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Abstract

Rationale: Understanding the role of the airway microbiome in
chronic obstructive pulmonary disease (COPD) inflammatory
endotypes may help to develop microbiome-based diagnostic and
therapeutic approaches.

Objectives: To understand the association of the airway
microbiome with neutrophilic and eosinophilic COPD at stability
and during exacerbations.

Methods: An integrative analysis was performed on 1,706 sputum
samples collected longitudinally from 510 patients with COPD
recruited at four UK sites of the BEAT-COPD (Biomarkers to Target
Antibiotic and Systemic COPD), COPDMAP (Chronic Obstructive
Pulmonary Disease Medical Research Council/Association of the
British Pharmaceutical Industry), and AERIS (Acute Exacerbation
and Respiratory Infections in COPD) cohorts. The microbiome was
analyzed using COPDMAP and AERIS as a discovery data set and
BEAT-COPD as a validation data set.

Measurements and Main Results: The airwaymicrobiome in
neutrophilic COPDwas heterogeneous, with two primary community
types differentiated by the predominance ofHaemophilus. The

Haemophilus-predominant subgroup had elevated sputum IL-1b and
TNFa (tumor necrosis factor a) and was relatively stable over time.
The other neutrophilic subgroup with a balanced microbiome profile
had elevated sputum and serum IL-17A and was temporally dynamic.
Patients in this state at stability were susceptible to the greatest
microbiome shifts during exacerbations. This subgroup can
temporally switch to both neutrophilicHaemophilus-predominant
and eosinophilic states that were otherwise mutually exclusive. Time-
series analysis on the microbiome showed that the temporal
trajectories of Campylobacter andGranulicatellawere indicative of
intrapatient switches from neutrophilic to eosinophilic inflammation,
in track with patient sputum eosinophilia over time. Network analysis
revealed distinct host–microbiome interaction patterns among
neutrophilicHaemophilus-predominant, neutrophilic balanced
microbiome, and eosinophilic subgroups.

Conclusions: The airway microbiome can stratify neutrophilic
COPD into subgroups that justify different therapies. Neutrophilic
and eosinophilic COPD are interchangeable in some patients.
Monitoring temporal variability of the airway microbiome may track
patient inflammatory status over time.
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At a Glance Commentary
Scientific Knowledge on the
Subject: Chronic obstructive pulmonary
disease (COPD) is heterogeneous.
Increasing evidence shows that the airway
microbiome is related toCOPDclinical
phenotypes, severity, and long-term
mortality. Understanding the role of the
airwaymicrobiome inCOPDneutrophilic
and eosinophilic inflammatory endotypes
may help developmicrobiome-based
approaches for patient selection for tar-
geted therapeutic intervention. There is a
paucity of data examining the dynamic
relationships between the airwaymicro-
biome andCOPD inflammatory
endotypes across stability and
exacerbations.

What This Study Adds to the Field:
This study reports an integrated analysis
on the airwaymicrobiome inCOPD
neutrophilic and eosinophilic endo-types
using 1,706 sputum samples collected
longitudinally from510 participantswith
COPD in threeUK cohorts in 2008–2015.
We showed that two primary types of
airway ecology existed in neutrophilic
COPD,which differed by the
predominance ofHaemophilus,
inflammatorymediators, temporal
stability, and interchangeability with
eosinophilic inflammation and could
therefore justify different therapeutic
approaches. Therewere specific,
nondominantmicrobiome genera
associatedwith eosinophilia.Monitoring
temporal variability of these features
tracked patient inflam-matory status over
time, suggesting a potential need for point-
of-care diagnosis using sputum
microbiome biomarkers. These results
highlight the importance of the airway
microbiome in the inflammatory
endotype–based patientmanagement
inCOPD.

Chronic obstructive pulmonary disease
(COPD) is a heterogeneous disease
underpinned by diverse clinical
characteristics and pathophysiological
mechanisms (1–3), with episodes of
exacerbations leading to significant mortality
worldwide (4–6). A better understanding of
clinical phenotypes and biological endotypes
for COPD is crucial for developing precision-
medicine strategies that enable patient-
tailored treatment according to clinical
characteristics coupled with biomarkers of
underlying disease mechanisms (7).

Inflammatory patterns observed in
individuals with COPD have been referred to
as inflammatory endotypes (8). Neutrophilic
inflammation is a hallmark of COPD and
contributes to key pathological features,
including emphysema and mucociliary
dysfunction (9). Bacterial infection is
associated with neutrophilic inflammation,
but its role in driving inflammation is
uncertain, given that increased neutrophilia
is observed in both colonized and
noncolonized patients with COPD (10).
Eosinophilic inflammation is also present as
a stable endotype in a subgroup of patients
with COPD (11) and is associated with less
bacterial infection and a favorable response
to inhaled corticosteroids (ICSs) (12–14).
Individuals with COPD have been broadly
classified into neutrophilic, eosinophilic,
mixed, and paucigranulocytic inflammation
according to differential sputum cell counts
(15), yet it is currently unknown whether
such a definition sufficiently captures the
underlying disease heterogeneity.

Recent studies have demonstrated a
diverse airway microbiome associated with
COPD severity, exacerbations, clinical
phenotypes, and long-termmortality
(16–20). The airway microbiota differs
between bacteria-associated and eosinophilic
exacerbations, with a lower diversity and
increased Proteobacteria in the former (16,
17), suggesting airway ecology may be

correlated with their underlying
inflammatory processes. Although the airway
microbiome was recently shown to differ
between neutrophilic and eosinophilic
inflammation in stable asthma (21), the
dynamic relationship between the
microbiome and inflammatory endotypes
across stability and exacerbations in COPD
remains unclear and warrants investigation
in large, longitudinal cohorts.

We hypothesized that the airway
microbiome is differentially associated in
neutrophilic and eosinophilic inflammations
in COPD and that such associations may be
dynamic across stability and exacerbations.
We also hypothesized that different airway
ecology reflects distinct pathophysiology and
may capture additional heterogeneity within
the broadly defined inflammatory endotypes
and assist in patient stratification.We tested
these hypotheses using an integrated analysis
on three large-scale longitudinal cohorts
established at four clinical sites in the United
Kingdom in 2008–2015: BEAT-COPD
(Biomarkers to Target Antibiotic and
Systemic COPD) (16), COPDMAP (COPD
Medical Research Council/Association of the
British Pharmaceutical Industry) (22), and
AERIS (Acute Exacerbation and Respiratory
Infections in COPD) (17). The participants
in these cohorts were well characterized and
followed at stability and during exacerbations
for up to 2 years. A total of 1,706 sputum
samples from 510 patients were included in
this analysis, which, to our knowledge,
represents the largest COPDmicrobiome
analysis to date. Importantly, all samples in
COPDMAP and AERIS were processed
using the same procedure and platform in
the same genomic facility, making them
essentially one centralized data resource for
collective analysis. In this study, we analyzed
the combined COPDMAP and AERIS
cohorts as the main discovery data set.
Whenever applicable, the results were
independently validated in BEAT-COPD, in

