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Abstract: The objective of this study was to assess intermediary metabolic alterations that link
sugar-sweetened beverage (SSB) intake to cardiometabolic (CM) risk factors in youth. A total of
597 participants from the multi-ethnic, longitudinal Exploring Perinatal Outcomes among CHildren
(EPOCH) Study were followed in childhood (median 10 yrs) and adolescence (median 16 yrs). We
used a multi-step approach: first, mixed models were used to examine the associations of SSB intake in
childhood with CM measures across childhood and adolescence, which revealed a positive association
between SSB intake and fasting triglycerides (β (95% CI) for the highest vs. lowest SSB quartile:
8.1 (−0.9,17.0); p-trend = 0.057). Second, least absolute shrinkage and selection operator (LASSO)
regression was used to select 180 metabolite features (out of 767 features assessed by untargeted
metabolomics) that were associated with SSB intake in childhood. Finally, 13 of these SSB-associated
metabolites (from step two) were also prospectively associated with triglycerides across follow-up
(from step one) in the same direction as with SSB intake (Bonferroni-adj. p < 0.0003). All annotated
compounds were lipids, particularly dicarboxylated fatty acids, mono- and diacylglycerols, and
phospholipids. In this diverse cohort, we identified a panel of lipid metabolites that may serve as
intermediary biomarkers, linking SSB intake to dyslipidemia risk in youth.

Keywords: added sugar; metabolic profiling; childhood obesity; machine learning; metabolic
syndrome; hypertriglyceridemia

1. Introduction

Excess consumption of sugar-sweetened beverages (SSBs), which typically include
sodas, fruit-flavored drinks, energy drinks, sports drinks, and sweetened teas/coffees,
has been consistently associated with rates of overweight and obesity among youth over
recent decades [1–3]. This associated weight gain may result from the energy-dense,
liquid nature of SSBs, resulting in weaker satiation and compensatory food responses, or
activation of the hedonic food reward system [4]. SSB intake has also been associated
with cardiometabolic risk factors in childhood and adolescence, including markers of
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insulin resistance, inflammation, and dyslipidemia, independent of energy intake [5–10].
Proposed mechanisms include the higher glycemic index of SSBs, which may contribute
to an increased insulin secretory response [11], or associations of added sugars in SSBs,
especially fructose, with hepatic de novo lipogenesis and ectopic liver fat [12–16], an effect
that has been observed even when weight is held stable [13]. A critical future direction
is, therefore, better understanding the pathophysiological disturbances associated with
SSBs, as this may also shed light on objective biomarkers of intake of SSBs, a food group
for which social norms may bias self-reported intake data.

Metabolomics is an evolving science that involves the comprehensive measurement
of low molecular weight molecules, or metabolites, in biological samples. This includes
endogenous compounds, which serve as products, intermediates, and substrates of chemi-
cal reactions in the human metabolism, as well as exogenous compounds, which reflect
environmental exposures [17]. In adults, a study by Gibbons et al. leveraged untargeted
metabolomics to identify a set of metabolites (formate, citrulline, taurine, isocitrate) that
showed promise as biomarkers of SSB intake [18], though this study did not link these
metabolites to any health outcomes. An alternative strategy is to evaluate the metabolome
alterations linking SSB intake and cardiometabolic risk. This may be achieved by using
a “meet-in-the-middle” approach [19], an analytical framework that aims to identify the
functional biomarkers that mark the relationship between an exposure and a health out-
come, thereby providing insight into pathophysiological alterations potentially attributable
to the exposure. For example, in a cross-sectional cohort of Mexican youth, Perng et al.
identified two metabolites (urate and nonanoate) that marked the relationship between SSB
intake and higher blood pressure in girls [20]. While these findings serve as a foundation
for understanding the link between SSB intake and one metabolic risk factor in youth,
additional prospective studies are needed to further explore this pathway and establish the
temporality of associations.

In this study, we investigated the intermediary metabolic alterations that mark the
relationship between SSB intake in childhood and cardiometabolic risk factors measured
prospectively across childhood and adolescence. This was done using data from the
Exploring Perinatal Outcomes among CHildren (EPOCH) study, a longitudinal cohort
of diverse youth, and by employing a multi-step conceptual framework, summarized in
Figure 1, which integrated data collected during childhood and/or adolescence on diet,
metabolomics, and conventional cardiometabolic measures [fasting glucose and insulin,
insulin resistance (assessed using the homeostatic model of assessment), HDL cholesterol,
fasting triglycerides, and systolic blood pressure].
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that mark the relationship between sugar sweetened beverage (SSB) intake and cardiometabolic risk.
(a) In step 1, we tested prospective associations of SSB intake in childhood with cardiometabolic risk
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factors across childhood and adolescence. (b) In step 2, we identified plasma metabolites in childhood
associated with SSB intake in childhood. (c) In step 3, we tested whether SSB-associated metabolites
(from step 2) were also prospectively associated with SSB-associated CM risk factors across childhood
and adolescence (from step 1). Abbreviations: FFQ, food frequency questionnaire; SSB, sugar-
sweetened beverage.

2. Results
2.1. Characteristics

Background characteristics of the sample by quartile of energy-adjusted SSB intake
in childhood (visit one) are shown in Table 1. The mean age of participants at the child-
hood visit increased across SSB quartiles (mean age ± SD for highest vs. lowest SSB
quartile: 10.7 ± 1.5 vs. 10.2 ± 1.5, respectively; p = 0.023). There were also differences in
the racial/ethnic distribution across SSB quartiles (p < 0.001), whereby the highest quartile
versus the lowest quartile had a higher percentage of Hispanic participants (52 vs. 29%,
respectively), but fewer non-Hispanic white participants (33 vs. 60%, respectively).

Table 1. Descriptive statistics of 597 EPOCH participants during childhood according to sugar
sweetened beverage (SSB) intake.

