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Abstract: When the camera moves quickly and the image is blurred or the texture in the scene is
missing, the Simultaneous Localization and Mapping (SLAM) algorithm based on point feature
experiences difficulty tracking enough effective feature points, and the positioning accuracy
and robustness are poor, and even may not work properly. For this problem, we propose
a monocular visual odometry algorithm based on the point and line features and combining IMU
measurement data. Based on this, an environmental-feature map with geometric information is
constructed, and the IMU measurement data is incorporated to provide prior and scale information
for the visual localization algorithm. Then, the initial pose estimation is obtained based on the motion
estimation of the sparse image alignment, and the feature alignment is further performed to obtain
the sub-pixel level feature correlation. Finally, more accurate poses and 3D landmarks are obtained
by minimizing the re-projection errors of local map points and lines. The experimental results on
EuRoC public datasets show that the proposed algorithm outperforms the Open Keyframe-based
Visual-Inertial SLAM (OKVIS-mono) algorithm and Oriented FAST and Rotated BRIEF-SLAM
(ORB-SLAM) algorithm, which demonstrates the accuracy and speed of the algorithm.

Keywords: line feature; point-line feature fusion; semi-direct method

1. Introduction

Simultaneous Localization and Mapping (SLAM) [1–3] is used to incrementally estimate the
pose of the mobile platform and simultaneously construct a map of the surrounding environment.
Due to its ability to locate in an unknown environment, it is widely used in applications such as robot
navigation [4–6] and Augmented Reality [7]. With the increasing demand for artificial intelligence
and human-computer interaction, SLAM will play an increasingly important role in the future of
science and technology. Robustness and real-time performance in challenging environments are two
key factors in the application of this technology to engineering practice.

At present, the mainstream visual SLAM (vSLAM) scheme is divided into feature-based
method [8–10], direct method [11–13], and semi-direct method [14] according to the way of using
image information. Regarding the way of establishing the map, it is divided into sparse method [13],
dense method [15], and semi-dense method [12]. The feature-based approach estimates the camera
pose and constructs an environmental map by minimizing the reprojection errors observed and
corresponding reprojection features. The most representative algorithms include Parallel Tracking And
Mapping (PTAM) [9] and Oriented FAST and Rotated BRIEF-SLAM (ORB-SLAM) [10], which have
achieved good performance in large scenes. The direct method does not need to extract salient
features that can be repeatedly identified. Instead, it uses all the pixels with strong gradients in the
image to optimize the pose by minimizing the photometric error to establish a dense or semi-dense
environment map. Newcombe et al. proposed a completely straightforward method called Dense
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Tracking And Mapping (DTAM) [11]. DTAM tracks all the pixels of the entire image and builds a dense
map of the environment that must be real-time on the GPU. Large-Scale Direct Monocular SLAM
(LSD-SLAM) [12] is another dominant method in the direct approach. The core idea of LSD-SLAM
follows the idea of semi-dense visual odometry. The semi-direct method only extracts features, does
not calculate descriptors, does not perform feature matching, uses photometric error to establish
data association between corresponding pixels, performs pose optimization, and uses the significant
information in the image to establish sparse maps. Forster et al. proposed a more sparse semi-direct
VO (SVO) [14]. It uses direct methods to track and triangulate pixels with high image gradients,
but relies on a proven feature-based approach for joint optimization of structure and motion.

With the development of technology, more and more open-source systems have emerged,
and visual SLAM technology has gradually matured. However, there are still many practical problems
to be solved. Point features are widely used features in visual SLAM and are mature in feature
extraction, matching, and representation. Common feature point description algorithms include Scale
Invariant Feature Transform (SIFT) [16], Speeded Up Robust Features (SURF) [17], and Oriented FAST
and Rotated BRIEF (ORB) [18]. However, point features are more dependent on the environment,
and are not effective when the motion is too fast, resulting in blurred images and in weak textures
scenes. In addition, the map constructed based on the point feature is a 3D point cloud map, and the
point cloud map is sparse, but the map for robot navigation needs to reflect the structural information
of the object in the scene, so as to study the path planning of the robot. Compared with point features,
line features [19] are also widely present in various environmental scenarios, and line features are
not susceptible to changes in viewpoints and illumination. Since the spatial dimension of a line is
one-dimensional higher than a point, for some structured scenes, the line feature has an advantage
and more accurately expresses the structural information of the environment [20,21]. The point
feature [22,23] and the line feature [24–26] are complementary to each other. In weakly textured areas
such as the ground and walls, almost no point features are extracted, but at the junction of the ground
and the wall, there are abundant line segments. The environment map constructed by the combination
of point and line features has more intuitive geometric information, and can also improve the accuracy
and robustness of the SLAM system.