The BEAT-COPD (Biomarkers to Target Antibiotic and Systemic Chronic Obstructive Pulmonary Disease [COPD]) study was cofunded by the
Medical Research Council (MRC; UK) and AstraZeneca, with microbiome analysis funded by GlaxoSmithKline (GSK). The COPDMAP (Chronic
Obstructive Pulmonary Disease MRC/Association of the British Pharmaceutical Industry) study was funded by the MRC (UK), with additional
support provided by GSK and the Leicester National Institute for Health Research Biomedical Research Centre, University of Leicester,
Leicester, UK. The AERIS (Acute Exacerbation and Respiratory Infections in COPD) study was sponsored and funded by GSK (GSK study
number 114378). Analysis of this work was supported by the National Natural Science Foundation of China (31970112) and the Science and
Technology Foundation of Guangdong Province (2019A1515011395) (Z.W.).

Correspondence and requests for reprints should be addressed to Zhang Wang, Ph.D., Institute of Ecological Sciences, School of Life
Sciences, South China Normal University, 55 West Zhongshan Avenue, South China Normal University, Guangzhou 510631, China.
E-mail: wangz@m.scnu.edu.cn.

This article has a related editorial.

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

ORIGINAL ARTICLE

Wang, Locantore, Haldar, et al.: COPD Airway Microbiome and Inflammatory Endotypes 1489

http://dx.doi.org/10.1164/rccm.202101-0169ED


which the microbiota was characterized
using a different platform. The aim of this
analysis was to systematically assess the
relationship between the airway microbiome
and COPD inflammatory endotypes across
stability and exacerbations.

Methods

Participants and Samples
The procedure for patient recruitment was
described in detail previously (16, 17, 22).
Participants were recruited if they had a
physician diagnosis of COPDwith a post-
bronchodilator FEV1/FVC ratio,70% at
screening and no previous asthma diagnosis.
BEAT-COPD participants were recruited
from the Glenfield Hospital in Leicester,
United Kingdom. COPDMAP participants
were recruited at Imperial College London,
the University of Leicester, and the
University Hospital of SouthManchester,
United Kingdom. AERIS participants were
recruited at the University Hospital
Southampton, United Kingdom. The stable
visits were defined as visits during stable
disease, with at least 4 weeks free from a
prior exacerbation. Exacerbations were
defined according to Anthonisen criteria (23)
and/or healthcare use (24). Exacerbation
samples were collected before treatment with
antibiotics or steroids.

Sputum samples were classified on the
basis of established criteria for sputum
differential cell counts into four groups (15,
25): neutrophilic (eosinophils, 3%,
neutrophils> 61%), eosinophilic
(eosinophils> 3%, neutrophils, 61%),
mixed-granulocytic (eosinophils> 3%,
neutrophils> 61%), and paucigranulocytic
(eosinophils, 3%, neutrophils, 61%). A
panel of inflammatory mediators was
measured in the sputum and serum for a
subgroup of patients in COPDMAP
(N5 157) and BEAT-COPD (N5 113)
using the Meso Scale Discovery platform
(Meso Scale Diagnostics). The
measurements were quality controlled as
described previously (26).

Microbiome Sequencing and Analysis
All COPDMAP and AERIS samples were
processed in a single, centralized laboratory
at GlaxoSmithKline Research and
Development) according to the same
protocol as described previously (17, 22). The

V4 hypervariable region of the 16S rRNA
gene was sequenced using IlluminaMiSeq
with proper reagent controls (see online
supplement). For BEAT-COPD, the 16S
V3–V5 region was sequenced using the 454
Genome Sequencer (454 Life Sciences). All
sequencing data were deposited in the
National Center for Biotechnology
Information Sequence Read Archive (BEAT-
COPD: SRP065072, COPDMAP: SRP102480,
AERIS: SRP102629). The computer codes for
data analyses were provided in the online
supplement or deposited in GitHub under
https://github.com/wangzlab/
AERIS_MAP_BEAT_analysis.

All 16S rRNA gene data sets were
processed using a standardized pipeline in
QIIME 2.0 (Quantitative Insights Into
Microbial Ecology 2.0) (27). The
demultiplexed sequencing reads were
denoised to generate amplicon sequence
variants using DADA2 (Divisive Amplicon
Denoising Algorithm 2) (28). Additional
denoising parameters were used for 454 data
(28). A customNaive Bayes classifier was
trained on Greengenes Database (Second
Genome, Inc.) 13_8 99% operational
taxonomic units to assign a taxonomy for
each data set. The COPDMAP and AERIS
samples were rarefied to 29,117 reads. The
BEAT-COPD samples were rarefied to 2,207
reads. The sequencing batch information for
COPDMAP and AERIS were used to adjust
batch effects for microbiome data using
Combat (29), according to the method
Gibbons and colleagues (30).

Statistical Analyses
The detailed procedure for statistical analyses
is provided in the online supplement.
Microbiome community types were
identified using unbiased clustering byWald
linkage on the basis of the Jensen-Shannon
divergence index. The optimal number of
clusters was determined by using the
Silhouette measure of the degree of
confidence (31). Cluster memberships were
validated using a partition around the
medoids, with the optimal number of
clusters determined by using the Calinski-
Harabasz index (32). Changepoint detection
analysis was performed using the pruned
exact linear time algorithm (33) in the
changepoint package in R (R Foundation for
Statistical Computing) (34) to search for
temporal change points on the relative
abundance of microbiome genera. We
calculated cross-covariance scores between

the relative abundances of microbiome
genera and sputum neutrophilic and
eosinophilic percentages for all longitudinal
visits of each patient using the ccf function in
R (35). Patients with at least five visits were
included. Amicrobiome cooccurrence
network was established using SparCC
(Sparse Correlations for Compositional data)
(36) and visualized using Gephi (37). The
correlation between microbiome genera and
mediators was assessed first by
residualization using a general linear mixed
model to adjust for demographic covariates
and then by hierarchical all-against-all
association testing using HAllA (Hierarchical
All-against-All association testing) (38).

Results

Participant and Sample
Characteristics
A total of 1,366 sputum samples were
collected from 423 patients with COPD in
the COPDMAP and AERIS cohorts,
spanning between 1 and 13 visits over up to 2
years (time-span range, 4–658 d; mean, 301.5
d) at clinical stability (N5 920) and during
exacerbations (N5 446) in London
(N5 300), Leicester (N5 303), Manchester
(N5 180), and Southampton (N5 583) in
the United Kingdom (see Figure E1 in the
online supplement and Table 1). As a
validation data set, 340 samples from the
BEAT-COPD cohort from 87 participants at
a stable state (N5 203) and during
exacerbations (N5 137) were included (1–9
visits per participant, time-span range, 5–881
d; mean, 238.4 d; Figure E1 and Table 1).