SSB Intake in Childhood 1:

Quartile 1
(0 to 0.25 Servings/d)

Quartile 2
(0.26 to 0.54
Servings/d)

Quartile 3
(0.55 to 1.00
Servings/d)

Quartile 4
(1.01 to 5.12
Servings/d)

Variable: Mean (SD) or
Count (%)

Mean (SD) or
Count (%)

Mean (SD) or
Count (%)

Mean (SD) or
Count (%) p-Value 2

N 148 149 150 150
Age (years), mean (SD) 10.2 (1.5) 10.3 (1.4) 10.5 (1.4) 10.7 (1.5) 0.023
Male Sex, n (%) 63 (43%) 72 (48%) 75 (50%) 87 (58%) 0.064
Race/ethnicity, n (%): <0.001

Hispanic 43 (29%) 52 (35%) 57 (38%) 78 (52%)
NH White 89 (60%) 77 (52%) 71 (47%) 49 (33%)
NH Black 10 (7%) 8 (5%) 13 (9%) 17 (11%)
NH Other 6 (4%) 12 (8%) 9 (6%) 6 (4%)

BMI z-score, mean (SD) 0.28 (1.30) 0.19 (1.22) 0.22 (1.21) 0.37 (1.21) 0.611
Energy intake (kcal/d), mean (SD) 1720 (501) 1808 (503) 1834 (527) 1810 (649) 0.292
Pubertal stage, n (%): 0.793

Pre-pubertal (Tanner = 1) 69 (49%) 68 (48%) 67 (47%) 69 (49%)
Pubertal (Tanner = 2 or 3) 71 (51%) 74 (52%) 75 (53%) 72 (51%)
Late/post-pubertal (Tanner = 4) 0 (0%) 1 (1%) 0 (0%) 0 (0%)

In utero GDM Exposure, n (%) 29 (20%) 22 (15%) 23 (15%) 25 (16%) 0.683
SSB intake 3 (serving/d), mean (SD) 0.11 (0.09) 0.39 (0.08) 0.77 (0.13) 1.86 (0.91)

1 SSB intake quartiles were determined based on energy adjusted SSB intake using the residual method.
2 Differences in each child’s characteristics by SSB intake quartile were assessed using analysis of variance
(ANOVA) for continuous characteristics and Chi-squared tests for categorical characteristics. 3 SSB intake was
energy-adjusted using the residual method. Abbreviations: SSB, sugar sweetened beverages; BMI, body mass
index; GDM, gestational diabetes mellitus.

2.2. Associations of SSB Intake in Childhood with Cardiometabolic Measures

The means and standard deviations for each cardiometabolic measure of interest at
study visits in childhood and adolescence are shown in Table S1; generally, mean values
for each cardiometabolic measure increased from childhood to adolescence, except for
HDL cholesterol, which decreased. In linear mixed models adjusted for age, sex, and
race/ethnicity, SSB intake in childhood was associated with higher fasting triglycerides
across childhood/adolescence (β (95% CI) for highest versus lowest SSB intake quartile: 8.1
(−0.9, 17.0) mg/dL; p-trend = 0.057; Table 2). There were no notable associations between
SSB intake in childhood and the other cardiometabolic risk factors (fasting glucose, fasting
insulin, HOMA-IR, HDL cholesterol, or systolic blood pressure; Table 2). Thus, downstream
analyses focused on triglycerides as the primary SSB-associated cardiometabolic outcome
of interest.
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Table 2. Prospective associations between sugar sweetened beverage (SSB) intake in childhood and
cardiometabolic risk factors across childhood and adolescence.

SSB Intake in Childhood 1:

Quartile 2 vs. 1 Quartile 3 vs. 1 Quartile 4 vs. 1 Linear Trend

Outcome: β (95% CI) 2 β (95% CI) 2 β (95% CI) 2 p-Value 2,3

Glucose (mg/dL) −0.7 (−4.1, 2.7) −0.7 (−4.2, 2.7) −1.4 (−4.9, 2.2) 0.488
Insulin (µIU/mL) −1.7 (−3.5, 0.1) −1.1 (−2.9, 0.7) −1.3 (−3.1, 0.6) 0.426

HOMA-IR −0.7 (−1.3, −0.1) −0.4 (−1.0, 0.2) −0.5 (−1.1, 0.1) 0.330
HDL Cholesterol (mg/dL) −0.6 (−2.7, 1.6) −0.8 (−3.0, 1.4) −0.1 (−2.4, 2.1) 0.973

Triglycerides (mg/dL) 1.6 (−7.0, 10.3) 4.9 (−3.8, 13.6) 8.1 (−0.9, 17.0) 0.057
Systolic blood pressure (mm Hg) −1.8 (−3.7, 0.2) −1.0 (−3.0, 1.0) −0.9 (−2.9, 1.1) 0.770

1 SSB intake quartiles were determined based on energy-adjusted SSB intake using the residual method. 2 Estimates
based on mixed-effects models adjusted for participant age across visits, sex, and race/ethnicity (Hispanic, non-
Hispanic white, non-Hispanic black, or non-Hispanic other). All models included a participant-specific random
intercept. 3 Linear trends across quartiles were assessed using the median value for each quartile. Abbreviations:
HOMA-IR, homeostatic model of assessment for insulin resistance; HDL, high-density lipoprotein.

2.3. Associations of SSB Intake in Childhood with Plasma Metabolites

A total of 180 metabolites (out of 767 metabolites measured by the untargeted metabolomics
assay) were selected in LASSO regression with log-transformed SSB intake as the dependent
variable, whereby selection was defined as having a non-zero coefficient in ≥40% of the
bootstrap samples, which was a data-driven threshold described in more detail in the
Methods section under “Statistical Analyses”. Among these selected metabolites, 136 (76%)
had confirmed identities. The metabolites selected in LASSO regression with SSB intake
are summarized in Table 3, which also reports the number of times that the metabolite was
selected across bootstrap samples (whereby, “selection” was defined as having a non-zero
regression coefficient) and its average β-coefficient across bootstrap samples. The selected
metabolites were primarily lipids (45 metabolites, 25%), amino acid-related (44 metabolites,
24%), or xenobiotics (21 metabolites, 12%).

Table 3. Metabolite features in childhood associated with sugar sweetened beverage intake in
childhood, based on least absolute shrinkage and selection operator (LASSO) regression.

