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The representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding

gene regulatory networks and interpreting the impact of disease-associated noncoding genetic variants. We present a novel

TF binding motif representation, the k-mer set memory (KSM), which consists of a set of aligned k-mers that are overrep-

resented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more

accurately predict in vivo binding sites than position weight matrix (PWM) models and other more complex motif models

across a large set of ChIP-seq experiments. Furthermore, KSMs outperform PWMs and more complex motif models in pre-

dicting in vitro binding sites. KMAC also identifies correct motifs in more experiments than five state-of-the-art motif dis-

covery methods. In addition, KSM-derived features outperform both PWM and deep learning model derived sequence

features in predicting differential regulatory activities of expression quantitative trait loci (eQTL) alleles. Finally, we

have applied KMAC to 1600 ENCODE TF ChIP-seq data sets and created a public resource of KSM and PWM motifs.

We expect that the KSM representation and KMAC method will be valuable in characterizing TF binding specificities

and in interpreting the effects of noncoding genetic variations.

[Supplemental material is available for this article.]

The binding of transcription factors (TFs) to specific short DNA se-
quences enables the precise control of gene expression in space
and time. ATF bindingmotif is a short DNA sequence or sequences
that a TF recognizes. We define the motif discovery task to be the
identification of DNA sequences that are directly recognized by a
TF and thus are located at the site of bindingwhere theymechanis-
tically interactwith a TF. Thus, our definition of a TF bindingmotif
excludes cofactor motifs and other sequence features that are not
immediately proximal to the site of TF binding.

Motifs are often used to identify preferential genome binding
locations for a TF. Computational identification of TF binding sites
are essential in deciphering gene regulatory networks (Spellman
et al. 1998; Lee et al. 2002; Kim and Park 2011). In addition, certain
genetic variants associated with human diseases and phenotypic
traits alter regulatory DNA sequences that are recognized by
TFs (Maurano et al. 2012). Therefore, accurate TF binding motifs
are critical to characterize TF binding differences between alleles
and to identify the upstream regulators of noncoding variants
(Claussnitzer et al. 2015). The advent of high-throughput technol-
ogies, such as ChIP-seq (Johnson et al. 2007) and protein binding
microarrays (PBMs) (Berger et al. 2006), have made a large amount
of data available for the computation of in vivo and in vitro TF
binding specificities. Computational methods for TF motif dis-
covery remains an active and important area of investigation
(Zambelli et al. 2013) and continues to inspire research into new
approaches (Tompa et al. 2005; Weirauch et al. 2013).

Currently, there is no single standard for TF binding motif
representation (Hughes 2011). The most widely used motif model

is the position weight matrix (PWM) (Stormo 2000). However, the
PWMmodel assumes that each base position contributes indepen-
dently to binding probability and thus is unable to represent inter-
base dependencies. Although PWM models provide a good ap-
proximation of protein–DNA interactions for many TFs (Benos
et al. 2002; Zhao and Stormo 2011), dependencies between nucle-
otides at different positions in TF binding sites have been observed
(Man and Stormo2001; Bulyk et al. 2002; Berger et al. 2006;Maerkl
and Quake 2007). In addition, a PWM is a highly compact and
lossy representation. Therefore, in practice, PWMs fail to capture
the full complexity of TF binding specificities in high-throughput
data. Historically, PWMs have been derived using different ap-
proaches (Stormo 2013). In this work, we use the commonly
used position frequencymatrix (PFM), which assigns a probability
for each base occurring at each position within the binding site.

K-mer-based motif representations, which capture the exact
TF-bound sequences and thus preserve positional dependencies
if they exist, have been explored as alternatives to the PWM repre-
sentation. Early work used individual overrepresented k-mers to
represent and discover TF binding motifs (van Helden et al.
1998; Tompa 1999). MotifCut connects k-mers into a graph and
represents a motif as the maximum density subgraph, which is a
set of k-mers that exhibit a large number of pairwise similarities
(Fratkin et al. 2006). Recently, bags of k-mers (Ghandi et al.
2014) or clusters of k-mers (Setty and Leslie 2015) were used with
binary classifiers for discriminating bound versus unbound se-
quences. However, the k-mer-based representations of gkm-SVM
(Ghandi et al. 2014) and SeqGL (Setty and Leslie 2015) represent
not only the DNA binding of a particular TF, but also other aspects
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such as chromatin accessibility and cobinding factor motifs. Thus,
gkm-SVM and SeqGL fall outside of our definition of TF motif
discovery. In addition, in these recent approaches, overlapping
k-mers were implicitly assumed to be independent and were com-
bined additively to score sequences. This independent k-mer as-
sumption does not reflect the nonadditive contributions of
overlapping k-mers at a given site for binding, leading to an inac-
curate representation of motifs.

More complex models accounting for positional dependen-
cies have also been proposed, but they are rarely used in practice
because they are computationally intensive and require more
data to properly estimate the model’s parameters and may overfit
if data are limited (MacIsaac and Fraenkel 2006; Zambelli et al.
2013). For example, The TF flexible model (TFFM) uses a hidden
Markov model–based framework to capture interdependencies of
successive nucleotides and flexible length of the motif (Mathelier
and Wasserman 2013). The sparse local inhomogeneous mixture
(Slim) uses a soft feature selection approach to optimize the
dependency structure and model parameters (Keilwagen and
Grau 2015). Recently, deep neural network (deep learning) based
approaches havebeen applied to predict TF bindingwith improved
accuracy (Alipanahiet al. 2015; ZhouandTroyanskaya2015).How-
ever, the distributed representation of
deep learning models is more difficult to
interpret mechanistically.

In addition, recent studies showed
that proximal sequences flanking TFmo-
tifs may strongly affect the DNA shape
and hence TF binding (Gordân et al.
2013; Levo and Segal 2014). Therefore,
a motif model that preserves the base po-
sitional dependencies in the motif and
includes proximal flanking bases may
be more accurate than the PWM model
and current k-mer based models.