Chronic use of macrolides was
reported for antiinflammatory purposes for
16 stable visits from 13 participants in
COPDMAP and AERIS. No macrolide use
was reported for BEAT-COPD participants.
No significant associations were found
between the microbiota and chronic
macrolide usage (Figure E2). No significant
differences in the microbiota were observed
between induced and spontaneous sputum
samples at a stable state (Figure E3).

Neutrophilic COPD Was
Heterogeneous with Differential
Airway Ecology
We classified 1,366 samples in the discovery
data set into neutrophilic (N5 551),
eosinophilic (N5 189), mixed (N5 187),
and paucigranulocytic (N5 302) subgroups.
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Of these, 137 samples could not be assigned
to a subgroup because of missing data. The
340 samples in BEAT-COPDwere also
classified accordingly. The distribution of
sputum differential cell counts was generally
comparable across cohorts and sites (Figure
E4), suggesting a degree of consistency
between the independent assessments. The

distribution of each subgroup was
comparable across cohorts and sites, except
for a relatively higher proportion of
paucigranulocytic samples in AERIS (Figures
1A and E5A).

Conducting a-diversity analysis on the
discovery data set revealed an overall
significantly decreased Shannon index in the

neutrophilic group compared with the other
three groups (Wilcoxon P< 8.43 1023,
Figure 1B). However, there was a broad
range of Shannon index values in the
neutrophilic group, with a subset of samples
without a notable reduction in a diversity.
This was also manifested by a significantly
greater deviation from the centroid in the

Table 1. Demographic and Clinical Features of Participants in the COPDMAP, AERIS, and BEAT-COPD Cohorts

Features

COPDMAP
AERIS BEAT-COPD

Leicester
(N5303)

London
(N5300)

Manchester
(N5180)

Southampton
(N5583)

Leicester
(N5340)

Number of patients 100 128 94 101 87
Number of visits per patients* 3.0 (1–9) 2.3 (1–8) 1.9 (1–5) 5.8 (1–13) 3.9 (2–9)
Number of exacerbation visits

per patients*
1.6 (1–5) 2.0 (1–6) 1.2 (1–3) 2.1 (1–6) 1.6 (1–4)

Age†‡ 68.767.6 71.168.6 66.366.5 67.168.4 67.769.0
Sex, F‡§ 24 (24.0) 41 (32.0) 26 (27.7) 42 (41.6) 22 (25.3)
BMI‡ 27.865.0 26.765.7 26.965.1 27.665.4 26.464.6
Current smokers‡ 74 (74.0) 89 (69.5) 54 (57.4) 40 (39.6) 37 (42.5)
GOLD status, I/II/III/IV‡ 9/62/33/11 8/51/32/8 15/40/29/10 0/45/40/16 1/35/32/19
FEV1, L 1.560.5 1.26 0.5 1.660.6 1.260.6 1.260.5
FEV1% predicted 49.2616.3 48.76 21.6 51.0620.4 46.7625.3 44.9618.7
FVC, L 2.760.7 3.06 1.0 3.360.9 2.960.9 2.560.8
FEV1/FVC ratio 0.560.1 0.56 0.2 0.560.4 0.460.2 0.560.1
Questionnaire, CAT or CRQ 21.966.8jj 19.967.8jj 21.168.0jj 16.66 10.0jj 14.965.0¶

Sputum neutrophils, % 69.5624.9 66.86 14.0 72.0616.0 50.0636.7 73.0622.6
Sputum eosinophils, % 2.264.0 2.76 4.4 3.163.3 3.467.7 3.667.8
Sputum lymphocytes, % 0.360.6 0.76 0.9 0.260.3 0.360.8 0.560.8
Sputum macrophages, % 17.7618.7 24.46 19.2 13.4615.0 19.5618.9 19.8618.2
Sputum epithelial cells, % 4.966.6 1.36 2.8 3.664.4 3.965.5 3.166.1
Blood neutrophils, 109 cells/L 5.362.1 5.96 2.5 4.861.7 4.861.7 6.262.5
Blood eosinophils, 109 cells/L 0.260.2 0.26 0.2 0.260.2 0.260.2 0.360.2
Blood lymphocytes, 109 cells/L 1.960.7 1.86 0.7 1.760.6 1.860.8 2.161.0
Blood monocytes, 109 cells/L 0.560.2 0.86 0.3 0.660.2 0.760.3 0.660.2
Blood basophils, 109 cells/L) 0.160.0 0.06 0.0 0.060.0 0.060.0 0.060.0
Community type, Ba/Hi/Mc/Sp,

%**
75/14/7/4 74/13/6/7 72/17/7/4 63/21/7/9 59/17/9/15

Inflammatory group, Neu/Eos/
Mix/Pau, %**

57/10/13/20 51/12/20/17 49/18/23/10 34/20/12/34 61/11/13/15

Bacterial infection during
exacerbations††

37 (45.1) 54 (32.0) 15 (51.7) 79 (49.4) 51 (45.5)

Viral infection during
exacerbations††

14 (17.0) 32 (18.9) 5 (17.2) 27 (16.8) 30 (26.8)

ICS usage at enrolment‡‡ 90 (90.0) 102 (80.0) 74 (78.7) 94 (93.1) 67 (77.0)
Macrolide usage at stability‡‡ 4 (4.0) 2 (1.6) 1 (1.1) 6 (5.9) 0 (0.0)
Number of spontaneous

sputum samples
291 (96.0) 296 (98.7) 169 (93.9) 443 (76.0) 329 (96.8)

Definition of abbreviations: AERIS5Acute Exacerbation and Respiratory Infections in COPD; Ba5balanced; BEAT-COPD5Biomarkers to
Target Antibiotic and Systemic COPD; BMI5body mass index; CAT5COPD Assessment Test; COPD5 chronic obstructive pulmonary disease;
COPDMAP5COPD Medical Research Council/Association of the British Pharmaceutical Industry; CRQ5Chronic Respiratory Disease Questionnaire;
Eos5eosinophilic; GOLD5Global Initiative for Chronic Obstructive Lung Disease; Hi5Haemophilus-predominant; ICS5 inhaled corticosteroid;
Mc5Moraxella-predominant; Mix5mixed-granulocytic; Neu5 neutrophilic; Pau5paucigranulocytic; Sp5Streptococcus-predominant.
*Presented as mean (range).
†Continuous data are presented as the mean6SD unless otherwise stated.
‡Patient demographic data at baseline.
§Categorical data are presented as the number (proportion) unless otherwise stated.
jjCAT score.
¶CRQ score.
**Percentage proportion of samples in each subgroup.
††Bacterial and viral infections at exacerbations were defined according to Bafadhel and colleagues (26).
‡‡Number of patients.
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neutrophilic group compared with the
other groups in principal coordinate
analysis of microbiome b-diversity (Bray-
Curtis dissimilarity, Figures 1C and E5B).
A similar pattern was observed in BEAT-
COPD (Figures E6A and E6B). A similar
pattern was observed when analyzing
stable and exacerbation samples separately
(Figure E7). These results suggested that
there were heterogeneous patterns of the
microbiome within the neutrophilic
group.