In addition, robot applications often require robots to be positioned in real-time [27]. When the
robot moves quickly, the line feature extraction and tracking algorithm are relatively slow, which causes
the movement and location to be out of synchronization. The longer the single location process, the less
overlap between the two frames before and after, which will undoubtedly reduce the accuracy of the
robot location. Compared with the feature-based method, the direct method does not need to detect
and match features in each frame, and directly estimates the camera pose based on the photometric
error of the corresponding points of adjacent frames, which greatly improves the running speed
of the SLAM algorithm. Extending the line segment feature to the direct method can reduce the
computational resource consumption and improve the robustness of the SLAM algorithm without
significantly increasing the system computation time.

Although the indoor environment texture information is rich, it is inevitable that there will be no
texture or weak texture. The existing solution is to combine visual and inertial [28] information
for positioning, and according to the degree of fusion, it is loosely coupled [29,30] or tightly
coupled [31–33]. The camera captures the rich information in the scene, and the IMU is able to obtain
accurate estimates in a short time at high frequencies, mitigating the effects of dynamic objects on the
camera [34]. In the absence of features, during fast motion, or in the case of dynamic obstacles, it is very
helpful to use a priori from the IMU. A motion prior is an additional item attached to a cost function
that penalizes motion that is inconsistent with a priori estimates. By using the complementarity of
the inertial sensor and the image sensor, the pose estimation result with higher precision and better
robustness can be obtained. In the literature [35], a novel tightly coupled monocular visual-inertial
odometry algorithm PL-VIO is introduced, which optimizes the state of the system in a sliding
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window with point and line features. But this algorithm is a feature-based method, and has weak
real-time performance.

In this paper, we present a visual-inertial odometry that combines point and line features.
This algorithm is based on an extension of the semi-direct method SVO. First, line features provide
more geometric information about the environment than point features. Line features help improve
system robustness in challenging scenarios, such as low-texture environments or lighting variations,
when point features cannot be reliably detected or tracked. Based on the extension of the direct
method, the extraction and matching of the line segment features are reduced, and a faster speed can
be achieved. The second extension, combined with motion prior information, allows the system to be
robust in environments with the lack of features or fast motion, while at the same time restoring the
precise scale of the camera pose.

2. Methodology

Figure 1 shows the overall framework of our approach, adding line segment features and motion
prior extensions to SVO. The whole algorithm includes four modules: IMU measurement preprocessing,
visual-inertial initialization, motion estimation, and mapping.
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Figure 1. Flow chart of the proposed algorithm.

The measurement pre-processing module pre-integrates the IMU measurement data between
consecutive frames. In the visual inertia alignment module, the SFM is first used to estimate the pose
and 3D point inverse depth of all frames in the sliding window, and then the IMU pre-integration is
used to solve the initialization parameters. The motion estimation module performs point and line
segment feature tracking based on the direct method, and combines the motion prior information to
estimate the camera pose. Finally, the mapping thread recursively estimates the 3D position of the
image features with an unknown depth.

2.1. Notations

We define some of the notations and coordinate system definitions needed in this paper. (·)w

represents the world coordinate system. (·)b represents the IMU and body coordinate system. (·)c

represents the camera coordinate system. We use rotation matrices R and quaternions q to represent



Sensors 2019, 19, 4545 4 of 21

rotation, and p represents translation. qw
b and pw

b are rotation and translation from the body frame to
the world frame. bk is the body frame while taking the kth image. ck is the camera frame while taking
the kth image. ⊗ represents the multiplication operation.

The image acquired from one camera C at time k is denoted as Ic
k : Ωc ⊂ R2, where Ωc is the

image field. Any 3D point ρ ∈ R3 projection to image coordinates u ∈ R2 through the camera
projection model : u = π (ρ). Given the inverse scene depth d > 0 at pixel u ∈ Rc

k, the position of
the 3D point is obtained using the inverse projection model ρ = π−1 (u, d). Among them, we use
Rc

k ⊆ Ωc to represent the pixel point whose depth is known in camera C at time k.
In the case of a line segment, we use the two endpoints of the line segment to represent a line

segment feature l with p and q, respectively. In order to introduce a motion prior constraint, we define
a body coordinate system b that is rigidly connected to the camera frame c, and this external calibration
parameters TCB ∈ SE (3) are known in the provided datasets or calibrated with the Kalibr calibration
toolbox [36]. The line segment feature whose endpoint depth is known in camera C at time K is
represented by Lc

k ⊆ Ωc, and the endpoints of the line segment feature are denoted by p and q.
The projection model is obtained by pre-calibrating the camera.