In this paper, we present a novel
motif representation that preserves
the inter-position dependencies and in-
cludes the flanking k-mers, called k-mer
set memory (KSM), and a de novo motif
discovery method, k-mer alignment and
clustering (KMAC). We compared KSM
models with the PWM and more sophis-
ticated motif models in predicting in
vivo and in vitro TF binding sites. In ad-
dition, we evaluated the application of
KSM motifs and other sequence features
in predicting differential regulatory ac-
tivities of expression quantitative trait
loci (eQTL) alleles. Together, these results
demonstrate that the KSM is amore accu-
rate motif representation than the PWM
and other representations for modeling
TF binding and characterizing noncod-
ing genetic variants.

Results

The KSM motif representation

ATF’sk-mersetmemory(KSM)motif isthe
set of overrepresented k-mers (gapped

and ungappedwords of length k) that are contained in the binding
sites for the TF and have consistent offsets relative to the center of
the binding sites (Fig. 1A). The individual k-mers in a KSM are
called component k-mers. A typical KSMmay contain several hun-
dred to several thousand component k-mers. The number of com-
ponent k-mers in a KSM increases as the number of training
sequences increases (Supplemental Table S1). The accuracy of the
KSM first increases and then plateaus or drops as more training se-
quences are used, likely because of the saturation of overlapping
k-mer information or the noise contained in weak binding sites
(Supplemental Table S2).

Each component k-mer is annotated with a center offset and
its presence/absence in each positive and negative training se-
quence. Unlike a PWM that assumes positional independence,
KSM component k-mers are exactly matched to a query sequence
being searched for a motif (Fig. 1B). By requiring exact k-mer
matches, a KSM preserves dependencies among positions in the
observed sequences. Long specific sequences are modeled as a
group of component k-mers that overlap with each other (Fig. 1B).

Each component k-mer is required to be overrepresented in
the TF-bound sequences (positive sequences) relative to the un-
bound sequences (negative sequences). We define the sequence

A
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Figure 1. The KSMmotif representation. (A) A KSM consists of a set of similar and consistently aligned
component k-mers. The k-mers are extracted from a set of sequences aligned at the binding sites. Each
k-mer has an offset that represents its relative position in the sequence alignment and is associated with
the IDs of the positive/negative training sequences that contain the k-mer (IDs are not shown, total
counts are shown). The base C, highlighted in yellow, represents the expected binding position.
(B) An example of matching KSMmotifs in a query sequence. (C) Color chart representation of 2183 se-
quences bound by POU5F1 that match the POU5F1 KSM motif. Each row represents a 23-bp sequence.
Rows are sorted by the KSMmotif matches. Green, blue, yellow, and red indicate A, C, G, and T, respec-
tively. A POU5F1 PWMmotif is shown above the sequences. (D) The KSMmotif sequence logo of POU5F1
(corresponding to the aligned sequences in C) and the PWM logos of SOX2 and POU5F1.
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hit count of a k-mer as the number of sequences containing the
k-mer in the training sequence set, which is similar to the zero-or-
one-per-sequence mode of MEME (Bailey and Elkan 1994). The
overrepresentation of a component k-mer is evaluated by comput-
ing a hypergeometric P-value (HGP) (Barash et al. 2001) as follows:

HGP =
∑min(N+,n)

l=n+

N+
l

( )
N −N+
n− l

( )

N
n

( ) ,

where N is the total number of positive and negative training se-
quences; N+ is the number of positive training sequences; n is
the number of positive and negative training sequences contain-
ing the k-mer (positive and negative hit count); and n+ is the num-
ber of positive training sequences containing the k-mer (positive
hit count). In this work, the component k-mers are required to
have a HGP less than 1 × 10−5.

The offset of a component k-mer is defined as the offset of the
first base of the k-mer relative to the expected binding center posi-
tion, which is estimated during themotif discovery process (see be-
low). For the POU5F1 example (Fig. 1A), the expected binding
position is the middle position of the binding site, i.e., base
C.When searching for a KSMmotif in a query sequence (discussed
subsequently), the offsets of the matched component k-mers can
be used to align and group the k-mers that share the same expected
binding positions into KSM motif instances called k-mer groups
(Fig. 1B).

A KSM’s representation of a large set of overlapping k-mers al-
lows a KSM to capture the full complexity of TF binding specifici-
ties as well as the effect of the flanking bases, leading to a richer
representation than the PWM and other consensus sequence rep-
resentations (Stormo and Zhao 2010). For example, the POU5F1
(also known as OCT4) bound sequences in mouse embryonic
stem cells also contains a SOX2 motif, which was shown to have
a strict spacing with POU5F1 motif (Chew et al. 2005; Guo et al.
2012). The PWMmotif learned from these sequences does not cap-
ture the existence of the SOX2motif, because the SOX2motif only
exists in a small subset of the sequences (Fig. 1C). In contrast, the
POU5F1 KSM motif was able to capture the SOX2 motif through
component k-mers, such as TTTNTCATG and TTTGTCAT, that
overlap with both POU5F1 and SOX2 motifs. To elucidate the in-
tricacies of the TF binding specificities, we graphically represent
each KSM motif with a KSM sequence logo, which displays the
high-scoring nonoverlapping component k-mers and their se-
quence contexts as a stack of PWM sequence logos (Methods).
From the KSM sequence logo of POU5F1, the existence of SOX2
motif can be easily observed (Fig. 1D).

KSM motif matching and scoring

To search for KSMmotif instances in a query sequence, all compo-
nent k-mers of the KSM motif are simultaneously searched using
the Aho-Corasick algorithm for efficient multipattern search
(Aho and Corasick 1975).