To dissect the heterogeneity of the
microbiome in the neutrophilic group, we
performed an unsupervised clustering of
microbiome profiles into community types.
Hierarchical clustering on all 1,366
microbiome profiles revealed an optimum of
four community classes. The main
community type was composed of a
“balanced”microbial composition, whereas
the other three types had a “biased”
composition dominated byHaemophilus,
Moraxella, and Streptococcus, respectively
(Figure E8A). These three community types
were overall in agreement withH. influenzae,
M. catarrhalis, and S. pneumoniae
colonization on the basis of quantitative PCR
and culture results, except for a relatively low
culture positivity for S. pneumoniae (Figure
E9). Similar community clusters were also
identified using the partition-around-the-
medoids clustering method and in BEAT-
COPD (Figures E8A–E8C), suggesting
robustness of the community types.
The four community types persisted when
analyzing stable or exacerbation samples
alone (Figure E10A).

The relative abundance ofHaemophilus
and the quantitative-PCR load ofH.
influenzae had areas under the curve (AUCs)
of 0.949 and 0.908 in distinguishing the
Haemophilus-predominant subgroup from
the remaining samples in the discovery data
set (AUCs of 0.999 and 0.912 in the
validation data set). TheHaemophilus
relative abundance of 0.41 and log10H.
influenzae load of 7.2 (copies/ml) reached the
best discriminatory power for both data sets.
In comparison,Veillonella and Prevotella
were most significantly enriched in the
balanced microbiome subgroup in both data
sets. An added-up relative abundance of
Veillonella and Prevotella of 0.26 reached the
highest power in segregating the balanced
microbiome subgroup in the discovery data
set. In the validation data set, the optimal
Veillonella1Prevotella relative abundance for
the subgroup was 0.17.

Next, we compared microbiome
communities across inflammatory endotypes
(Figures 2A–2C). The majority of samples in
the eosinophilic, mixed, and
paucigranulocytic groups had a balanced
community type (77.1–83.5%, Figure 2A). In
comparison, 56.8% of samples in the
neutrophilic group had a balanced
community type, whereas 27.8% of the
samples wereHaemophilus predominant
(Figure 2A). TheMoraxella- and
Streptococcus-predominant communities
constituted 13.8% of all samples. The
distribution of community classes across
inflammatory endotypes was overall
consistent between stable and exacerbation
samples, with a relatively lower
representation of the “balanced” community
for exacerbations (Figure E10B). We
therefore concluded that there were two
major types of airway ecology for
neutrophilic COPD, which were
differentiated by the predominance of
Haemophilus. They were considered as two
neutrophilic subgroups in subsequent
analyses (named as the neutrophilic
Haemophilus and neutrophilic balanced
subgroups).

Neutrophilic COPD with Balanced
Microbiome Had Elevated IL-17A
The two neutrophilic subgroups were overall
comparable in demographic features and
severity in terms of spirometric findings and
symptom scores (Tables 2 and E1). There
was a significantly lower neutrophilic
percentage and a higher eosinophilic
percentage in the neutrophilic balanced
subgroup compared with the neutrophilic
Haemophilus subgroup (Figure 2B;
Wilcoxon P, 0.001). However, the
neutrophilic percentage alone cannot
differentiate between the two subgroups
(AUC, 0.620). In COPDMAP, 37 sputum
and serum inflammatory mediators were
measured for 157 samples from 80
participants. Principal component analysis
on the sputummediators revealed distinct
clusters for the neutrophilic balanced,
neutrophilicHaemophilus, and eosinophilic
subgroups (Figure 2C). In the eosinophilic
subgroup, eotaxin-3, TARC (thymus- and
activation-regulated chemokine), and IL-5
were elevated, indicating a T-helper cell type
2 (Th2) signature. In the neutrophilic
Haemophilus subgroup, IL-1a, IL-1b, and
TNFa were elevated (false discovery rate

[FDR] P, 0.001). In the neutrophilic
balanced subgroup, IL-17A was most
elevated (FDR P5 0.04), followed by SAA
(serum amyloid A), Flt-1 (fms-related
receptor tyrosine kinase 1), and IL-16
(Figures 2D and E11 and Table 2). A similar
clustering pattern was also observed in
BEAT-COPD, with elevated IL-17A in the
neutrophilic balanced subgroup (Figure
E12). A similar mediator clustering pattern
was further observed for stable or
exacerbation samples alone (Figure E13).
Among serummediators, elevated IL-17A
and GM-CSF (granulocyte-macrophage
colony-stimulating factor) were observed in
the neutrophilic balanced subgroup, and IL-5
and eotaxin-3 were higher in the
eosinophilic subgroup, both in COPDMAP
and BEAT-COPD (Figure E14 and
Table E2).

Neutrophilic COPD with Balanced
Microbiome Was Temporally Dynamic
We assessed within-patient stability for the
neutrophilic and eosinophilic endotypes
over time by analyzing paired samples
collected sequentially from the same
patients. Samples were excluded if they did
not have a paired sample or if their
inflammatory states were not putatively
neutrophilic or eosinophilic (i.e., mixed or
paucigranulocytic). Within stable disease,
71.4% of neutrophilic Haemophilus states
were followed by the same state in the
next visit, suggesting relative stability
(Figure 3). In comparison, 38.4% and
41.8% of neutrophilic balanced and
eosinophilic states were succeeded by the
same state during stability. In addition,
59.1%, 21.4%, and 33.3% of neutrophilic
Haemophilus, neutrophilic balanced, and
eosinophilic states at stability were
maintained during exacerbations. For
47.6% of neutrophilic COPD cases with a
balanced microbiome, their communities
switched to those dominated by
Haemophilus, Moraxella, or Streptococcus
during exacerbations. Consistent with this
finding, the stable samples in the
neutrophilic balanced group had the
greatest microbiome shifts during
exacerbations compared with other groups,
as measured by Bray-Curtis dissimilarity
for paired stability–exacerbation samples,
both in the discovery data set and in the
validation data set (Figures 2E and E12E).
These results suggested that the
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neutrophilic balanced subgroup was
dynamic, and patients in this state at
stability were most susceptible to airway
microbiome shifts during exacerbations.
We noted that the neutrophilic
Haemophilus and eosinophilic states were
rarely transited to each other at stability or

during exacerbations, indicating their
mutually exclusive nature (Figure 3),
whereas the neutrophilic balanced state was
interchangeable to both neutrophilic
Haemophilus and eosinophilic states.
Similar transition pattern was observed in
BEAT-COPD (Figure E15). Seasonal

changes and baseline ICS usage had
nonsignificant positive associations with
intrapatient switches between neutrophilic
and eosinophilic states (stable–stable
odds ratios [ORs], 1.60 and 2.22; 95%
confidence intervals [95% CIs],
0.63–4.09 and 0.47–10.36; P5 0.32
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and 0.29; stable-exacerbation ORs, 1.55 and
1.30; 95% CIs, 0.48–5.07 and 0.24–6.78;
P5 0.46 and 0.78).