The position and rotation of the world frame W relative to the kth camera frame can be described
by the rigid body transformation Tkw ∈ SE (3). A 3D point wρ expressed in the world coordinate
system can be transformed to the kth camera: kρ = Tkw · wρ.

2.2. Visual-Inertial Initialization

The main purpose of the visual-inertial odometry system initialization [37,38] is to obtain the
parameters necessary for the system to optimize and the initial value of the state variables. Since the
monocular inertial odometry system is a system with a high degree of nonlinearity, the quality
of the initialization directly affects the robustness of the entire tightly coupled system and the
location accuracy. Therefore, it is necessary to initialize the system in a specific way to provide
accurate parameters and initial values.

In the process of initialization, the information that needs to be initialized or estimated can be
divided into two categories: (1) Parameters that are almost constant or have little change during system
operation, such as absolute scale and gravitational acceleration; (2) The initial value of the system
starting state quantity, including the pose and velocity information of the first few keyframes and the
position of the 3D landmark points, and the bias of the IMU accelerometer and the gyroscope.

We use the initialization method proposed in [38]. The initialization method of the algorithm
in this paper is divided into two processes. First, the initial visual keyframes are tracked using the
semi-direct method of pure vision. The semi-direct method monocular visual odometry can initialize
the initial keyframes pose information and the 3D landmark point position information changed with
scale. The second process is visual-inertial alignment, which can initialize precise scales, gravitational
acceleration, speed information of the camera state, and zero offsets of the accelerometer and gyroscope.
The processing of the IMU data is to calculate the pre-integration result between adjacent keyframes,
input to the visual-inertial alignment module for an initial solution, solve an accurate scale, and convert
the results of the pose estimation into the IMU coordinate system. The initialization flow chart is
shown in Figure 2.

As shown in Figure 2, a keyframe with a large number of matching feature points of the current
frame is searched in the sliding window as a reference frame, and the relative pose of the current frame
to the reference frame is calculated by solving the fundamental matrix. Next, SFM is performed on
these two keyframes to obtain the camera pose and feature position of any scale. For each frame of
the image in the sliding window, the solvePnP [39] is performed to get pose with all the 3D landmark
points obtained by the SFM.
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Figure 2. Initialization flow chart.

At this point, the pose information of all keyframes and the 3D information of the points and line
segments can be obtained. Since the external parameters

(
qb

c , pb
c

)
between the camera and the IMU

are known, all variables can be transformed into the IMU coordinate system to represent:

qw
bk
= qw

ck
⊗
(

qb
c

)−1

spw
bk
= spw

ck
− Rw

bk
pb

c

, (1)

where s is an unknown scale factor. According to the method in [38], the vision-only pose estimation
result and the IMU measurement pre-integration are visual-inertial aligned, and the absolute scale,
the gravity acceleration, the speed information of the camera state, and the zero offsets of the IMU can
be estimated.

Since the IMU pose estimation data is of absolute scale, the camera pose estimation is not drifting.
After the two are aligned, the absolute scale of the camera pose can be well estimated. At this point,
the initialization process is complete.

2.3. IMU Measurement Pre-Integration

The IMU consists of a three-axis accelerometer and a three-axis gyroscope that measure angular
velocity and acceleration relative to the inertial coordinate system. Since the measurement frequency of
the IMU is much faster than that of the vision camera, as shown in Figure 3, it is desirable to incorporate
constraints from inertial measurements into the motion estimation, which requires integrating the
measurements of the numerous IMU data of two adjacent visual keyframes into one constraint.
The manifold-based pre-integration theory adopted in this paper was proposed by Forster et al.
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in 2016 [40], which uses the IMU pre-integration method to transform IMU measurement data into
visual keyframe constraints.

Figure 3. IMU Pre-integration diagram.