The k-mermatches in a query sequence are grouped into KSM
motif instances based on their expected binding locations (Fig.
1B), which are computed using the matched position of a k-mer
and the offset of the k-mer specified in the KSMmodel. We define
a k-mer group (i.e., KSM motif instance) as the subset of compo-
nent k-mers in the KSM model that occur in the query sequence
and that are mapped to a same expected binding position on the
sequence.

The hit count for a k-mer group cannot be obtained by simply
summing the hit count of all the matching component k-mers,
because the component k-mers are overlapping and a simple or
weighted summation will not give an accurate count that recapit-
ulates the information in the training data. Therefore, we intro-
duce the formulation of k-mer group hit count, which is defined
as the number of all the training sequences that contain at least
one of thematched k-mers in the k-mer group. A bit string is stored
with each k-mer to represent its presence/absence in all the train-
ing sequences. The k-mer group hit count can then be computed
efficiently by a union operation on the bit strings of all the
matched k-mers (Supplemental Fig. S1). In this formulation, over-
lapping k-mers are not combined additively as in previous ap-
proaches (Ghandi et al. 2014; Setty and Leslie 2015), but in a
nonadditivemanner thatmore accurately recapitulates the contri-
bution of these k-mers as a whole. Unlike the PWMmotif instanc-
es, the KSM motif instances of the same motif may have different
lengths because the length depends on the matched component
k-mers and their relative positions.

The KSM score of a k-mer group is then defined as the odds ra-
tio, which is a measure of association (Cornfield 1951; Edwards
1963) as follows:

Odds ratio = n+/(N+ − n+)
n−/(N− − n−) ,

where N+ and N− are the total numbers of positive and negative
training sequences, respectively; n+ and n− are the k-mer group
positive and negative hit counts, respectively. To avoid divided-
by-zero error, a small pseudocount is added to the counts. If no
component k-mer is matched in the query sequence, the KSM
score of the sequence is 0.

KMAC motif discovery

The k-mer alignment and clustering (KMAC) method discovers
both KSM and PWMmotifs from a given set of positive (motif en-
riched) and negative sequences (motif depleted). If not provided, a
negative sequence set is generated by randomly shuffling the pos-
itive sequences while preserving the dinucleotide frequencies.
KMAC can efficiently analyze the top 10,000 sequences from an
assay and thus can learn weak signals. KMAC applies to sequences
from in vivo TF ChIP-seq/ChIP-chip data or sequences of predicted
elements fromepigenomic data. For data sets that have aweight as-
sociated with each sequence, such as the read count of a ChIP-seq
binding event, KMAC by default weights the positive sequences
with a factor of the natural logarithm of the input sequenceweight
and then normalizes the weights such that the average is equal to
one. To obtain the sequence hit count for k-mers and k-mer
groups, the total weights of the sequence hits are summed and
rounded. Other weighting schemes such as identity, square-root,
or no-weighting can be specified by the users.

KMAC learns a KSM by aligning the positive sequences
and computing the consistently aligned overrepresented k-mers.
KMAC uses values of k from 5 to 13 unless otherwise directed.
For each value of k, KMACdiscovers bothKSMand the correspond-
ing PWM motifs as described below. All the motifs are then com-
pared with each other, and similar motifs are merged. Thus, the
final list of motifs may consist of KSMs with different values of k,
allowing KMAC to capture motifs with different lengths. KMAC
motif discovery consists of four steps (Fig. 2A):

Step 1: KMAC selects a set of enriched k-mers and clusters them.
K-mers with k exact bases and from 0 to g gapped bases are
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considered. Themaximumnumber of gaps g, which can be spec-
ified by the users, is four for all the experiments in this study.
The number of positive and negative sequences that contain in-
stances of each possible k-mer are counted, treating each k-mer
and its reverse complement as one single k-mer. A HGP is com-
puted to evaluate the significance of enrichment for each k-mer.
KMAC then clusters the enriched k-mers using a density-based
clustering method (Rodriguez and Laio 2014). Levenshtein dis-
tance (Levenshtein 1966) is used to quantify the distance
between two k-mers. KMAC then takes each of the top ranked
k-mer cluster centers as the seed k-mers for Step 2.With the den-
sity-based clustering approach, a k-mer may belong to different
k-mer clusters and thus contribute to different motifs, allowing
KMAC to unbiasedly discovermultiplemotifs. This is in contrast
to the typical mask-and-discover approach used by existing
methods such as MEME (Bailey and Elkan 1994) and HOMER
(Heinz et al. 2010), which is biased in that the subsequently dis-
covered motifs have a smaller sequence space.

Step 2: Each cluster center k-mer is used as a seed k-mer. This seed
k-mer and similar k-mers with a one-base mismatch are used to
initialize the KSM, which is then used to match and align the
positive training sequences.

Step 3: With the alignment of the positive sequences, a new KSM
and its corresponding PWM motif are generated from a 2 × k
window around the middle of the seed k-mer. To compute the
offsets of the component k-mers, a reference position in
the alignment, the expected binding position, is estimated as
the median of the center positions of the aligned sequences.

Step 4: The KSM and PWM motifs are used to match and align
the positive sequences. The KSM motif is first used to match
and align the positive sequences and then the PWM motif is
used to match and align the remaining sequences. This allows
KMAC to includemore k-mers, especially at the initial iterations
when the KSM consists of only a few component k-mers. If mul-
tiple motif matches are found in a sequence, thematch with the
highest score is used.

Steps 3 and 4 are repeated alternately until the significance of
the motifs stops to improve. The significance of a motif is evaluat-
ed as the sum of partial area under receiver operating characteristic
(pAUROC) (up to a false positive rate of 0.1, FPR≤ 0.1) scores
(McClish 1989; Ma et al. 2013) of the KSM and PWMmotifs in dis-

criminating positive versus negative sequences. We choose the
pAUROC because typically only the area at a false positive rate
≤0.1 is of interest for realistic motif matching.