Eosinophilic COPD Was Enriched with
Specific Nondominant Genera
Thirty-one genera had a significantly higher
relative abundance in the eosinophilic group
versus the neutrophilic group (linear

discriminant analysis [LDA] effect size,
LDA. 4.0; FDR P, 0.05; Table E2). Twelve
of the 31 genera remained significant
between the neutrophilic balanced and
eosinophilic groups (LDA. 4.0; FDR
P, 0.05; Figures 4A–4C and Table E3),
indicating that their enrichments in
eosinophilia over neutrophilia were
independent ofHaemophilus predominance
in the latter. All 12 genera remained

eosinophilically enriched using two
additional data-normalization approaches to
control forHaemophilus overgrowth (online
supplement; Figure 4C). Furthermore, all 12
genera except for TG5 andAggregatibacter
remained eosinophilically enriched when
analyzed cross-sectionally within each
sequential stable or exacerbation visit. All 12
genera except for S24-7 remained
eosinophilically enriched within at least three
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Table 2. Comparisons between Patient Demographic and Clinical Features and between Sputum Mediators among the NH, NB,
and E Subgroups in the COPDMAP and AERIS Cohorts

Features NH (N5153) NB (N5313) E (N5 189)
P Value

(NH vs. NB)
P Value

(NH vs. E)
P Value
(NB vs. E)

Number of patients* 34 95 43 NA NA NA
Number of exacerbation visits 60 (39.2) 110 (35.1) 62 (32.6) 0.39 0.22 0.59
Age†‡ 69.369.0 68.56 7.6 66.967.8 0.67 0.21 0.24
Sex, F‡§ 8 (23.5) 29 (30.5) 11 (25.6) 0.44 0.89 0.55
BMI‡ 26.865.8 27.06 6.1 26.964.4 0.81 0.91 0.89
Current smokers‡ 24 (69.7) 62 (65.3) 26 (60.5) 0.57 0.35 0.59
GOLD status, I/II/III/IV‡ 4/15/12/3 16/39/26/14 10/15/12/6 0.64 0.47 0.81
ICS usage at enrolment‡ 29 (85.2) 82 (86.3) 37 (86.0) 0.88 0.93 0.97
Macrolide use at stability‡ 3 (8.8) 5 (5.3) 1 (2.3) 0.46 0.20 0.43
FEV1, L 1.260.7 1.360.5 1.46 0.6 0.47 0.17 0.29
FEV1% predicted 48.0610.7 49.1611.3 49.66 10.6 0.67 0.17 0.63
FVC, L 2.660.9 2.760.9 2.86 0.9 0.14 0.07 0.52
FEV1/FVC ratio 0.460.2 0.560.2 0.56 0.2 0.27 0.19 0.31
CAT score 22.365.7 21.16 7.3 20.968.5 0.19 0.09 0.79
Sputum neutrophils, % 88.8610.3 80.5611.3 38.76 21.1 ,0.001 ,0.001 ,0.001
Sputum eosinophils, % 0.660.7 0.960.9 10.16 11.7 ,0.001 ,0.001 ,0.001
Sputum lymphocytes, % 0.361.0 0.561.7 0.46 0.7 0.021 0.32 0.08
Sputum macrophages, % 6.365.1 10.76 8.2 30.16 18.4 ,0.001 ,0.001 ,0.001
Sputum epithelial cells, % 2.263.6 3.665.4 6.06 5.9 0.011 ,0.001 ,0.001
Blood neutrophils, 109 cells/L 6.062.6 5.862.6 4.36 1.4 0.65 ,0.001 ,0.001
Blood eosinophils, 109 cells/L 0.260.1 0.260.1 0.46 0.2 0.86 ,0.001 ,0.001
Blood lymphocytes, 109 cells/L 0.860.7 1.060.6 1.26 0.9 0.05 ,0.001 0.02
Blood monocytes, 109 cells/L 1.660.7 1.460.8 1.46 0.8 0.13 0.10 0.10
Blood basophils, 109 cells/L 0.060.0 0.060.0 0.06 0.0 0.15 0.36 0.11
Bacterial infection during