The state variables at time k of the IMU coordinate system B are defined as the position pw
bk

,
velocity vw

bk
, and rotation qw

bk
. All accelerometer and gyroscope measurement data between time k

and time k + 1 are given. At the time k + 1, the position pw
bk+1

, velocity vw
bk+1

and rotation qw
bk+1

are
calculated by integrating all the IMU data between time k and time k + 1, and are defined as the initial
values of the visual estimation.

pw
bk+1

= pw
bk
+ vw

bk
∆tk +

∫∫
t∈[k,k+1]

[Rw
t (ât − bat)− gw] dt2

vw
bk+1

= vw
bk
+
∫

t∈[k,k+1]
[Rw

t (ât − bat)− gw] dt

qw
bk+1

= qw
bk
⊗
∫

t∈[k,k+1]

1
2

Ω (ŵt − bwt) qbk
t dt

, (2)

where ât and ŵt are the acceleration and angular velocity measured by the IMU. gw is the gravity
vector in the world frame. bat is the acceleration bias and bwt is the gyroscope bias. In practical
use, the IMU data is discrete, and the discrete formula based on the median integration method is
given below. That is the integration process from the time i to the time i + 1.

pw
bi+1

= pw
bi
+ vw

bi
δt +

1
2

¯̂aiδt2

vw
bi+1

= vw
bi
+ ¯̂aiδt

qw
bi+1

= qw
bi
⊗
[

1
1
2

¯̂wiδt

] , (3)

where:

¯̂ai =
1
2
[qi (âi − bai )− gw + qi+1 (âi+1 − bai )− gw]

¯̂wi =
1
2
(ŵi + ŵi+1)− bwi

. (4)

By observing the Formula (2), the pre-integration of the IMU needs to depend on the v and R
of the kth frame. When we perform nonlinear optimization on the backend, we need to iteratively
update the v and R of the kth frame. We need to re-integrate based on the value after each iteration,
which is very time-consuming. Therefore, we consider separating the optimization variable from the
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IMU pre-integration term from the k frame to the k + 1 frame. By multiplying the left and right sides
of the Formula (2) by Rbk

w , it can be reduced to:

Rbk
w pw

bk+1
= Rbk

w

(
pw

bk
+ vw

bk
∆tk −

1
2

gw∆t2
k

)
+ α

bk
bk+1

Rbk
w vw

bk+1
= Rbk

w

(
vw

bk
− gw∆tk

)
+ β

bk
bk+1

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

, (5)

where:

α
bk
bk+1

=
∫∫

t∈[k,k+1]

[
Rbk

t (ât − bat)
]

dt2

β
bk
bk+1

=
∫

t∈[k,k+1]

[
Rbk

t (ât − bat)
]

dt

γ
bk
bk+1

=
∫

t∈[k,k+1]

1
2

Ω (ŵt − bwt) γ
bk
t dt

. (6)

In this way, we obtain the IMU pre-integration formula for continuous-time. It can be found that
the value of the IMU pre-integration obtained by the above formula is only related to ât and ŵt at
different times.

Similarly, we give the IMU pre-integration formula for discrete moments based on the median
integration method. The IMU increment information from time i to time i + 1 is:

α̂
bk
i+1 = α̂

bk
i + β̂

bk
i δt +

1
2

¯̂aiδt2

β̂
bk
i+1 = β̂

bk
i + ¯̂aiδt

γ̂
bk
i+1 = γ̂

bk
i ⊗ γ̂i

i+1 = γ̂
bk
i ⊗

[
1

1
2

¯̂wiδt

], (7)

where:

¯̂ai =
1
2
[qi (âi − bai )− gw + qi+1 (âi+1 − bai )− gw]

¯̂wi =
1
2
(ŵi + ŵi+1)− bwi

. (8)

3. Visual Odometry Combined with Point and Line Features

The main purpose of this study is to develop a more robust semi-direct method SLAM algorithm
combining point and line features. The algorithm achieves the same accuracy as the most advanced
feature-based methods and maximizes the speed of the algorithm so that it can be used for a variety of
lightweight platform tasks such as cell phones and micro drones.

3.1. Monocular Initialization

We use a feature-based approach to obtain the pose and initial map of the initial two keyframes.
First, the Fast corner feature and the LSD segment feature are extracted on the first keyframe, and then
the features on the first keyframe are tracked using the klt optical flow algorithm [41]. The disparity
between the two frames is calculated until the image that reaches the set disparity threshold is selected
as the second keyframe. We calculate the homography matrix by the local plane hypothesis to obtain
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the pose transformation of the second keyframe relative to the first keyframe, and obtain reliable
inlier matching. An initial map of random scales is obtained by triangulation between the initial
two keyframes. With the pose and map of the initial two keyframes, the direct method can be used to
estimate the pose of the new frame.