Finally, all the discovered motifs are ranked by the KSM
pAUROC scores.

Note that in the process of discovering KSM motifs, KMAC
also generates corresponding PWM motifs using the same se-
quence alignments from which the KSMs are derived. These
PWMs provide an approximation of the KSMs and can be used
for matching existing PWM motifs.

KMAC outperforms other motif discovery methods

in discovering known DNA-binding motifs

We tested KMAC’s ability to discover biologically relevant DNA-
binding motifs from in vivo binding data. We used a set of 209
TF ChIP-seq experiments comprising 78 distinct TFs that were pro-
filed in one or more cell lines by the ENCODE project (The
ENCODE Project Consortium 2012) and for which in vitro or in
vivo validated DNA-binding motifs exist in the public database
Cis-BP (Weirauch et al. 2014). We chose this large collection of ex-
periments because we expected that they would be representative
of the typical range of ChIP-seq data noise and sequencing depth.
We used KMAC and five state-of-the-art methods, MEME (Bailey
and Elkan 1994), MEME-ChIP (Machanick and Bailey 2011),
HOMER (Heinz et al. 2010), Weeder2 (Zambelli et al. 2014), and
ChIPMunk (Kulakovskiy et al. 2010) to train motifs from sequenc-
es derived from these ChIP-seq data. The most significant PWM
motifs from each analysis were matched using STAMP (Mahony
et al. 2007) to corresponding known PWM motifs of the same
TFs.We found that KMACoutperforms othermethods in rediscov-
ering the known PWM motifs in Cis-BP (Fig. 2B; Weirauch et al.
2014). When allowing each method to make multiple motif
predictions, KMAC performs better than or equal to the other
methods.We also tested how the number of training sequences af-
fects the performance of KMAC and found that KMAC is able to
maintain good performance with 300 or more sequences and to
correctly identify the primary motifs in 126 of 209 experiments
with only 30 sequences (Supplemental Table S3). In addition,
the running time of KMAC is similar to that of Weeder2 and is
much faster (about 4–30×) than the other methods (Supplemental
Table S4).

A B

Figure 2. KMAC motif discovery outperforms other methods when detecting motifs in ChIP-seq data. (A) KMAC motif discovery schematic. Step 1:
Overrepresented k-mers with length k are clustered using density-based clustering. Bars represent the k-mers, whereas red bars represent the cluster center
exemplars. Step 2: A cluster center is used as a seed k-mer. The seed k-mer and k-mers with a one-basemismatch are used tomatch and align the sequences.
Step 3: A pair of KSM and PWM motifs are extracted from the aligned sequences. Step 4: The KSM and PWM motifs are used to match and align the se-
quences. Steps 3 and 4 are repeated until the significance of the motifs stops to improve. (B) The motif discovery performance of KMAC is compared to the
motif discovery performance of various motif finders on 209 ENCODE ChIP-seq experiments.
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KSMs outperform PWMs in predicting in vivo TF binding

Wecompared the performance of KSMs versus PWMs in predicting
in vivo TF binding using the ENCODE ChIP-seq data sets. We
found that the KSM outperforms the PWM in discriminating TF-
bound sequences (positive sequences) from randomly shuffled se-
quences and unbound genomic sequences near the binding sites
(negative sequences).

We first examined an example of a protein in which a KSM
would be expected to outperform a PWM and confirmed that
this is the case. We trained KSM and PWM motifs using a subset
of TF GABP-bound sequences in human K562 cells and used the
motif scores to discriminate held-out GABP-bound sequences
from negative randomly shuffled sequences. We found that the
KSM outperforms three PWMs learned by KMAC, MEME, and
HOMER, respectively, from the same set of sequences (Fig. 3A).
To understand why the KSM performs better than the PWM, we
next studied the sequences and scores of the GABPmotif matches.
We found that for the same PWM motif match scores, the KSM
scores of the matches in the positive sequences are generally high-
er than the KSM scores of those in the negative sequences (Fig. 3B).
The higher KSM scores in the positive sequences are contributed
by the flanking k-mers that are often present in the positive se-
quences but are less present in the negative sequences because
the matches in the negative sequences are usually randommatch-
es of only one or very few k-mers. These results are consistent with
the observation that the length of the KSM motif matches in the
positive sequences are in general longer than the length in the neg-
ative sequences (Supplemental Fig. S2). Therefore, the KSM is able

to use the flanking sequences to further discriminate real bound se-
quences from the random sequences when the PWM finds identi-
cal matches. In addition, we found cases that some sites in the
negative sequences are scored highly by the PWM but not by the
KSM. For example, CACTTGCGG is only one base different from
the consensus sequence CACTTCCGG and has a PWM score of
6.67, which is ∼60% of themaximum PWM score for GABPmotif.
However, CACTTGCGG does not occur in the entire GABP-bound
sequence set, suggesting that this single-base difference cannot be
tolerated by GABP. The KSM score for the CACTTGCGG site is 0
because it has no exact match to the KSM. We verified this obser-
vationwith in vitro binding data from amouse GABP PBMdata set
(Badis et al. 2009). The enrichment scores (E-scores) of the PBM 8-
mers overlapping the consensus sequence CACTTCCGG (E-score
of ACTTCCGG= 0.497, and E-score of CACTTCCG= 0.486) are
close to the maximum enrichment (E-score = 0.5); in contrast,
the 8-mers overlapping CACTTGCGG (E-score of ACTTGCGG=
−0.140, and E-score of CACTTGCG=−0.279) are not enriched at
all, consistent with the KSM scores. This observation highlights
the limitation of the positional independence assumption of the
PWM representation and that the KSM is able to overcome this
limitation. The ability of the KSM representation to accurately
score the sequences with single-base differences is valuable in eval-
uating the impact of single-nucleotide polymorphisms (SNPs) that
may alter TF binding sites.