Metabolite Name 1 Pathway Sub-Pathway Average β 2 Count 3

Beta-citrylglutamate Amino acid Glutamate metabolism 0.140 61
Carboxyethyl-GABA Amino Acid Glutamate Metabolism 0.113 52

N-acetyl-aspartyl-glutamate (NAAG) Amino Acid Glutamate Metabolism 0.108 56
N-acetylglutamate Amino Acid Glutamate Metabolism −0.110 52
Pyroglutamine * Amino acid Glutamate metabolism 0.072 50
Cys-gly, oxidized Amino acid Glutathione metabolism 0.222 84

Betaine Amino acid Glycine/serine/threonine metabolism 0.212 44
Dimethylglycine Amino acid Glycine/serine/threonine metabolism −0.187 55

Sarcosine Amino acid Glycine/serine/threonine metabolism 0.147 58
Threonine Amino acid Glycine/serine/threonine metabolism −0.153 45

3-methylhistidine Amino acid Histidine metabolism 0.026 43
N-acetylhistidine Amino Acid Histidine metabolism 0.434 89
Trans-urocanate Amino acid Histidine metabolism 0.065 50

2,3-dihydroxy-2-methylbutyrate Amino acid BCAA metabolism 0.049 44
3-hydroxy-2-ethylpropionate Amino acid BCAA metabolism −0.196 50

3-hydroxyisobutyrate Amino acid BCAA metabolism 0.042 40
3-methyl-2-oxobutyrate Amino acid BCAA metabolism 0.032 43

3-methylglutaconate Amino acid BCAA metabolism −0.136 53
Alpha-hydroxyisocaproate Amino acid BCAA metabolism −0.197 59

Isoleucine Amino acid BCAA metabolism 0.338 45
Isovalerylcarnitine (C5) Amino Acid BCAA metabolism 0.157 63

Isovalerylglycine Amino acid BCAA metabolism 0.096 51
5-(galactosylhydroxy)-L-lysine Amino Acid Lysine Metabolism −0.094 40

5-hydroxylysine Amino acid Lysine metabolism 0.133 62
Glutarylcarnitine (C5-DC) Amino Acid Lysine Metabolism −0.280 89
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Table 3. Cont.

Metabolite Name 1 Pathway Sub-Pathway Average β 2 Count 3

N,N,N-trimethyl-5-aminovalerate Amino Acid Lysine Metabolism 0.157 55
N6-acetyllysine Amino Acid Lysine Metabolism −0.165 41

Cysteine s-sulfate Amino acid Methionine/cysteine/SAM metabolism 0.124 68
Methionine sulfone Amino acid Methionine/cysteine/SAM metabolism 0.071 42

Taurine Amino acid Methionine/cysteine/SAM metabolism 0.165 57
(N(1) + N(8))-acetylspermidine Amino Acid Polyamine Metabolism 0.122 44

4-acetamidobutanoate Amino acid Polyamine metabolism −0.173 48
Indoleacetate Amino acid Tryptophan metabolism 0.066 53

Indolepropionate Amino acid Tryptophan metabolism −0.057 52
Tryptophan betaine Amino acid Tryptophan metabolism −0.045 62
3-methoxytyrosine Amino acid Tyrosine metabolism 0.268 71
N-acetyltyrosine Amino Acid Tyrosine Metabolism −0.116 53

P-cresol glucuronide * Amino acid Tyrosine metabolism 0.030 42
Phenol sulfate Amino acid Tyrosine metabolism −0.003 40

Thyroxine Amino acid Tyrosine metabolism 0.090 42
Tyramine O-sulfate Amino Acid Tyrosine Metabolism 0.210 100

Argininate * Amino acid Urea cycle; arginine/proline metabolism −0.094 57
N-acetylarginine Amino Acid Urea cycle; arginine/proline metabolism −0.121 43
N-methylproline Amino Acid Urea cycle; arginine/proline metabolism −0.029 40

N-acetylglucosamine/galactosamine Carbohydrate Amino sugar Metabolism −0.136 42
Mannitol/sorbitol Carbohydrate Hexose metabolism −0.045 49
Arabitol/xylitol Carbohydrate Pentose metabolism −0.230 62

Arabonate/xylonate Carbohydrate Pentose metabolism −0.096 40
Ribonate Carbohydrate Pentose metabolism −0.094 41

Ribulonate/xylulonate * Carbohydrate Pentose metabolism 0.121 54
Gulonate * Cofactors Ascorbate/aldarate metabolism 0.144 55
Threonate Cofactors Ascorbate/aldarate metabolism 0.047 45

1-methylnicotinamide Cofactors Nicotinate/nicotinamide metabolism 0.352 92
Quinolinate Cofactors Nicotinate/nicotinamide metabolism 0.070 44

Trigonelline (N’-methylnicotinate) Cofactors Nicotinate/Nicotinamide Metabolism −0.058 58
Pantothenate Cofactors Pantothenate/CoA metabolism −0.115 40

Beta-cryptoxanthin Cofactors Vitamin A metabolism −0.047 50
Carotene diol (2) Cofactors Vitamin A metabolism 0.110 41

Retinol (Vitamin A) Cofactors Vitamin A Metabolism −0.239 61
Pyridoxate Cofactors Vitamin B6 metabolism −0.084 47

Deoxycarnitine Lipid Carnitine metabolism −0.129 46
Ceramide (d18:1/14:0, d16:1/16:0) * Lipid Ceramides 0.115 50

N-stearoyl-sphingadienine (d18:2/18:0) * Lipid Ceramides −0.289 86
Palmitoyl-arachidonoyl-glycerol (36:4) * Lipid Diacylglycerol −0.067 45
Palmitoyl-linoleoyl-glycerol (16:0/18:2) * Lipid Diacylglycerol 0.096 44
Stearoyl-arachidonoyl-glycerol (18:0/20:4)

* Lipid Diacylglycerol −0.079 41

N-oleoylserine Lipid Endocannabinoid 0.227 61
Adipoylcarnitine (C6-DC) Lipid Fatty Acid Metabolism (Acyl Carnitine) 0.085 55

Laurylcarnitine (C12) Lipid Fatty Acid Metabolism (Acyl Carnitine) 0.124 44
Linolenoylcarnitine (C18:3) * Lipid Fatty Acid Metabolism (Acyl Carnitine) 0.083 42
3-hydroxybutyroylglycine * Lipid Fatty acid metabolism (Acyl Glycine) −0.066 50