3.2. Sparse Model-Based Image Alignment with Motion Prior

The motion between two consecutive camera frames can be estimated by direct tracking of sparse
features. By minimizing the photometric error of the corresponding pixels between two consecutive
camera frames, we can get an initial estimate of the pose between two adjacent frames. We need to
define the photometric cost function of the point and line segment features separately. Model-based
image alignment estimates the pose increment between adjacent frames by minimizing the intensity
difference (photometric error) of pixels viewing the same 3D point and line segment.

Our goal is to estimate the incremental motion of the body coordinate system Tkk−1
.
= TBk Bk−1 .

Next, we define the residual functions corresponding to points, line segments, and motion priors.
Define the intensity residuals of the point features δIp as:

δIp (Tkk−1, u) = rIC
ui
(Tkk−1), (9)

where the photometric residual is defined by the intensity difference of the pixels of the same 3D point
ρi observed in subsequent images Ic

k and Ic
k−1.

rIc
ui
(Tkk−1) = Ic

k (π (TCBTkk−1ρi))− Ic
k−1 (π (TCBρi)) . (10)

The 3D point ρi (represented in the reference frame Bk−1) can be calculated by back-projection
pixels with a known depth di:

ρi = TBCπ−1 (ui, di) , ∀ui ∈ Rc
k−1. (11)

But the optimization in Equation (9) only includes a subset of these pixels R̄c
k−1 ⊆ R

c
k−1, indicating

that these back-projection points are also visible in the image Ic
k :

R̄c
k−1 =

{
u
∣∣∣u ∈ Rc

k−1 ∧ π
(

TCBTkk−1TBCπ−1 (u, du)
)
∈ Ωc

k

}
. (12)

Unlike the point-based approach, we cannot directly align the entire area occupied by a line
segment between two frames because it is computationally expensive. To this end, we only minimize
the image residuals between patches that are evenly distributed along the line segment, as shown
in Figure 4. We define L̄c

k−1 as the image region where the endpoint depth is known at the previous
time k− 1, and at the current time k, the endpoints p and q are visible in the image domain Ωc

k.

L̄c
k−1 :=

{
p, q, wn

∣∣∣p, q ∈ Lc
k−1 ∧ π

(
TCBTkk−1TBC · π−1 (p, dp

))
∈ Ωc

k

∧π
(

TCBTkk−1TBC · π−1 (q, dq
))
∈ Ωc

k

}, (13)

where wn, n = 2, . . . , Nl − 1 refers to the intermediate point defined evenly along the line segment.
The intensity residual of line segment δIl is then defined as the photometric difference between

the pixels of the same 3D line segment point, i.e.,:

δIl (Tkk−1, l) =
1
Nl

Nl

∑
n=0

∣∣Ic
k (π (TCBTkk−1wn))− Ic

k−1 (TCBwn)
∣∣. (14)

In the case of n = 0 and n = Nl , the point wn refers to the endpoints p and q respectively.
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We further assume that the a prior T̃kk−1=̇
(
R̃, p̃

)
of the body coordinate system motion

increment is given. In this case, we define the residuals corresponding to the rotation prior and
the translation prior:

rR = log
(

R̃T
kk−1Rkk−1

)∨
rp = pkk−1 − p̃kk−1

. (15)

In order to jointly calculate the optimal pose increment, we unify the point features, line segment
features, and motion prior residuals into a least-squares optimization cost function. The goal is to
solve for incremental camera rotation and translation Tkk−1 = (R, p) by minimizing the sum of the
squared errors below:

(R∗, p∗) = arg min
(R,p)

r (R, p) , (16)

where:

r (R, p) = ∑
ui∈R̄c

k−1

1
2

∥∥δIp (Tkk−1, ui)
∥∥2

∑I
+ ∑

lj∈L̄c
k−1

1
2

∥∥δIl
(
Tkk−1, lj

)∥∥2
∑I

+
1
2
‖rR‖2

ΣR
+

1
2

∥∥rp
∥∥2

∑p
, (17)

where the covariance ∑p, ∑R is set according to the uncertainty of the motion prior, and the variable
(Rkk−1, pkk−1) is the current estimate of the relative position and rotation (represented in the B frame).
A logarithmic map transforms a rotation matrix to its rotation vector.

c
k

I

1
u

CBT

ip

iq
iw

1
c
k

I 

CBT

1u ip

iq
iw

, 1k kT 

1

iP iW
Qi

Figure 4. Relative pose between the current frame and the previous frame parameterizes the position of
the reprojection point in the new image. Perform sparse image alignment to minimize luminosity error
between image blocks corresponding to the same 3D point (blue block) to solve pose increment Tkk−1.