We then extended the comparison between the KSM and the
PWM to 104 data sets for which the correct primary motifs were
found for all the representations that we evaluated in this study
(Methods) and that have sufficient number of binding sites.

Similar to previous work (Mathelier
and Wasserman 2013), we compared
the performance between two methods
by computing the score ratios between
the methods on the same data sets. Two
methods are considered performing dif-
ferently if the score ratio is less than
0.95. In 102 of 104 experiments, the
KSMs perform better than the PWMs in
predicting TF binding in held-out data,
whereas the PWMs do not perform better
in any of the experiments (Fig. 3C; Sup-
plemental Fig. S3). Across all the data
sets, the KSM representation significant-
ly outperforms the PWM representation
(P = 8.53 × 10−19, pairedWilcoxon signed
rank test).

Here, the KSM and PWM motifs
were both learned from the same KMAC
motif discovery runs to ensure that the
performance differences are from the
motif representation but not from
the motif discovery procedures. In addi-
tion, we also compared the KSMs with
PWMs that were discovered by HOMER
and MEME and PWMs that were opti-
mized by the discriminative motif opti-
mizer (DiMO) (Patel and Stormo 2014).
We found that in most cases, KSMs out-
perform the PWMs trained by different
methods, with the exception of the
MEME PWMs that outperform the KSM
in 11 CTCF experiments (Supplemental

BA

DC

Figure 3. KSM outperforms PWM in predicting in vivo TF binding in held-out data. (A) The partial ROC
performance of KSM, KMAC PWM, MEME PWM, and HOMER PWM for predicting ChIP-seq binding of
GABP in K562 cells. (B) Scatter plot comparing the mean KSM scores of positive sequences and mean
KSM scores of negative sequences that corresponds to the same PWM scores in the K562 GABP data
set. Each point represents a set of sequences that have the same PWM score. (C) Scatter plot comparing
the mean partial AUROC (FPR ≤ 0.1) values of KSM and PWM for predicting ChIP-seq binding for 104
experiments. (D) Similar to C, but comparing KSM and PWM in the same cell type (red) or across cell
type (blue) in 19 TFs.
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Fig. S4). We reasoned that the CTCF motif is relatively long and
may need more than 5000 training sequences to adequately cap-
ture the CTCF binding specificities. We therefore retrained the
KSM motifs of the 11 CTCF experiments with 20,000 sequences
and found that the new KSMs perform comparably to the MEME
PWMs (Supplemental Fig. S4E). We also tested using flanking se-
quences as negative sequences and obtained similar results (P =
1.99 × 10−18, paired Wilcoxon signed rank test) (Supplemental
Fig. S5). Furthermore, we compared various parameter settings
for the KSM, such as the component k-mer significance cutoff
and the number of the maximum gaps, and found that the differ-
ences between different parameter settings are relatively small
(Supplemental Fig. S6).

In addition, we found that a KSMdoes not overfit the training
data and is able to generalize across cell types. Because a KSM con-
sists of hundreds to a few thousand k-mers, one legitimate concern
is that it may overfit the training data. Overfitting would result in
good performance on the training cell type but poor performance
on anewcell type. To address this concern, we conduct a cross-cell-
type analysis. For 19 unique TFs that are both profiled in different
cell types by the ENCODE project, including a diverse list of CTCF,
REST, YY1, USF1, SPI1, E2F6, JUN, ETS1, among others, we trained
KSM and PWM motifs from one cell type (K562) and predicted
binding for another cell type (GM12878 or H1-hESC). We found
that KSMs also significantly outperformed PWMs in the cross-
cell-type predictions (P = 0.000132, paired Wilcoxon signed rank
test) (Fig. 3D). The KSM predictions across the cell types perform
similarly to the KSM predictions in the same cell type (P > 0.05,
paired Wilcoxon signed rank test).

Taken together, these results suggest that the KSM is a more
accurate motif representation than the PWM model, and it gener-
alizes well across cell types.

KSMs outperform complex motif models in predicting

in vivo TF binding

Wenext compared the KSM representation with two complexmo-
tif models that have been shown to be more accurate than the
PWM model. The TF flexible model (TFFM) is a hidden Markov
model–based framework that captures interdependencies of suc-
cessive nucleotides and flexible length of the motif (Mathelier
and Wasserman 2013). The sparse local inhomogeneous mix-
ture (Slim) uses a soft feature selection approach to optimize the
dependency structure and model parameters (Keilwagen and
Grau 2015). We trained TFFM and Slimmodels on the same subset
of sequences as the KSMs and used the motif scores to predict on
the remaining sequences. The KSMs perform better than the
TFFMs in predicting TF binding in 53 experiments, worse in 11 ex-
periments, and similarly in 40 experiments (Fig. 4A). Across all the
data sets, the KSM significantly outperforms the TFFM representa-
tion (P = 2.85 × 10−7, paired Wilcoxon signed rank test). Similarly,
the KSMs perform better than Slim in predicting TF binding in 41
experiments, worse in 12 experiments, and similarly in 51 experi-
ments (Fig. 4B). Across all the data sets, the KSM significantly out-
performs the Slim representation (P = 2.83 × 10−6, pairedWilcoxon
signed rank test). In addition, the motif scanning time of KMAC is
only 2–3× the PWM scanning time and is much less (about 20–
80×) than that of the Slim and TFFM models (Supplemental
Table S5).

In summary, the KSM is more accurate at discriminating TF-
bound sequences from randomly generated sequences than the
conventional PWM and the more sophisticated TFFM and Slim

motif representations, suggesting that the KSM is a more precise
motif representation.