exacerbationsjj
50 (83.3) 31 (28.1) 11 (18.0) ,0.001 ,0.001 ,0.001

Viral infection during
exacerbationsjj

19 (31.7) 23 (20.9) 19 (31.1) 0.12 0.95 0.14

Bfgf¶ 1.760.8 1.361.0 1.76 0.8 0.11 0.82 0.11
CRP 12.263.3 10.76 3.4 11.662.5 0.15 0.73 0.32
Eotaxin 4.262.0 5.461.3 7.16 1.5 0.02 ,0.001 ,0.001
Eotaxin-3 5.062.0 5.661.9 8.76 2.8 0.25 ,0.001 ,0.001
Flt-1 4.761.2 5.861.6 6.06 1.7 0.005 0.001 0.24
GM-CSF 1.060.7 0.860.7 1.06 0.9 0.33 0.99 0.29
ICAM-1 11.261.8 12.36 2.1 13.261.8 0.01 ,0.001 0.07
IFN 5.361.7 4.162.1 4.06 1.9 0.008 0.008 0.88
IL-10 5.661.9 3.061.8 3.06 1.7 ,0.001 ,0.001 0.96
IL-12 (p70) 2.160.6 1.760.7 1.76 1.0 0.005 0.05 0.84
IL-12/23 (p40) 3.661.0 3.561.6 3.46 1.3 0.59 0.39 0.91
IL-13 4.360.7 4.260.6 4.26 0.6 0.279 0.003 0.99
IL-15 2.860.9 2.060.7 2.36 0.6 0.001 0.09 0.06
IL-16 5.561.9 7.462.0 8.46 1.9 0.006 ,0.001 0.03
IL-17A 1.861.1 2.461.6 1.76 1.2 0.004 0.98 0.46
IL-1a 8.162.0 6.462.2 6.26 1.9 0.004 0.01 0.87
IL-1b 9.662.2 7.262.2 6.86 2.2 ,0.001 ,0.001 0.59
IL-2 2.761.0 2.161.0 2.36 0.8 0.007 0.10 0.34
IL-4 1.060.5 0.660.4 0.76 0.3 ,0.001 0.07 0.13
IL-5 1.961.3 2.061.3 3.76 2.2 0.51 0.003 0.003
IL-6 6.361.5 5.861.7 5.66 1.6 0.27 0.42 0.86
IL-7 3.161.1 3.660.9 4.16 1.1 0.01 0.02 0.25
IL-8 15.761.1 14.66 1.4 13.861.1 0.001 0.004 0.94
MCP-1 7.961.8 8.661.9 9.16 1.5 0.16 0.05 0.54
MCP-4 3.661.0 3.861.2 4.861.2 0.99 0.004 0.002
MDC 7.561.8 8.161.8 9.46 1.7 0.32 0.001 0.004
MIP-1a 8.063.0 6.962.9 7.86 2.3 0.09 0.54 0.26
MIP-1b 9.162.4 8.562.3 8.86 3.1 0.17 0.91 0.22
PIGF 4.061.0 4.561.6 5.06 1.1 0.15 0.005 0.08
SAA 7.662.2 10.66 2.2 8.76 1.7 0.005 0.005 0.81
TARC 3.362.3 4.561.7 6.86 2.0 0.03 ,0.001 ,0.001
Tie-2 8.061.0 6.862.3 7.96 2.4 0.08 0.60 0.06
TNFa 8.562.2 5.362.4 4.96 2.2 ,0.001 ,0.001 0.55
TNFb 0.660.4 0.360.4 0.26 0.2 ,0.001 0.004 0.71
VCAM-1 6.861.6 7.962.0 9.56 2.3 0.04 ,0.001 0.008

(Continued)
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Table 2. (Continued)

Features NH (N5153) NB (N5313) E (N5 189)
P Value

(NH vs. NB)
P Value

(NH vs. E)
P Value
(NB vs. E)

VEGF-C 6.761.2 7.161.5 7.26 1.2 0.47 0.47 0.89
VEGF-D 5.561.2 5.861.7 6.06 1.0 0.34 0.19 0.80

Definition of abbreviations: AERIS5Acute Exacerbation and Respiratory Infections in COPD; BMI5body mass index; CAT5COPD Assessment
Test; COPD5 chronic obstructive pulmonary disease; COPDMAP5COPD Medical Research Council/Association of the British Pharmaceutical
Industry; E5 eosinophilic; GOLD5Global Initiative for Chronic Obstructive Lung Disease; ICS5 inhaled corticosteroid; NB5 neutrophilic
balanced; NH5 neutrophilic Haemophilus; SAA5 serum amyloid A; TNF5 tumor necrosis factor.
*Number of patients whose initial baseline samples belong to the subgroup.
†Continuous data are presented as the mean6SD.
‡Patient demographic data at baseline or at stability.
§Categorical data are presented as the number (proportion).
jjBacterial and viral infections during exacerbations were defined according to Bafadhel and colleagues (26).
¶The sputum-mediator measurements were only available for COPDMAP.
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Figure 4. Specific nondominant microbiome genera were associated with eosinophilia. (A) Linear discriminant analysis (LDA) effect size (LEfSe)
analysis showing microbiome genera specifically enriched in neutrophilic (Neutro) Haemophilus (Haemo), Neutro balanced (B), and eosinophilic
(Eosino) subgroups (LDA. 4.0, false discovery rate [FDR] P, 0.05). The average relative abundances ranked from high to low are shown for
each genus across the three subgroups in the COPDMAP (Chronic Obstructive Pulmonary Disease [COPD] Medical Research Council/
Association of the British Pharmaceutical Industry) and AERIS (Acute Exacerbation and Respiratory Infections in COPD) cohorts. (B) Box-and-
whisker plots showing microbiome genera most enriched in each subgroup (LDA, FDR P, 0.05). (C) LEfSe analysis showing enrichment (blue)
or depletion (red) of the 12 genera in the Eosino versus Neutro group in multiple analyses by 1) comparing the Eosino and Neutro B subgroups
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of four sites. Leicester and London shared a
more similar microbiota–eosinophilia
correlation pattern than they did with the
other sites, which may possibly be related to
their relatively smaller proportion of samples
in the eosinophilic subgroup (Table 2). We
noted thatMogibacterium, TG5, and S24-7
had higher abundances in patients with
baseline ICS usage; however, these changes
were nonsignificant (Figure E16).
Gemellaceae,Granulicatella, Campylobacter,
Porphyromonas, Capnocytophaga, and
Rothia further exhibited significant positive
correlations with the sputum eosinophilic
percentage in a multivariate linear mixed
model for all 1,229 discovery samples
(P, 0.05), which together explained 35.6%
of the variation in sputum eosinophilia
(R25 0.356). Patient smoking history was a
significant covariate (P5 0.018, Table E4).
These results suggested that there were
nondominant taxa specifically associated
with sputum eosinophilia, which were
generally robust across sites, visits, and
demographics. The enrichments of
Granulicatella, Campylobacter,Gemellaceae,
and Capnocytophaga in the eosinophilic
group were validated in BEAT-COPD
(Figure E17).

Microbiome Altered Temporally in
Concert with Patient
Inflammatory Status
Knowing that neutrophilic and eosinophilic
inflammations were interchangeable within
patients, we next assessed whether the airway
microbiome altered alongside such changes
in the patient inflammatory status. We
performed a changepoint detection analysis
(Figure 4D). As a time-series statistical
approach, this analysis divides longitudinal

data into segments and identifies points
when the distribution of features (i.e.,
microbiome genera) changes significantly
between segments. Ninety-one participants
with at least five longitudinal visits were
included. Across stability and exacerbations,
temporal trajectories ofMoraxella and
Actinobacilluswere associated with the
occurrence of exacerbation events (ORs, 3.58
and 2.42; 95% CIs, 2.54–5.29 and 1.43–4.10;
P, 0.05, Figure 4E). No genera were
associated with switches between
neutrophilic and eosinophilic states when
viewed across stability and exacerbations,
indicating exacerbation had a major impact
on temporal variability of the microbiota.
When assessing microbiome change
points within stability,Haemophiluswas
associated with switches from the
eosinophilic to the neutrophilic state (OR,
2.66; 95% CI, 1.41–5.66; P5 0.01),
whereas Campylobacter,Gemellaceae,
Capnocytophaga, andGranulicatella
were associated with neutrophilic to
eosinophilic switches (OR> 2.27, P, 0.05,
Figure 4E).