To facilitate the solution, we write the cost function in matrix form.

C (R, p) = r(R, p)TΣ−1r (R, p) , (18)

where Σ is a block diagonal matrix consisting of measurement covariances. The solution to the
optimization variable is non-linear, equivalent to solving a least-squares problem. We use the iterative
method Gauss-Newton to solve this problem, adding the following perturbations to the optimization
variable rotation R and translation p:
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R′ = R ∗ exp
(
δφ∧

)
, p′ = p + Rδp. (19)

The operator (.)∧ turns a three-dimensional vector into an orthogonal matrix of 3 × 3, where
φ is a Lie algebra. The perturbation form is used to define the residual function in the vecto space.
This allows us to linearize the current estimated quadratic costs, form normal equations, and solve
them for the best perturbations:

JTΣ−1J
[
δφTδpT

]T
= −JTΣ−1r (R, p) . (20)

We introduce the matrix J, which superimposes all Jacobian matrices from linearization.
The solution result is then used to update the estimate of Tkk−1 = (R, p) according to
Equation (19). This process is repeated until the norm of the update vector is small enough,
which indicates convergence.

In the following, we give the Jacobian matrix obtained by linearizing the residual:

∂rR
∂δφ

= J−1
r

(
log
(

R̃TR
))

∂rp

∂δp
= R

∂rIC
ui

∂δφ
= −

∂IC
k−1 (u)

∂u

∣∣∣
u=π(cρi)

∂π (ρ)

∂ρ

∣∣
ρ=cρi

RCBρ∧i

∂rIC
ui

∂δp
= −

∂IC
k−1 (u)

∂u

∣∣∣
u=π(cρi)

∂π (ρ)

∂ρ

∣∣
ρ=cρi

RCB

, (21)

where J−1
r is the inverse of the SO(3) right Jacobian matrix,

∂IC
k−1(u)
∂u is the image derivative at pixel u,

and ∂π(ρ)
∂ρ is the derivative of the camera projection model. For the standard pinhole camera projection

model focal length
(

fx, fy
)

and camera center
(
cx, cy

)
, we define:

∂ρ (ρ)

∂ρ
=

[ fx
z 0 − fx

x
z2

0 fy
z − fy

y
z2

]
, ρ = [x, y, z]T . (22)

J−1
r (φ) = I +

1
2

φ∧ +

(
1

‖φ‖2 +
1 + cos (‖φ‖)

2 ‖φ‖ sin (‖φ‖)

) (
φ∧
)2. (23)

In this case, we look for the linear Jacobian determinant of the line segment residual, which can
be expressed as the sum of the Jacobian determinants for each intermediate point wn of the sample:

∂rIC
li

∂δφ
=

1
Nl

Nl

∑
n=0

∂rIC
wn

∂δφ

∂rIC
li

∂δp
=

1
Nl

Nl

∑
n=0

∂rIC
wn

∂δp

. (24)

Then, we can estimate the optimal pose by the robust Gaussian Newton minimization of the above
cost function in Equation (18). Note that this formula allows for fast-tracking of line segments without
the need to extract and match LSD segment features, and the traditional feature-based approach
introduces high computational load.
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3.3. Feature Alignment

In the previous step, we estimated the incremental motion between successive frames by sparse
image alignment. With the known pose Tkk−1, we can reproject all visible 3D features into the new
image to get an initial estimate of the position. Because of the inaccuracy of the 3D feature position,
the feature position in the new image can be improved. In order to reduce the drift of the pose,
the camera pose should be further aligned with the map, not just the previous frame. The feature
alignment method selects the older keyframes as a reference for feature alignment, ignoring the
geometric constraints given by the re-projection of the 3D points and performing a separate 2D
alignment of the corresponding feature blocks.