KSMs outperform PWMs and complex motif models in predicting

in vitro TF binding

We next investigated whether the superior performance of the
KSM representation holds for in vitro TF binding prediction.
Motifs trained from in vivo ChIP-seq data may be confounded
by factors extrinsic to binding of the profiled TF, such as local
GC content, cofactors, and chromatin state. To more rigorously
test various motif representations on capturing intrinsic TF
binding specificities, we compared KSMs, PWMs discovered by
HOMER (Heinz et al. 2010) and MEME (Bailey and Elkan 1994),
PWMs optimized by DiMO (Patel and Stormo 2014), Slim (Keilwa-
gen and Grau 2015), and TFFM (Mathelier and Wasserman 2013)
motif models in predicting in vitro TF binding sites using HT-
SELEX data (Jolma et al. 2013). The various motif models were
trained using ChIP-seq binding data as above. For the TFs that
were profiled in both HT-SELEX and ChIP-seq, we curated the se-
quences selected byHT-SELEX as the test sequences for the in vitro
binding prediction (Methods). The list of nine TFs (33 experi-
ments) includes CTCF, CTCFL, EBF1, SPI1, YY1, MAX, MAFK,
ETS1, and POU2F2. In most cases KSMs outperform the other mo-
tif models in predicting in vitro TF binding (Fig. 5). KSMs do not
perform as well on MAX and MAFK, TFs that form heterodimers
in vivo and have been observed to cobind with MYC and MAFF/
BACH1, respectively (Blackwood and Eisenman 1991; Kannan
et al. 2012; Guo and Gifford 2017). Because the in vitro binding
data for MAX and MAFK reflect the specificities of monomer or
homodimer binding, the evaluation for MAX and MAFK may be
confounded by the significant differences between their in vivo
and in vitro binding characteristics. Across all the data sets,
KSMs significantly outperform other motif representations (P <
1 × 10−5 for all comparisons, paired Wilcoxon signed rank test).
These results and the in vivo binding prediction results suggest
that the KSM is more accurate than the PWM and other complex
motif models in representing TF binding specificities.

KSM enables accurate prediction of causal regulatory variants

With the superior performance of the KSM representation on pre-
dicting in vivo TF binding, we next tested whether sequence fea-
tures derived from KSM motifs would enable more accurate
prediction of the effects of noncoding genetic variants on the

A B

Figure 4. KSMs outperform complex motif models in predicting in vivo
TF binding. (A) Scatter plot comparing the mean partial AUROC (FPR ≤
0.1) values of KSM and TFFM for predicting in vivo binding in 104 TF
ChIP-seq experiments. Each point represents a ChIP-seq data set. (B) Sim-
ilar to A, but comparing KSM and Slim.
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activities of the regulatory sequences that harbor the genetic
variants.

We used an ensemble model (Zeng et al. 2017) that included
KSM motif features from 87 TF ChIP-seq data sets and deep learn-
ing–based features to achieve the best performance in “eQTL-caus-
al SNPs” open challenge (Kreimer et al. 2017) in the Fourth Critical
Assessment ofGenome Interpretation (CAGI 4). The challengewas
to predict the experimental results of thousands of regulatory ele-
ments that contains eQTL alleles (reference and alternative) from a
massively parallel reporter assay in GM12878 cells (Tewhey et al.
2016).

Here, we used the same computational framework—a LASSO
regression model to predict reporter expression of the reference
and alternative alleles and an ensemble model to classify whether
the two alleles have different regulatory activities (Zeng et al.
2017)—to evaluate the performance of different types of sequence
features. We constructed KSM motif features and PWM features
from motifs discovered by MEME and HOMER, respectively, from
209 TF ChIP-seq data sets (The ENCODE Project Consortium
2012). The performance of the predictions using different sets of
sequence features was evaluated using AUPRC and AUROC. We
found that theKSM features (AUPRC= 0.479,AUROC = 0.668) out-
perform HOMER PWM (AUPRC = 0.434, AUROC= 0.629) and
MEME PWM (AUPRC = 0.408, AUROC= 0.619) in predicting dif-
ferential reporter expression between the two alleles (Fig. 6A;
Supplemental Fig. S7A). We next compared KSM motif features
with the features derived from DeepBind (Alipanahi et al. 2015),
a deep learning model trained on 927 TF ChIP-seq data sets, and
DeepSEA (Zhou and Troyanskaya 2015), a deep learning model
trained on 919 epigenomic data sets. We found that KSM fea-
tures outperform DeepBind (AUPRC= 0.432, AUROC= 0.608)

andDeepSEA features (AUPRC= 0.396,AUROC = 0.628) in predict-
ing differential reporter expressionbetween the two alleles (Fig. 6B;
Supplemental Fig. S7B). In addition, the KSM features offer better
interpretability than deep learning features because the predictive
KSM features are directly linked to their corresponding TFs. The
combined KSM and DeepBind features achieved the best AUPRC
(0.483), outperforming the KSM or DeepBind features alone, al-
though the AUROC (0.647) of the combined features is worse
than that of the KSM. The combined KSM and DeepBind features
or KSM features alone both outperformed all the CAGI 4 methods
that use features such as PWMs, k-mers, epigenomic signals, chro-
matin state annotations, and evolutionary conservation (Kreimer
et al. 2017). These results highlight the value of accurate motif
models in the characterization of noncoding variants.

BA C

ED F

Figure 5. KSMs outperform PWMs and complex motif models in predicting in vitro TF binding. Scatter plots compare the mean partial AUROC perfor-
mance of KSM versus MEME PWM (A), HOMER PWM (B), DiMO-optimized KMAC PWM (C), DiMO-optimized MEME PWM (D), TFFM (E), and Slim (F)
motif models for predicting HT-SELEX in vitro TF binding. Each point represents a ChIP-seq experiment of which the TF has been profiled using HT-
SELEX. (Brown) KSM performs better than other motif representations; (blue) KSM performs worse; (green) both representations perform similarly.