N-palmitoylglycine Lipid Fatty Acid Metabolism (Acyl Glycine) −0.187 52
Hexadecanedioate (C16-DC) Lipid Fatty Acid/Dicarboxylate −0.124 50

Hexadecenedioate (C16:1-DC) * Lipid Fatty Acid/Dicarboxylate −0.252 65
Octadecadienedioate (C18:2-DC) * Lipid Fatty Acid/Dicarboxylate 0.107 67

Sebacate (C10-DC) Lipid Fatty Acid/Dicarboxylate −0.063 41
Tetradecanedioate (C14-DC) Lipid Fatty Acid/Dicarboxylate −0.317 77

12,13-dihome Lipid Fatty Acid/Dihydroxy 0.063 41
2-hydroxylaurate Lipid Fatty acid/monohydroxy 0.303 78

2-hydroxynervonate * Lipid Fatty acid/monohydroxy 0.174 56
Glycosyl ceramide (d38:1) * Lipid Hexosylceramides (HCER) 0.339 79

Glycosyl-N-stearoyl-sphingosine (d36:1) Lipid Hexosylceramides (HCER) 0.160 43
Lactosyl-N-behenoyl-sphingosine (d40:1) * Lipid Lactosylceramides (LCER) −0.230 84

Arachidate (20:0) Lipid Long chain fatty acid 0.127 48
Margarate (17:0) Lipid Long chain fatty acid 0.217 44

1-linoleoyl-GPG (18:2) * Lipid Lysophospholipid 0.091 41
1-arachidonylglycerol (20:4) Lipid Monoacylglycerol 0.108 58
1-linolenoylglycerol (18:3) Lipid Monoacylglycerol 0.182 84

1-oleoylglycerol (18:1) Lipid Monoacylglycerol 0.105 47
2-arachidonoylglycerol (20:4) Lipid Monoacylglycerol 0.083 56

1-myristoyl-2-arachidonoyl-GPC (34:4) * Lipid Phosphatidylcholine (PC) −0.122 42
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Table 3. Cont.

Metabolite Name 1 Pathway Sub-Pathway Average β 2 Count 3

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine (PC) 0.440 64
1,2-dipalmitoyl-GPC (16:0/16:0) Lipid Phosphatidylcholine (PC) 0.466 57

1-palmitoyl-2-arachidonoyl-GPI (36:4) * Lipid Phosphatidylinositol (PI) 0.199 66
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC

(P-36:4) * Lipid Plasmalogen 0.166 44

1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC
(P-32:1) * Lipid Plasmalogen −0.173 64

Adrenate (22:4n6) Lipid Polyunsaturated fatty acid (n3/n6) 0.117 52
Glycochenodeoxycholate Lipid Primary bile acid metabolism −0.035 41

Taurocholate Lipid Primary bile acid metabolism 0.057 54
Glycolithocholate sulfate * Lipid Secondary bile acid metabolism −0.044 45

Lithocholate sulfate (1) Lipid Secondary bile acid metabolism −0.037 42
Sphinganine-1-phosphate Lipid Sphingolipid synthesis −0.147 63
Sphingomyelin (d43:1) * Lipid Sphingomyelins −0.280 74
Sphingomyelin (d42:4) * Lipid Sphingomyelins 0.201 45

7-alpha-hydroxy-3-oxo-4-cholestenoate Lipid Sterol −0.082 42
Allantoin Nucleotide Purine metabolism: xanthine/inosine −0.376 80
Adenine Nucleotide Purine metabolism: adenine −0.147 42

Guanosine Nucleotide Purine metabolism: guanine −0.145 97
N2,N2-dimethylguanosine Nucleotide Purine Metabolism: guanine 0.279 46

Orotate Nucleotide Pyrimidine metabolism: orotate −0.238 73
Orotidine Nucleotide Pyrimidine metabolism: orotate 0.073 41

3-aminoisobutyrate Nucleotide Pyrimidine metabolism: thymine 0.059 46
5,6-dihydrothymine Nucleotide Pyrimidine metabolism: thymine 0.181 65

Leucylalanine Peptide Dipeptide 0.044 47
Gamma-glutamylcitrulline * Peptide Gamma-glutamyl amino acid −0.056 42
3-methoxycatechol sulfate (1) Xenobiotics Benzoate metabolism 0.082 81

3-phenylpropionate (hydrocinnamate) Xenobiotics Benzoate metabolism −0.057 61
4-ethylphenylsulfate Xenobiotics Benzoate metabolism 0.027 48
4-hydroxyhippurate Xenobiotics Benzoate metabolism 0.087 52

4-methylguaiacol sulfate Xenobiotics Benzoate metabolism 0.041 40
Methyl-4-hydroxybenzoate sulfate Xenobiotics Benzoate metabolism 0.046 75

2-naphthol sulfate Xenobiotics Chemical 0.029 45
3-hydroxypyridine sulfate Xenobiotics Chemical −0.042 45

Perfluorooctanoate (PFOA) * Xenobiotics Chemical −0.141 62
Sulfate * Xenobiotics Chemical 0.336 56

Hydroquinone sulfate Xenobiotics Drug–topical agents −0.185 92
2-isopropylmalate Xenobiotics Food component/plant −0.064 47

2-piperidinone Xenobiotics Food component/plant −0.040 52
2,3-dihydroxyisovalerate Xenobiotics Food component/plant −0.050 52
3,4-methyleneheptanoate Xenobiotics Food component/plant 0.059 50

Ergothioneine Xenobiotics Food component/plant −0.400 98
Erythritol Xenobiotics Food component/plant 0.110 51

Glucuronide of piperine metabolite * Xenobiotics Food Component/Plant −0.039 45
Pyrraline Xenobiotics Food component/plant −0.088 64

Thymol sulfate Xenobiotics Food component/plant −0.030 59
5-acetylamino-6-amino-3-methyluracil Xenobiotics Xanthine metabolism 0.097 90

1 This table only shows the metabolites that were identified. A total of 44 unknown metabolites are not shown.
2 Average β-coefficients were calculated as the average of all regression coefficients for each metabolite across
100 bootstrap samples. 3 Indicates the number of times the metabolite was selected (based on having a non-zero
coefficient) across 100 bootstrap samples. Metabolites shown here were selected in ≥40% of bootstrap samples.
* Indicates tier 2 identification in which no commercially available authentic standard can be found; however, it
was annotated based on accurate mass, spectral, and chromatographic similarity to tier 1-identified compounds.