To further assess whether the
microbiome changed in concert with the
extent of neutrophilic and eosinophilic
inflammation, we calculated the cross-
covariance between temporal measures of
the microbiome genera and sputum
neutrophilic and eosinophilic percentages
for each patient. Given two temporal
measures, the cross-covariance estimates the
covariation of one measure against the other
at pairs of time points (Figure 4D).
Granulicatella and Campylobacter had the
highest cumulative cross-covariance with
eosinophilia across all participants, which
was significantly higher against the null
distribution generated by the permutation

test (Wilcoxon P, 0.05, Figure 4F and
Table E5). This was consistent with the
markedly lower interpatient variations of
their cross-covariance scores and suggested
between-patient consistency in their
temporal covariation with eosinophilia
(Figure 4F). Moraxella and Haemophilus
exhibited the highest cumulative cross-
covariance with neutrophilia. However,
neither of them reached statistical
significance (Table E5).

Distinct Host–Microbiome Interactions
among Inflammatory Subtypes
To assess the microbiome community
structure across inflammatory subtypes, we
performed a cooccurrence network analysis.
In the neutrophilicHaemophilus subgroup,
Haemophiluswas the predominant hub node
exhibiting coexclusive relationships against
35 genera (Figure 5A). In the neutrophilic
balanced subgroup,Veillonella had the
highest degree of connectivity, followed by
Serratia, Acinetobacter, andMycoplasma
(Figure 5A). The network in the eosinophilic
group was featured by the mutual
cooccurrence relationships among
Fusobacterium,Granulicatella,
Capnocytophaga, and Campylobacter that
were specifically enriched in this group
(Figure 5A).

We further performed an all-against-all
correlation analysis between microbiome
genera and inflammatory mediators for each
subgroup, adjusting for patient demographic
cofactors. In the neutrophilic Haemophilus
subgroup, Haemophilus and Moraxella had
the highest number of correlations with
mediators, in particular IL-1b and TNFa
(Figure 5B). In the neutrophilic balanced
subgroup, there were multiple, moderate,

Figure 4. (Continued). and using two additional approaches to control for Haemo overgrowth in the Neutro group, by rescaling relative
abundances with Haemo abundance downscaled to its average across samples according to the method used by Taylor and colleagues (21)
(Haemo rescaled), and by using a Quantile norm approach to rescale relative abundances to their within-sample percentile ranks; 2) subanalyzing
within the initial, second, and third stable visits and during exacerbations; 3) subanalyzing within each of the four sites; and 4) using BEAT-COPD
(Biomarkers to Target Antibiotic and Systemic COPD) data. The LDA score for each specific comparison is indicated in the corresponding cell in
the table. (D) An example illustrating the time-series analysis on longitudinal microbiome data. Shown are the changes in relative abundances of
Campylobacter compared with the changes in Neutro and Eosino status across visits for one patient (South subject-137). The break in between the
red lines indicates significant changes in the relative abundance of Campylobacter identified by the changepoint-detection algorithm, which
coincided with the switch from the Neutro to the Eosino state. The changes in abundance of Campylobacter were also in concert with sputum
Eosino percentages over time, with a cross-covariance (cross-cov) score of 0.861. (E) The microbiome genera whose change points were
associated with exacerbation events and with switches between Neutro and Eosino inflammation within stable disease. The odds ratio and 95%
confidence interval (95% CI) are shown. Only significant genera with lower limit of the 95% CI greater than 1.0 are shown. (F) The top 10 genera
with greatest cumulative cross-cov scores with sputum Eosino percentages. The cumulative cross-cov score and interpatient stdev of the scores
were shown for each genus. The genera were highlighted in asterisks if their cross-cov scores were significantly higher than the null distributions
derived from permutation test. *FDR P,0.05. **FDR P, 0.01, and ***FDR P,0.001. adj5adjusted; H5Haemo-predominant; Leic5Leicester;
Manc5Manchester; Quantile norm5quantile normalization; South5Southampton; stdev5SD.
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negative correlations of Serratia,
Oribacterium, and Lactobacillus with IL-
17A, IL-1a, and IL-1b (Figure 5B). In the
eosinophilic subgroup, positive correlations

were identified between Lautropia,
Campylobacter, and Granulicatella and
eotaxin-3, IL-5, and TARC (Figure 5B).
Analysis of BEAT-COPD revealed overall

similar patterns (Figure E18); 83.2% of
microbiome–microbiome correlations and
77.6% of microbiome–mediator correlations
that were significant in the discovery data
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Figure 5. Distinct host–microbiome interactions between inflammatory subtypes. (A) The microbiome cooccurrence network for significant
correlations between microbiome genera identified by SparCC (Sparse Correlations for Compositional data) in the COPDMAP (Chronic
Obstructive Pulmonary Disease [COPD] Medical Research Council/Association of the British Pharmaceutical Industry) and AERIS (Acute
Exacerbation and Respiratory Infections in COPD) cohorts. Each node represents a genus. The size of the node is proportional to its degree of
connectivity. Nodes were colored by their module assignments by the “Modularity” function on the basis of a Louvain community-detection
algorithm implemented in Gephi software (resolution5 1.0). Each edge represents a significant correlation between pairs of nodes (false
discovery rate P, 0.05). The width of the edge is proportional to the absolute correlation coefficient. Edges were colored on the basis of
coexclusion (red) or cooccurrence (blue) relationship. The top 100 positive and negative correlations are shown for display purposes. (B)
Significant correlations between microbiome genera and sputum mediators using residualized all-against-all correlation by using HAllA
(Hierarchical All-against-All association testing) in COPDMAP data. Each dot represents a significant correlation between a microbiome genus
and a sputum mediator (false discovery rate P, 0.1). The size and color strength of the dot are proportional to the Spearman correlation
coefficient. Dots were colored on the basis of negative (red) or positive (blue) correlation. The top 20 positive and negative correlations are
shown for display purposes. The degree of connectivity for each genus in the microbiome cooccurrence network (in A) was indicated above the
microbiome–mediator correlation matrix. SAA5 serum amyloid A.
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set were validated in BEAT-COPD (Tables
E6 and E7).

Discussion

Here, we have shown that the airway
microbiome is differentially associated with
neutrophilic and eosinophilic COPD. It is
well established that neutrophilic
inflammation is associated with reduced
microbial diversity and increased
Proteobacteria in asthma and COPD (16, 21,
39, 40). Taylor and colleagues showed that
neutrophilic asthma had greater variability in
the airway microbiota than eosinophilic
asthma (21), which is consistent with our
observation. However, the heterogeneity in
neutrophilic airway ecology has not been
examined in detail, given their relatively
small sample size. Using unbiased clustering
on over a thousand microbiome samples, we
showed that neutrophilic COPD consisted of
two main subtypes of airway ecology
differentiated by the predominance of
Haemophilus. Segregating these two
subgroups could be important clinically, as
they were associated with distinct
inflammatory profiles and may justify
different therapeutic approaches.