A B

Figure 6. KSMs predicts allele-specific differences in regulatory activity
better than PWMs and deep learning–derived features. (A) PRC perfor-
mance of KSM and PWM motif representations in predicting differential
regulatory activities of eQTL alleles. The numeric values in the legend are
the AUPRC values. (B) Similar to A, KSM, DeepBind, and DeepSEA derived
features and other CAGI 4 open challenge methods.
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A new public resource of KSM and PWM motifs

Finally, we have created a public resource of KSM and PWMmotifs
by applying KMAC to 1600 ENCODE transcription factor ChIP-seq
data sets. These motifs are available at the KMAC website (http://
groups.csail.mit.edu/cgs/gem/kmac/).

Discussion

We have demonstrated that k-mer set memory (KSM) representa-
tions are better at predicting transcription factor in vivo binding
as well as in vitro binding than PWMs and the more complex
TFFM and Slim models. In addition, sequence features derived
from KSMs outperform those derived from PWMs and deep learn-
ingmodels for predicting the effect of noncoding genetic variants.
In addition, the training and themotif scanning of KSMmotifs are
adequately efficient for large-scale analysis. Because the PWM rep-
resentation is used by most computational analyses that involves
TF binding motifs, the accuracy gain from replacing the PWM
with the KSM will likely be widespread.

A KSM represents TF binding specificity as a set of aligned
k-mers that are found to be overrepresented at factor binding sites.
An important feature of the KSM is that it captures the relative po-
sitions among the k-mers, thus allowing overlapping k-mers to be
assembled into k-mer groups for accurate identification and scor-
ing of motif instances. We showed that, with contribution from
the overlapping k-mers, the KSM gives TF-bound sequences higher
scores than the random sequences when they have the same PWM
score, highlighting the value of positional information among the
k-mers for recapitulating in vivo TF binding.

The KSM is a representation for the DNA-binding motif of a
single TF. To increase the probability that a KSM represents the se-
quencemechanistically associatedwith a particular TF, KMACuses
a narrow window around binding sites to extract component
k-mers and requires the component k-mers to be aligned with
each other. Thus, the KSM is different from and not directly com-
parable to methods for other tasks that use k-mers associated with
multiple TF motifs in machine learning models (Ghandi et al.
2014; Setty and Leslie 2015). It will be interesting to build learning
models with multiple KSM motifs learned from ChIP-seq or
DNase-seq data and compare with the published k-mer-basedmul-
timotif learning methods.

Genome-wide association studies (GWAS) have made tre-
mendous progress in linking numerous SNPs to human traits
and diseases. However, finding the causal genetic variants has
been challenging, because the lead GWAS SNPs are in linkage dis-
equilibrium with nearby SNPs and the majority of GWAS loci are
in noncoding regions (Maurano et al. 2012; Schaub et al. 2012).
Computational approaches that identify TF binding altering
genetic variants are important for meeting this challenge (Mathe-
lier et al. 2015). The KSM motif representation and the KMAC
motif discovery method enables more accurate characterization
and discovery of TF binding motifs. Our results show that the
KSMmotif features outperform features derived from a deep learn-
ing model in predicting the effect of noncoding genetic variants,
suggesting that accurate and interpretable motif features may be
more appropriate for characterizing noncoding genetic variants
than the deep learning features. With large-scale efforts such as
the ENCODE project (The ENCODE Project Consortium 2012)
profiling hundreds of TFs in diverse cellular conditions, a more
comprehensive catalog of TF binding sites is now available for
training new computational models. We expect that the KSM rep-

resentation and KMAC method will be valuable in characterizing
TF binding specificities and in interpreting the effects of noncod-
ing genetic variations.

Methods

ChIP-seq data sets and TF binding motifs

Two hundred nine TF ChIP-seq data sets (from three ENCODE tier
1 cell types, K562, GM12878, andH1-hESC cells) that have known
motifs in public databases were downloaded from the ENCODE
project website (The ENCODE Project Consortium2012). Relevant
information about this data set is in Supplemental Table S6. TF
binding motifs (PWMs) were downloaded from Cis-BP database
(Homo_sapiens_2015_02_05) (Weirauch et al. 2014), which in-
cludesmotif from the TRANSFAC (Matys et al. 2003), JASPAR (San-
delin et al. 2004), SELEX (Jolma et al. 2013), PBM UniPROBE
(Berger et al. 2006), and other databases.

KSM sequence logo

We visualized a KSM sequence logo as a stack of PWM sequence lo-
gos that represent the high-scoring, nonoverlapping component
k-mers and their sequence contexts. We identified themost signif-
icant k-mer in the training sequences, used this k-mer to align the
sequences that contain the k-mer, and built a PWM using the se-
quence alignment. Thus, the top PWM represent the most signifi-
cant k-mer and its sequence contexts. After removing the aligned
sequences, the same process was repeated for the remaining se-
quences. For each KSM motif, a color chart representation of the
aligned sequences and the corresponding KSM sequence logo
were output by the KMAC software.

Motif discovery performance comparison

For the 209 ENCODEChIP-seq data, KMACand four other state-of-
the-artdenovomotifdiscoverymethods—MEMEv4.11 (Baileyand
Elkan 1994), MEME-ChIP v4.11 (Machanick and Bailey 2011),
Weeder 2.0 (Zambelli et al. 2014), and HOMER (Heinz et al.
2010)—were applied to discover motifs independently. From the
top 1000 peaks of each data set, 100-bp sequences centered on
the peak summits were extracted, as suggested by the MEME
Suite’s documentation based on the typical resolution of ChIP-
seqpeaks.MEMEwas runwithoptions“-dna -nmotifs 9 -revcomp”;
MEME-ChIP was run with options “-dna -norand -meme-nmotifs
5 -meme-maxsize 1000000 -dreme-m 5 -spamo-skip -fimo-skip”;
and Weeder2 was run with options “-O HS -chipseq.” All other
parameters were the defaults specified by the authors.