All 3D points in the map visible in the new image are projected onto the image plane, resulting
in a corresponding 2D feature position estimate u′i (as shown in Figure 5). For each re-projection
feature, the visual keyframe closest to the new image is determined to be the reference frame. Next,
all 2D feature positions are respectively optimized by establishing photometric errors of the feature
blocks in the new image and the feature blocks in the corresponding keyframe r. The 2D feature
alignment minimizes the intensity difference of the small image block P centered on the feature
projection position u. The size of the P of the image block is a larger 8 pixels × 8 pixels because the
closest keyframe we project the feature is usually farther away. In order to improve the accuracy
of the alignment, we apply the affine warping A to the reference block, which is calculated from
the relative estimated pose Tkr between the reference frame and the current frame. For the corner
feature, the optimization calculates the correction of the predicted feature position u′, minimizing the
photometric cost function:

u′∗ = u′ + δu∗, with u′ = π
(

TCBTkrTBCπ−1
d (u)

)
. (25)

δu∗ = arg min
δu

∑
∆u∈P

1
2

∥∥Ic
k
(
u′ + δu + ∆u

)
− Ic

r (u + A∆u)
∥∥2, (26)

where ∆u is an iterator variable that is used to calculate the sum of patch P. This alignment is solved
using the inverse component Lucas-Kanade algorithm.

c
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Figure 5. The 2D position of each point is individually optimized to minimize photometric errors in its
image block. For line segments, the endpoints are similarly optimized.

In the case of a line segment, we only need to refine the position of the 2D endpoint, which defines
the line equation used for projection error estimation:

w′j = arg min
w′ j

∥∥Ic
k
(
w′ j
)
− Ic

r
(
Aj ·wj

)∥∥2, ∀j, (27)
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where w′j is the two-dimensional estimated position of the feature in the current frame (p′j, q′j
representing the two endpoints of the line segment, respectively), and wj is the position of the
feature in the reference frame r. For line segments, this is a bold assumption because their endpoints
are much less than the description of the key points.

In comparison with the feature-based approach, in this step we skip the limits of the polar
constraint, but achieve the feature correlation of subpixel precision.

3.4. Pose and Structure Refinement

After feature alignment, we established feature correlations related to subpixel precision.
However, feature alignment violates the epipolar line constraint and introduces a reprojection error δu.
After separately optimizing the position of each feature in the image by skipping the epipolar line
constraint, the camera pose obtained in Formula (16) must be further refined by minimizing the
reprojection error between the 3D feature and the corresponding 2D feature position in the image (see
Figure 6). If the new image frame is a keyframe, the next step is to perform a bundle adjustment of
the local map. We define the vector χ∗ as the variable to be optimized, including the pose Tkw of the
new keyframe, the position ρi of each 3D point, and the 3D position

{
Pj,k, Qj,k

}
of each end of the line

segment. Therefore, in the final step of motion estimation, we refine the camera pose and landmark
position χ∗ =

{
Tkw, ρi, Pj,k, Qj,k

}
by minimizing the sum of the squares of the reprojection errors:

χ∗ = arg min
χ

∑
k∈K

∑
i∈PC

k

1
2

∥∥rp (Tk,w, ρi)
∥∥2

+ ∑
k∈K

∑
i∈LC

k

1
2

∥∥∥rl

(
Tk,w, Pj,k, Qj,k, lj

)∥∥∥2
, (28)

where K is the set of all keyframes in the map, PC
k is the set of landmarks associated with all the corner

features, and LC
k is the set of line features observed in the kth keyframe.
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Figure 6. In the final step of motion estimation, the camera pose and structure (3D points and
line segments) are optimized to minimize the reprojection errors established in the previous feature
alignment steps.

In the above formula, the projection error rp represents the distance error between the feature
position u of the image plane optimized in the previous step and the corresponding map projection
point, which can be expressed as:

rp (Tk,w, ρi) = u− π (TCBTkwρi) . (29)

The processing of line segments is slightly different because we cannot simply compare the
position of the endpoint because it may be shifted along the line or occluded from one frame to the next.
To this end, we consider the distance between the projected endpoint of the 3D line segment and the
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corresponding infinite line in the image plane as an error function. In this case, the projection error rl
of the line segment can be expressed as:

rl

(
Tk,w, Pj,k, Qj,k, lj

)
=

 lj · π
(

TCBTkwPj,k

)
lj · π

(
TCBTkwQj,k

)  , (30)

where Pj,k and Qj,k refer to the 3D endpoint of the line segment in the world coordinate system, and lj
is the infinite line equation corresponding to the 3D line segment in the image plane, which can be
obtained by the cross product between the 2D endpoints of the line segment in the image plane, i.e.,:
lj = pj × qj. The reprojection error of a line segment is defined as the vector product of the projection
of the two endpoints Pj,k, Qj,k of the 3D line segment and lj at the image plane.