2.4. Associations of SSB-Related Metabolites in Childhood with Triglycerides

In Table 4, we show the subset of SSB-associated metabolites (from step two, reported
in Table 3) that were also associated with fasting triglycerides (the primary cardiometabolic
outcome of interest from step one/Table 2) across childhood and adolescence in linear
mixed models adjusted for age, sex, and race/ethnicity. Of the 180 metabolites associated
with SSB intake in childhood, 13 metabolites were also associated with triglycerides across
childhood and adolescence in the same direction as their association with SSB intake in
childhood, based on a Bonferroni-adjusted p < 0.00028 (α = 0.05/180 metabolites; Table 4).
Among these 13 metabolites, 11 metabolites were lipid metabolites, while the remaining 2
were unknown metabolites (Table 4). The identified metabolites included four dicarboxy-
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lated fatty acids (chain lengths ranging 10 to 16), a lactosylceramide, and a plasmalogen,
which were inversely associated with triglycerides (Table 4). There were also several mono-
and diacylglycerols and phospholipids, which were positively associated with triglycerides
(Table 4). Scatter plots visualizing the relationship between these lipid metabolites in child-
hood and triglycerides across childhood and adolescence are shown in Figure S1. Table S2
summarizes the full results from this step, i.e., associations between all 180 SSB-associated
metabolites in childhood and triglycerides across childhood and adolescence, based on
linear mixed models.

Table 4. Prospective associations between the selected metabolites associated with sugar-sweetened
beverage intake in childhood and fasting triglycerides across childhood and adolescence.

Metabolite Name 1 Pathway Sub-Pathway β (95% CI) 2 p-Value 3

Palmitoyl-linoleoyl-glycerol (16:0/18:2) * Lipid Diacylglycerol 78.3 (66.3, 90.2) <1.00 × 10−7

Tetradecanedioate (C14-DC) Lipid Fatty Acid/Dicarboxylate −35.9 (−51.2, −20.5) 3.79 × 10−6

Hexadecenedioate (C16:1-DC) * Lipid Fatty Acid/Dicarboxylate −30.9 (−46.3, −15.6) 8.35 × 10−5

Hexadecanedioate (C16-DC) Lipid Fatty Acid/Dicarboxylate −40.0 (−56.7, −23.2) 8.47 × 10−6

Sebacate (C10-DC) Lipid Fatty Acid/Dicarboxylate −31.6 (−45.4, −17.8) 6.15 × 10−6

Lactosyl-N-behenoyl-sphingosine (d40:1) * Lipid Lactosylceramides (LCER) −39.6 (−55.4, −23.8) 1.23 × 10−6

1-linolenoylglycerol (18:3) Lipid Monoacylglycerol 46.6 (35.6, 57.6) <1.00 × 10−7

1-oleoylglycerol (18:1) Lipid Monoacylglycerol 88.3 (73.9, 102.7) <1.00 × 10−7

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine (PC) 76.1 (47.7, 104.5) 2.26 × 10−7

1-palmitoyl-2-arachidonoyl-GPI (36:4) * Lipid Phosphatidylinositol (PI) 71.6 (56.6, 86.6) <1.00 × 10−7

1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC
(P-32:1) * Lipid Plasmalogen −69.3 (−92.8, −45.7) <1.00 × 10−7

1 This table only shows the 11 metabolites that were identified. A total of 2 unknown metabolites are not shown.
2 Estimates based on linear mixed-effects models adjusted for participant age across visits, sex, and race/ethnicity
(Hispanic, non-Hispanic white, non-Hispanic black, or non-Hispanic other). All models included a participant-
specific random intercept. 3 Displaying raw p-values from linear mixed effects models. Only metabolites with a
p-value less than the Bonferroni-corrected p < 0.000278 (0.05/180 metabolite tests or 2.78 × 10−4) and with an
estimate in the same direction as with SSB intake in childhood are shown. * Indicates tier 2 identification in which
no commercially available authentic standard can be found; however, it was annotated based on accurate mass,
spectral, and chromatographic similarity to tier 1 identified compounds.

2.5. Sensitivity Analyses

In sensitivity analyses, we observed similar findings when we additionally adjusted
each step for pubertal stage, which may be a mediator of the relationship between SSB
intake and the cardiometabolic outcomes. Specifically, in step one, the association between
SSB intake in childhood and triglycerides across childhood and adolescence was similar in
magnitude and direction (β (95% CI): 7.4 (−1.5, 16.4) mg/dL for the highest versus lowest
quartile of SSB intake; p-trend = 0.075). In step two, the LASSO regression selected a similar
set of metabolites that were associated with SSB intake in childhood (170 metabolites were
selected in ≥40% bootstrap samples, among which 153 (90%) were also selected in LASSO
regression before adjusting for pubertal stage). In step three, the subset of SSB-associated
metabolites from step two that were also associated with triglycerides across childhood
and adolescence consisted of 11 of the 13 metabolites selected in the primary analysis
above without adjusting for pubertal stage (two of the dicarboxylated fatty acids were not
selected), which are summarized in Table S3.

3. Discussion

In this longitudinal cohort of diverse youth, we integrated data on diet, untargeted
metabolomics, and conventional cardiometabolic risk factors using a “meet in the middle”
approach to identify plasma metabolite alterations that link SSB intake in childhood with
cardiometabolic risk across childhood adolescence. First, we found that energy-adjusted
SSB intake was associated with higher fasting triglycerides across childhood and adoles-
cence in this sample, but no other cardiometabolic risk factors (glucose, insulin, HOMA-IR,
HDL cholesterol, or systolic blood pressure). Subsequently, we used robust selection criteria
to identify 13 plasma metabolites that were associated both with SSB intake in childhood
and with triglycerides across childhood and adolescence with the same directionality. All
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the metabolites that could be identified (11 of 13) were lipid-related metabolites, partic-
ularly dicarboxylated fatty acids, mono- and diacylglycerols, and phospholipids. This
pattern of metabolite alterations may, therefore, reflect disruptions in lipid metabolism that
causally link higher SSB intake in childhood with dyslipidemia risk, which will need to be
investigated in future studies.

