 × 10+03 3.50826 × 10+03 3.50826 × 10+03 3.50826 × 10+03 3.50826 × 10+03 3.50826 × 10+03

Std 1.40 × 10−12 1.40 × 10−12 1.40 × 10−12 1.40 × 10−12 1.40 × 10−12 1.40 × 10−12

3 Mean 3.65657 × 10+03 3.65661 × 10+03 3.65665 × 10+03 3.65665 × 10+03 3.65665 × 10+03 3.65665 × 10+03

Std 2.31 × 10−01 5.15 × 10−02 2.33 × 10−12 2.05 × 10−02 2.33 × 10−12 2.33 × 10−12

4 Mean 3.73546 × 10+03 3.73537 × 10+03 3.73562 × 10+03 3.73562 × 10+03 3.73562 × 10+03 3.73562 × 10+03

Std 2.28 × 10−01 1.56 × 10−01 4.67 × 10−13 2.78 × 10−02 4.67 × 10−13 4.67 × 10−13

5 Mean 3.78074 × 10+03 3.78052 × 10+03 3.78100 × 10+03 3.78099 × 10+03 3.78100 × 10+03 3.78100 × 10+03

Std 4.10 × 10−01 2.56 × 10−01 1.23 × 10−02 3.15 × 10−01 9.33 × 10−13 9.33 × 10−13

7 Mean 3.81857 × 10+03 3.81818 × 10+03 3.81897 × 10+03 3.81864 × 10+03 3.81865 × 10+03 3.81883 × 10+03

Std 6.02 × 10−01 4.10 × 10−01 3.38 × 10−02 4.35 × 10−01 1.11 × 10+00 8.17 × 10−01

9 Mean 3.83628 × 10+03 3.83555 × 10+03 3.83665 × 10+03 3.83681 × 10+03 3.83680 × 10+03 3.83682 × 10+03

Std 5.38 × 10−01 4.48 × 10−01 8.98 × 10−02 5.02 × 10−01 1.62 × 10−02 3.18 × 10−03

15 Mean 3.85501 × 10+03 3.85465 × 10+03 3.85558 × 10+03 3.85598 × 10+03 3.85543 × 10+03 3.85593 × 10+03

Std 9.03 × 10−01 2.48 × 10−01 1.44 × 10−01 8.12 × 10−01 6.33 × 10−01 1.62 × 10−01

20 Mean 3.85891 × 10+03 3.86036 × 10+03 3.86097 × 10+03 3.86131 × 10+03 3.86011 × 10+03 3.86135 × 10+03

Std 9.91 × 10−01 2.52 × 10−01 1.64 × 10−01 6.12 × 10−01 7.65 × 10−01 1.97 × 10−01



Sensors 2018, 18, 1393 23 of 29

Table 7. Cont.

Image D Item DE ABC CS MPSO SSO Ours

e

2 Mean 1.07218 × 10+03 1.07218 × 10+03 1.07218 × 10+03 1.07218 × 10+03 1.07218 × 10+03 1.07218 × 10+03

Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

3 Mean 1.17024 × 10+03 1.17021 × 10+03 1.17025 × 10+03 1.17024 × 10+03 1.17025 × 10+03 1.17025 × 10+03

Std 1.49 × 10−02 4.97 × 10−02 2.33 × 10−13 2.33 × 10−13 2.33 × 10−13 2.33 × 10−13

4 Mean 1.21391 × 10+03 1.21383 × 10+03 1.21398 × 10+03 1.21399 × 10+03 1.21399 × 10+03 1.21399 × 10+03

Std 1.29 × 10−01 1.23 × 10−01 6.60 × 10−03 3.89 × 10−02 2.33 × 10−13 2.33 × 10−13

5 Mean 1.24246 × 10+03 1.24221 × 10+03 1.24261 × 10+03 1.24265 × 10+03 1.24265 × 10+03 1.24265 × 10+03

Std 3.18 × 10−01 1.81 × 10−01 6.27 × 10−02 1.95 × 10−01 4.67 × 10−13 4.67 × 10−13

7 Mean 1.27623 × 10+03 1.27577 × 10+03 1.27656 × 10+03 1.27660 × 10+03 1.27661 × 10+03 1.27661 × 10+03

Std 5.52 × 10−01 4.12 × 10−01 5.43 × 10−02 2.55 × 10−01 2.33 × 10−13 2.33 × 10−13

9 Mean 1.29227 × 10+03 1.29152 × 10+03 1.29254 × 10+03 1.29267 × 10+03 1.29267 × 10+03 1.29268 × 10+03

Std 4.55 × 10−01 4.68 × 10−01 7.29 × 10−02 3.04 × 10−01 1.42 × 10−02 3.65 × 10−03

15 Mean 1.30947 × 10+03 1.30914 × 10+03 1.30986 × 10+03 1.31018 × 10+03 1.30972 × 10+03 1.31035 × 10+03

Std 7.66 × 10−01 3.43 × 10−01 2.49 × 10−01 3.64 × 10−01 6.56 × 10−01 1.45 × 10−01

20 Mean 1.31345 × 10+03 1.31412 × 10+03 1.31467 × 10+03 1.31501 × 10+03 1.31379 × 10+03 1.31522 × 10+03

Std 8.91 × 10−01 2.70 × 10−01 1.94 × 10−01 4.25 × 10−01 7.16 × 10−01 1.09 × 10−01

Note: the gray bacground highlights the best result on each function.
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Table 8. Numerical rankings of the Friedman tests.

Level DE ABC CS MPSO SSO Ours

Normal level 5.25 4.775 2.8625 3.3125 2.775 2.025
High level 5.3125 4.7625 2.6625 3.1125 3.2 1.95
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6. Conclusions

This paper proposes a variant of particle swarm optimization called DG-PSO. DG-PSO uses
a double-group based evolution framework. The individuals in DG-PSO are divided into two
groups according to their fitness values. Two main ideas are introduced in the evolution of the
disadvantaged group: a hybrid strategy for learning and a diversity enhancing strategy for avoiding
premature convergence. The experimental results on various benchmark functions demonstrate that:
although DG-PSO consumes slightly more time than the two related algorithms of the proposed
algorithm: CLPSO and FPA; DG-PSO achieves a significant improvement in terms of mean fitness
error, the corresponding standard deviation and convergence performance over all contrast algorithms.
In addition, we further apply the proposed algorithm to multilevel thresholding for remote sensing
image segmentation. The results also show the effectiveness of DG-PSO.

Author Contributions: L.S. designed the experiments and write the paper; X.H. analyzed the data and results;
C.F. performed the experiments.
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