TheHaemophilus-predominant
subgroup had decreased a diversity and
enhanced proinflammatory mediators, IL-1b
and TNFa, consistent with previous
observations in both COPD and asthma (41).
This group had high temporal stability,
highlighting the persistence ofHaemophilus
colonization in the airways as an important
pathogenic entity (42). For this subgroup,
bacterial colonization is evident and likely
amenable to targeted antimicrobial therapies.

We showed that over half of
neutrophilic COPD cases had a balanced
microbiome profile. This group had lower
sputum IL-1b and TNFa and higher sputum
and serum IL-17A. In addition, it was
temporally dynamic, and patients in this
state at stability were not dominated by
typical respiratory pathogens in their
microbiota but may be susceptible to the
greatest microbiome shifts during
exacerbations, perhaps suggesting the need
for monitoring airway ecology and pathogen
acquisition in particular for this patient
subgroup. The role of IL-17A has been
increasingly recognized in COPD
inflammation (43–46). IL-17A induces SAA,
which in turn promotes neutrophilia by

increasing IL-17A and Th17-regulating
cytokines (i.e., IL-6) (47, 48). Therefore, IL-
17A and SAA, both elevated in the
neutrophilic balanced subgroup, may form a
self-perpetuating axis precipitating
neutrophilic inflammation.

Our results suggested, albeit with
distinct pathophysiology, that neutrophilic
and eosinophilic COPDwere temporally
interchangeable in some patients, and the
neutrophilic balanced subgroup served as an
intermediate state between neutrophilic
Haemophilus and eosinophilic states that
were otherwise mutually exclusive. The
biology underlying this dynamism is
uncertain, but it has been shown that
therapeutic blockade of Th2 cytokines
enhances Th17 inflammation in asthma (49),
suggesting that ICS treatment may
contribute to the endotypic switches.
Seasonality can be another factor
contributing to the observed dynamics of the
inflammatory pattern (11). It is important to
note that our results are not necessarily
contradictory to previous findings on the
stability of eosinophilic COPD (11, 50), in
that some patients experienced transitions to
a mixed granulocytic state or had decreased
sputum eosinophilia slightly below a 3%
threshold but may still have had eosinophilic
inflammation. In our analysis, IL-17A was
inversely correlated with the nonpathogenic
taxaOribacterium and Lactobacillus.
Whether patients in this subgroup benefit
from anti-IL-17 biologics or a microbiome
modulation strategy (i.e., probiotics)
warrants further investigation. However, the
limited efficacy of targeting IL-17 (51) and
IL-23 (52) in contrast to the beneficial effects
of macrolide treatment in asthma (53, 54)
suggests that targeting dysbiosis is likely
preferable in this setting.

We identified microbiota features
specifically enriched in eosinophilic over
neutrophilic COPD and showed that their
enrichments were not simply due to the
reciprocal decrease ofHaemophilus
abundance andmay not be fully explained by
concurrent ICS usage. The role of the airway
microbiome in eosinophilic inflammation
remains uncertain (55). Taylor and
colleagues foundmodest associations
between sputummicrobiota and eosinophilic
asthma (21), althoughGemella, Rothia, and
Porphyromonaswere enriched in the
eosinophilic group, which was consistent
with our results as well as with those from
Millares and colleagues (56). We showed that
Campylobacter andGranulicatellawere

associated with eosinophilia both cross-
sectionally and longitudinally, indicative of
patient endotypic switches and associated
with Th2mediators. The same two genera
were also enriched in the gut microbiome of
patients with eosinophilic esophagitis in
response to allergenic foods (57).
Campylobacter andAggregatibacterwere
further shown to be capable of inducing
eosinophilic chemotaxis and degranulation
(58, 59). Given these results, it is possible that
there exists a specific humanmicrobiome
population favoring the ecological niches of
eosinophilia. Moreover, we showed that
monitoring temporal changes of these airway
microbiome features tracked patient
inflammatory status in real time, which
supports the potential need for point-of-care
diagnosis using sputum samples and based
on microbiome biomarkers.

An important strength of this work is
the availability of over 1,700 sputum samples
across multiple sites across stability and
exacerbations, which, to our knowledge, is by
far the largest in a single airway-microbiome
study. The results in the combined
COPDMAP and AERIS cohorts were subject
to cross-validation between sites and
independent validation in BEAT-COPD.
This analytical strategy ensured the
robustness of inflammation-associated
microbiome signatures in terms of clinical
sites, visits, and sampling procedures.
Another strength of the work is the long-
term patient follow-up and employment of
novel time-series analytical techniques, as
compared with previous studies with similar
purposes that were mostly cross-sectional
(21, 41). The longitudinal analysis raised the
confidence for the association of the airway
microbiome with eosinophilia and revealed
the dynamic pattern of the microbiome in
relation to patient inflammatory status.

There are several limitations to this
study. First, the samples in this study
included both induced and spontaneous
sputum, which may have differentially
impacted the microbiome profiling.
However, previous analyses and our analyses
suggested that this impact was nonsignificant
(17). Although we have assessed
contaminations from reagent controls, the
extent of oral microbes in sputum needs to
be evaluated further. It also remains
uncertain how sputum can recapitulate the
ecology in the lower airways, given its
inherent mixture of variable elements from
the upper and lower airways. Second, the
longitudinal sampling remained sparse,
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which somewhat limited the power of time-
series analyses. An intensive and regular
participant follow-up would allow a finer-
scale examination of the temporal variability
of the airway microbiome. Third, a subset of
participants in BEAT-COPD and
COPDMAP had sputum and serum
mediators profiled because of limited
sample availability. No other host omics
data were characterized, and this omission
includes transcriptomics, which may have
helped better define Th2 and Th17
inflammation according to gene signatures
and immune processes (60). Fourth, all
three cohorts are observational, and most
patients had moderate to severe disease;
therefore, multiple confounders such as ICS

treatment or antibiotic treatment are present.
Further prospective interventional
studies (similar to the study by Segal and
colleagues [61] in COPD and the studies by
Durack and colleagues [62, 63] in asthma)
are required to explicitly understand their
effects on the airway microbiome. In
addition, the underrepresentation of
female participants needs to be considered to
assess the generalizability of our findings.
Last, our results can only be viewed as
associations that are subject to further
experimental testing to explore their
causality.

In summary, the airway microbiome is
differentially implicated in neutrophilic
and eosinophilic COPD. The microbiome

can stratify neutrophilic COPD into
subgroups that justify different
therapies. Neutrophilic and eosinophilic
COPD are interchangeable in some
patients, which is related to composition
shifts of the airway microbiome. Monitoring
temporal variability of the airway
microbiome may capture key changes in
patient inflammatory status and assist in
therapeutic selection. Results in this study
highlight the consideration of the airway
microbiome in the inflammatory
endotype–based patient management in
COPD.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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