In the first step of the analysis, we found that childhood SSB intake was associated with
higher triglycerides across childhood and adolescence, consistent with the literature [21].
This effect may be due to unregulated hepatic fructose metabolism [22], which can lead
to hepatic substrate overload and increased hepatic de novo lipogenesis [23,24]. Fructose
intake may also alter hepatic lipid metabolism by stimulating lipogenic gene expression
via the activation of several transcriptional activator families, including carbohydrate-
responsive element-binding protein (ChREBP), sterol regulatory element-binding protein
(SREBP), and peroxisome proliferator-activated receptor (PPAR) [23,24], as well as indi-
rectly by inhibiting fat oxidation [25]. Over time, these metabolic alterations contribute to
intrahepatic lipid accumulation, which can promote a compensatory increase in the pro-
duction and secretion of very-low-density lipoproteins (VLDLs), leading to higher plasma
triglycerides, as we observed in this study. It was unexpected that we did not find signif-
icant associations of SSB intake in childhood with any of the other cardiometabolic risk
factors. However, this aligns with the findings from a few other studies of relatively healthy
populations, which also found a preferential association of SSB intake with lipids, but not
with other markers of glucose-insulin homeostasis [26]. It is possible that disruptions in
fasting triglycerides are a ‘first step’ in the metabolic milieu associated with SSB intake and
that more prolonged exposure is needed to observe other associations, particularly among
otherwise healthy youth.

After evaluating prospective associations between SSB intake and cardiometabolic
outcomes, we identified the 180 plasma metabolites that were most strongly associated
with SSB intake at the childhood visit using LASSO regression. LASSO is a data-driven,
multivariate analytical technique that is ideally suited for dimension reduction and feature
selection. These 180 metabolites were primarily related to lipid, amino acid, and xenobiotic
metabolism pathways. In comparing the findings of the present study with published
literature, we noted that one metabolite selected by LASSO, taurine, was one of the four
urinary metabolites identified as a biomarker of SSB intake in a study of adults in Ireland
by Gibbons et al. [18]. This consistent association may be because taurine is often an
added ingredient (along with caffeine) in sugar-sweetened energy drinks, although, it
is worth noting that circulating taurine may also be influenced by other food sources,
such as meat and seafood, as well as endogenous taurine biosynthesis via methionine and
cysteine metabolism [27]. The other three metabolites on the panel selected by Gibbons et al.
(formate, isocitrate, and citrulline) were not selected by LASSO regression in this study,
which may be due to differences in the biospecimen analyzed (i.e., urine versus blood) or
the age range of the participants (i.e., adults versus children). We also note that none of
the metabolites associated with SSB intake in this study overlapped with the metabolites
associated with SSB intake in a similar analysis by Perng et al. based on the ELEMENT
Project in Mexico City [20]. This may be due to differences in the geography of each cohort
(including the composition and overall intake patterns of SSBs in the U.S. versus Mexico),
as well as the untargeted metabolomics platforms employed (Metabolon in EPOCH vs.
University of Michigan’s Metabolomics Research Core in ELEMENT) and the nuances of
the analytical strategies used in each study. Collectively, this highlights the challenges in
identifying dietary biomarkers that are consistent across different populations.

In the final step of our analysis, we filtered the 180 metabolites associated with SSB
intake in childhood to 13 metabolites that were also associated with triglycerides across
childhood and adolescence, which was the primary cardiometabolic outcome of interest.
Except for two unknowns, all of these metabolites were identified as lipids. Specifically,
four metabolites were dicarboxylated fatty acids, which are fatty acids with two carboxyl
groups that can be generated from ω-oxidation or plant/vegetable intake [28] and have
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been shown to be markedly lower in children with obesity versus controls [29]. In this
study, we also found inverse associations of dicarboxylated fatty acids with SSB intake
and triglycerides, potentially reflecting disruptions in fatty acid catabolism/oxidation—a
plausible metabolic disturbance that could be mediated by fructose-induced alterations in
PPAR–alpha activity [30] and, in turn, contribute to elevated triglycerides. Other identified
metabolites were two monoacylglycerols and one diacylglycerol, which were positively as-
sociated with SSB intake and triglycerides. This finding corroborates other studies showing
that the accumulation of these lipid intermediates is associated with poorer cardiometabolic
health [31,32], possibly via disruptions in insulin signaling and mitochondrial dysfunc-
tion [33,34], and, further, that their plasma levels were responsive to a healthy dietary
pattern (Mediterranean diet) intervention [31].

Other lipid metabolites identified in this final step of our analysis included three
glycerophospholipids and one lactosylceramide, a type of sphingolipid. Phospholipid
alterations assessed by metabolomics or lipidomics have been consistently associated
with cardiometabolic diseases, including diabetes/prediabetes and cardiovascular dis-
ease [35,36]. One of the phospholipids identified was 1-stearoyl-2-oleoyl-GPC (18:0/18:1),
a common phosphatidylcholine (PC) found in animal membranes that was positively asso-
ciated with SSBs and triglycerides in this study. This aligns with findings from a dietary
intervention in adults showing that the same PC was directly associated with changes
in triglycerides following an 8-week low-calorie diet [37]. The potential mechanisms un-
derlying these associations warrant further investigation but may reflect the close link
between hepatic phospholipid metabolism and triglyceride packaging and secretion from
the liver [38].