Discovered motifs (PWMs) were compared to known motifs
in the public database Cis-BP (Weirauch et al. 2014) using
STAMP (Mahony et al. 2007). For KMAC, the PWMmotifs discov-
ered were used for comparison. A motif with E-value less than 1 ×
10−5 was considered a match. For each program, we counted the
number of data sets that had a motif matching at least one known
motif of that TF. In some cases, the correct motifs were not
matched by the first motif that a method outputs, but by the sec-
ond or latermotifs. Therefore, we compared themotif-finding per-
formance using the top 1, top 2, and top 3 motifs.

TF in vivo binding prediction performance comparison

We compared KSM, PWMs discovered by KMAC, HOMER (Heinz
et al. 2010), and MEME (Bailey and Elkan 1994), and PWMs opti-
mized by DiMO (Patel and Stormo 2014), Slim (Keilwagen and
Grau 2015), and TFFM (Mathelier and Wasserman 2013) motif
models in predicting in vivo TF ChIP-seq binding sites. For each
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set of bound sequences from a TF ChIP-seq experiment (positive
sequences), we generated random shuffled sequences by preserv-
ing dinucleotide frequencies (shuffled negative sequences). We
also generate an alternative set of negative sequences by taking
the genomic sequences 200 bp away from the TF binding site
(flanking negative sequences).

We first trained motifs from randomly subsampled 5000 pos-
itive sequences (training set) using KMAC, HOMER, the Jstacs li-
brary for Slim (Keilwagen and Grau 2015), and the Python TFFM
framework (Mathelier and Wasserman 2013). For MEME, the run-
ning time for 5000 sequences is impractically long; therefore, we
used the top 600 sequences as suggested by the MEME documen-
tation. For Slim, additional shuffled negative sequences with sig-
nal = 0 were provided for motif discovery. For TFFM, the primary
PWMmotifs discovered by MEMEwere used to initialize the mod-
els. Two kinds ofmodels (FIRST_ORDER andDETAILED)were con-
structed, and the results were similar. We reported only results
from the DETAILED model. For DiMO-optimized PWM (Patel
and Stormo 2014), the PWMs discovered by MEME and KMAC
were used as initial inputs to optimize on the training positive
and negative sequences.

For eachmethod, the motif scores of the top ranking primary
motif were then used to discriminate 5000 held-out positive and
negative sequences (test set). In order to compare performance
across multiple motif representations, we used 104 data sets in
which all the methods/representations discover a correct primary
motif thatmatches a knownmotif for the same TF in the public da-
tabase Cis-BP (Weirauch et al. 2014). For the different motif repre-
sentations discovered from the same set of sequences, their
performance in predicting ChIP-seq TF binding sites on the held-
out data was evaluated using a partial AUROC (McClish 1989) up
to a false positive rate of 0.1, which typically falls in the range of
realistic motif matches. We repeated this procedure five times
and used the mean partial AUROC score of each ChIP-seq experi-
ment or each TF to compare performance.

We assessed the significance for the improvement of predic-
tive power when comparing two models using the Wilcoxon
signed rank tests. The function signrank() in MATLAB software
(MATLAB and Statistics Toolbox Release 2016b, The MathWorks,
Inc.) was used.

TF in vitro binding prediction performance comparison

We compared KSM, PWMs discovered by HOMER (Heinz et al.
2010) and MEME (Bailey and Elkan 1994), DiMO-optimized
PWM (Patel and Stormo 2014), Slim (Keilwagen and Grau 2015),
and TFFM (Mathelier and Wasserman 2013) motif models in pre-
dicting in vitro TF binding sites using HT-SELEX data (Jolma
et al. 2013). Themotifmodels were trained usingChIP-seq binding
data as described above. Here, we compared them in predicting in
vitro TF binding sites.

For the TFs that were profiled in both HT-SELEX and ChIP-
seq, we curated the sequences selected by HT-SELEX as the test
sequences for the motif models. HT-SELEX FASTQ files were
downloaded from https://www.ebi.ac.uk/ena/data/view/PRJEB3289.
The cycle 3 and cycle 4 FASTQ sequences that have quality scores
higher than 20 and that have at least four counts are selected. The
data sets that contain at least 200 unique sequences are used for
evaluation. In total, HT-SELEX data sets of nine TFs are curated,
corresponding to 33 ChIP-seq experiments. From the positive
HT-SELEX sequences, we then generated random shuffled se-
quences while preserving dinucleotide frequencies and used them
as negative sequences.

The in vitro binding prediction comparisons were performed
the same as described above for in vivo binding prediction.

Predicting the effect of regulatory variants

We used the EnsembleExpr (https://github.com/gifford-lab/
EnsembleExpr/) computational framework as described in Zeng
et al. (2017). Briefly, sequence features were generated by taking
the maximum motif score of each motif on the training and test-
ing sequences. LASSO regression models were trained to predict
the reporter expression levels for each allele, and an ensemble of
binary classification models with regularization tuned by cross-
validation was trained to predict whether the two alleles have dif-
ferent expression levels. In this work, five sets of sequence features
were derived from KSM motifs, MEME PWM motif, and HOMER
PWM motifs learned from 209 ENCODE TF ChIP-seq data sets,
and from the pretrained DeepBind (Alipanahi et al. 2015) and
DeepSEA model (Zhou and Troyanskaya 2015).

Data access

The free software for KMAC motif discovery, for KSM motif scan-
ning and scoring, as well as motifs discovered from ENCODE TF
ChIP-seq data can be downloaded from the KMAC website (http://
groups.csail.mit.edu/cgs/gem/kmac/). The PWM motifs from
ENCODE phase III TF ChIP-seq data are also provided as Supple-
mental Material. The source code has been deposited in GitHub
(https://github.com/gifford-lab/GEM3) and is also available as Sup-
plemental Code.
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