A limitation was our reliance on a self-reported dietary assessment to quantify SSB
intake, which can be prone to several biases (recall bias, social desirability bias, etc.), es-
pecially in children/adolescents with obesity [39]. However, because we assessed the
relationship between dietary intake and the cardiometabolic outcomes prospectively, it is
less likely that any reporting bias was differential with respect to the outcome. Moreover,
we adjusted SSB intake for total energy intake for analyses, which may mitigate measure-
ment error and improve the precision of estimates [40]. The metabolomics assay used was
semi-quantitative in nature; thus, additional, targeted assays would be needed to assess
absolute concentrations for metabolites. In addition, the sample was from one geographic
region (Colorado, USA), which may limit the generalizability of our findings. Strengths of
this study include the longitudinal study design, which allowed us to assess prospective
associations between SSB intake and metabolome alterations in childhood with repeated
measures of cardiometabolic risk, and the use of a comprehensive untargeted metabolomics
profiling technique combined with a multivariate method (LASSO regression) with proven
utility to protect against false positive findings for variable selection/dimension reduc-
tion. Additionally, the extensive laboratory, metabolic, anthropometric, and behavioral
assessments performed on the EPOCH cohort allowed us to adjust for various potential
confounding factors, and the relatively large sample size (~600 participants), especially
compared to other metabolomics datasets in youth cohorts, provided statistical power to
assess potential effect modification by sex.

Conclusions

In a longitudinal, multiethnic cohort of children based in Colorado, we identified
13 metabolites, 11 of which were involved in lipid metabolic pathways, that link the
prospective relationship between SSB intake in childhood with fasting triglyceride levels
across childhood and adolescence. These intermediary lipid metabolites may not only rep-
resent potential biomarkers of higher SSB intake in youth but also may reflect underlying
metabolic disruptions that are causally involved in the adverse effects of SSB intake on
plasma triglycerides, supporting their prioritization in future investigations. Specifically,
in addition to other prospective studies validating the utility of these metabolites as SSB
biomarkers, experimental studies are needed to further understand the potential mech-



Metabolites 2022, 12, 559 10 of 16

anisms underlying this interplay between SSB intake, lipid metabolite disruptions, and
dyslipidemia in youth. This study also adds to the growing body of literature supporting
a link between SSB intake and cardiometabolic abnormalities in youth, which supports
the importance of more research aiming to identify and target factors that may influence
childhood SSB intake, such as parental/family-, school/community-, or policy-related
factors [41–43].

4. Materials and Methods
4.1. Study Population

This study included participants from the EPOCH study, a longitudinal, multiethnic
cohort of youth in Colorado. The original aim was to examine the health effects on offspring
of in utero exposure to maternal gestational diabetes mellitus (GDM) [44]. Participants were
the offspring of mothers who were members of the Kaiser Permanente of Colorado (KPCO)
health plan. We enrolled children who were exposed to maternal diabetes in utero (n = 99)
and a random sample of children who were not exposed to maternal diabetes (n = 505). The
first research visit occurred from 2006 to 2009, when offspring were 6–14 years old (median
10.6 years; “visit 1”). Among these participants, 413 returned for a second visit from 2012 to
2015 when offspring were 12–19 years old (median 16.8 years; “visit 2”). Mothers provided
written informed consent and children participants provided written assent. This study
was approved by the Colorado Multiple Institutional Review Board (Protocol no. 05-0623).

For this analysis, we excluded two participants who were missing dietary data at visit 1
and five participants with insufficient blood volume for metabolomics analysis at visit 1,
resulting in an analytical sample of 597 participants. In analyses examining the prospective
associations with cardiometabolic risk factors across childhood and adolescence, we also
excluded the following participants who were missing data both at visit 1 and visit 2 for the
following measures (i.e., no data at either visit for the outcome of interest): n = 1 missing
glucose at both visits; n = 3 missing insulin and HOMA-IR at both visits; n = 5 missing HDL
cholesterol at both visits; n = 1 missing triglycerides at both visits. Participant selection is
summarized in Figure 2.
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4.2. Dietary Assessment

Dietary intake was assessed at both visits using a modified version of the Block Kids
Food Frequency Questionnaire [45], a semi-quantitative food frequency questionnaire that
has been validated in children as young as 8 years old [46,47]. The questionnaire queried
whether the participant consumed each food/beverage item in the past week and, if so,
how many days per week (ranging from ‘one day’ to ‘every day’) and the usual amount
eaten per day. The full questionnaire may be available upon reasonable request. Completed
questionnaires were then analyzed to estimate individual intakes of total energy, nutrients,
and food groups per day. For each participant, SSB intake in childhood was assessed by
summing the servings per day from the following: sodas, fruit drinks (i.e., Sunny Delight,
Hawaiian Punch, etc.), sports drinks (i.e., Gatorade), and sweetened tea or coffee. We used
the residual method to adjust SSB intake for total energy intake per day [48]. Participants
were then grouped based on their quartile of energy-adjusted SSB intake for later analyses.

4.3. Untargeted Metabolomics Profiling of Plasma

Fasting blood samples were collected from all participants at both visits by trained
phlebotomists. All samples were refrigerated immediately, processed within 24 h, and
stored at −80 ◦C until the time of analysis. As previously described [49,50], untargeted
metabolomics profiling was performed on stored fasting plasma samples by Metabolon
using a multiplatform mass spectroscopy-based technique, which identified 1193 unique
features at both time points. Prior to formal statistical analysis, we removed metabolites
with ≥20% missing values per batch. The remaining missing values were imputed using
the K-nearest neighbor algorithm (with K = 10) [51]. The samples were analyzed in two
batches: the first batch of participants had 913 metabolites after removing those with high
missingness, and the second batch had 898 metabolites. We then merged the two batches for
subsequent data processing and retained 767 metabolites that were present in both batches.
The retained metabolites then underwent log10-transformation, followed by metabolite
normalization and correction for batch effects (as well as other biological and technical
variability) using the remove unwanted variation method (with K = 2 factors of unwanted
variation estimated from the data) [52]. All the above preprocessing steps were performed
using R Statistical Software (version 3.5.3) [53].

4.4. Cardiometabolic Risk Assessments

We used fasting blood samples from both visits to assess the following markers of
cardiometabolic risk across childhood and adolescence. Fasting glucose was assessed
enzymatically, and fasting insulin was assessed by using radioimmunoassay (Millipore,
Darmstadt, Germany). Fasting glucose and insulin were then used to estimate insulin
resistance using the homeostatic model of assessment (HOMA-IR) [54] Fasting blood
lipids, including HDL cholesterol and triglycerides, were assayed on the Olympus AU400
advanced chemistry analyzer system. At both visits in childhood and adolescence, partici-
pants’ blood pressure was also measured twice in the sitting position using an oscillometric
monitor (Dinamap ProCare V100). For this analysis, we used the average of the two values
and focused on systolic blood pressure only.

4.5. Other Covariate Assessments

Exposure to maternal GDM during pregnancy was ascertained from the KPCO peri-
natal database and defined as a physician’s diagnosis of gestational diabetes based on
routine screening at 24–28 weeks of gestation using the standard two-step protocol [55].
Child race/ethnicity was self-reported at visit 1 as being non-Hispanic white, non-Hispanic
black, Hispanic, or non-Hispanic other. The child’s height (kg) and weight (cm) were
assessed at both visits by trained research staff while wearing light clothing and without
shoes. These measurements were used to calculate age- and sex-specific body mass index
(BMI) z-scores using the WHO growth reference for children aged 5–19 years [56]. At both
visits, participants reported their pubertal development based on pictorial diagrams of the
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Tanner stages, which had been validated against physician-assessed Tanner staging and
puberty-related hormones [57], and which bases pubertal stage on pubic hair development
in boys and breast development in girls. Participants were then categorized as pre-pubertal
(Tanner = 1), pubertal (Tanner = 2 or 3), and late/post-pubertal (Tanner = 4 or 5).

4.6. Statistical Analyses

We first examined bivariate associations between energy-adjusted SSB intake quartiles
in childhood and the background characteristics of the sample in childhood. For categorical
variables, we reported counts and frequencies for each sub-category according to SSB intake
quartile and tested differences across quartiles using Chi-squared tests. For continuous
variables, we reported means and standard deviations according to SSB quartile and tested
for differences across SSB quartiles using a one-way analysis of variance (ANOVA).

Next, a “meet in the middle” approach was employed to identify the plasma metabo-
lites that may mark the relationship between SSB intake and cardiometabolic risk. In
the first step, we examined the associations of SSB quartiles in childhood (visit 1) with
repeated measures of cardiometabolic risk (fasting glucose, fasting insulin, HOMA-IR,
HDL cholesterol, fasting triglycerides, and systolic blood pressure) across childhood and
adolescence (visit 1 and visit 2) using mixed-effects models adjusted for child age, sex, and
race/ethnicity. Models included a random intercept for each participant ID to account
for intra-individual correlations in cardiometabolic measures across visits and an unstruc-
tured covariance matrix. We assessed effect modification by sex using product interaction
terms, but none reached significance (all p > 0.10); therefore, all analyses were conducted
on the entire sample. Results are reported as regression coefficients and 95% confidence
intervals (CIs) for the 2nd, 3rd, and 4th quartiles of SSB intake when compared to the 1st
quartile (the reference). We also tested for a linear trend across quartiles using a continuous
variable based on the median value for each SSB quartile. For this step, we considered
cardiometabolic risk factors for further exploration in downstream analyses if p < 0.10 for a
linear trend across SSB quartiles.

In the second step, we identified plasma metabolites that were cross-sectionally asso-
ciated with SSB intake in childhood (visit 1) by employing LASSO regression [58], using
the glmnet package in R [53]. Briefly, LASSO is a regularized regression technique de-
signed to select the strongest variables associated with an outcome of interest from a
high-dimensional and correlated set of predictors. This is done by imposing a tuning
parameter on the model that shrinks the regression coefficients for weaker variables to
zero during feature selection, thereby removing weak but statistically significant associ-
ations that may represent false positive findings. Ten-fold cross validation was used to
determine the tuning parameter that achieved the minimum mean error. To perform more
stabilizing of variable selection, instead of running once, LASSO regression was carried out
with 100 bootstrap samples with log-transformed SSB intake in childhood as the depen-
dent variable and with adjustments for child age, sex, and race/ethnicity, as unpenalized
variables. Metabolites were considered for downstream analyses if they were selected
by LASSO (i.e., non-zero coefficient) in ≥40% of bootstrap samples. This threshold was
determined by firstly calculating the number of metabolites selected, on average, across
the 100 bootstrap iterations (202 metabolites selected on average). We then calculated the
number of metabolites selected per 5-unit threshold increment and chose a threshold that
selected a number of metabolites closest to the average from bootstrapping (180 metabolites
were selected with a threshold of ≥40%).

In the third step, we investigated whether SSB-associated metabolites in childhood
(selected from step 2) were also associated with SSB-associated cardiometabolic risk factors
across childhood and adolescence (selected from step 1) using a second set of linear mixed-
effects models with each metabolite as the independent variable and the repeated measures
of each cardiometabolic measure across childhood and adolescence used as the dependent
variable. Models were again adjusted for age, sex, and race/ethnicity, and included a
random intercept for each participant’s ID and an unstructured covariance matrix. Results
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are reported as regression coefficients and 95% CIs for the effect of a 1 unit increase in each
metabolite on cardiometabolic measures. Metabolites were selected as being intermediary
biomarkers if the regression coefficient’s p-value was below a Bonferroni-adjusted threshold
(α = 0.05/number of metabolites tested) and if the direction of the association with the
cardiometabolic measure was the same as with the SSB intake. We also performed a
sensitivity analysis where we additionally adjusted each step of the analysis for pubertal
stage (pre-pubertal, pubertal, or late-pubertal), which can also affect cardiometabolic status
during childhood [59]. Unless otherwise stated, statistical analyses were performed using
SAS Statistical Software (version 9.4; Cary, NC, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060559/s1, Figure S1: Associations between plasma
metabolites in childhood (selected from Table 4) with triglycerides across childhood and adolescence,
Table S1: Means and standard deviations for the cardiometabolic measures of interest at each visit in
childhood and adolescence, Table S2: Prospective associations between all 180 metabolites associated
with sugar sweetened beverage intake in childhood (from step 2) and fasting triglycerides across
childhood and adolescence, Table S3: Sensitivity Analysis—Prospective associations between select
metabolites associated with sugar sweetened beverage intake in childhood and triglycerides across
childhood and adolescence with additional adjustment for pubertal stage.
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