3.5. Map

The task of the mapping thread is to estimate the depth information of the key frame image
feature points and line segments whose depth is unknown. The depth error model of the pixel is
regarded as a probability distribution, and the inverse depth of the Gauss-uniform mixture distribution
(the depth value obeys the Gaussian distribution, and the probability of the outlier point obeys the
Beta distribution) is called a depth filter. Each feature point serves as a seed (a pixel whose depth
is not converged) and has a separate depth filter. The depth filter mainly performs the following
two steps.

Initialize the seed: If a keyframe is entered, the new feature points on the keyframe are extracted,
and the depth filter is initialized and placed as a seed point in a seed queue.

Update seed: If a normal frame is entered, the probability distribution of all seed points is updated
with the information of the normal frame; if the depth distribution of a seed point has converged, it is
placed in the map for use by the tracking thread.

For line segment features, we need to estimate the three-dimensional coordinates of the
two endpoints. The LSD line segment feature is extracted in the key frame, and the endpoint is
used as an initialization seed to update the seed in the non-key frame. This also incorporates line
segment features into the unified framework of the depth filter.

4. Experimental

To evaluate the performance of the proposed algorithm, we tested our algorithm on the public
visual inertial dataset EuRoC [42] and compared it with other open-source SLAM algorithms. EuRoC is
stereo IMU datasets collected in the room by Swiss Federal Institute of Technology Zurich using drones.
The datasets consist of two scenes, a mechanical room and a man-made common room. The hardware
device includes a global shutter stereo camera with a frequency of 20 Hz and an IMU sensor
with a frequency of 200 Hz. The datasets contain a total of 11 sequences, each of which provides
ground-truth. In addition, the calibrated camera internal parameters and IMU-camera joint external
parameters are also provided in the datasets.

The experiment was performed on a personal computer configured with an Intel Core i5-7500
CPU, 3.4 GHz × 4, 8 GB RAM. Section 4.1 compares our method with the state of art methods and
gives detailed evaluation results.

4.1. Experimental Results

Before conducting the accuracy analysis of the experimental results, we first introduce the
indicators for measuring accuracy. When evaluating the accuracy of the SLAM algorithm, there are
two main indicators: Relative Pose Error (RPE) and Absolute Pose Error (APE). The relative pose error
is calculated over a fixed time interval, which measures the local correctness of the estimated trajectory.
Let the estimated pose be Pi ∈ SE (3) , i = 1 . . . n, the true value of the pose is Qi ∈ SE (3) , i = 1 . . . n,
and the relative pose error of the time i is defined as:
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Ei =
(

Q−1
i Qi+∆

)−1 (
P−1

i Pi+∆

)
. (31)

Absolute pose error: The global error of the trajectory is measured by comparing the estimated
distance between the pose and the ground-truth, which can reflect the degree of deviation of the
global path. Let the estimated pose be Pi ∈ SE (3) , i = 1, . . . , n, the true value of the pose is
Qi ∈ SE (3) , i = 1, . . . , n, and the absolute pose error of the time i is defined as:

Ei = Q−1
i Pi. (32)

The root mean square error can be calculated using the absolute pose error at all times:

RMSE (Ei:n) =

(
1
m

m

∑
i=1
‖trans (Ei)‖2

) 1
2

. (33)

We will compare the proposed method with the current state-of-the-art open-source algorithms
ORB-SLAM [10] and OKVIS-mono [31]. As an extension of SVO, we also compare our algorithm
with the original SVO. The experiment is unified on the data on the left image, and the estimated
trajectory is saved and compared with the ground-truth. Using the open-source evaluation tool
Evo [43] (github.com/MichaelGrupp/evo) to evaluate, the RPE and APE between the estimated
trajectory and the ground-truth can be directly obtained, and each algorithm is evaluated 5 times
on average.

Next, we evaluate the tracking results of the proposed algorithm for point and line features
between consecutive frames. As shown in Figure 7, the figure shows the tracking results of point
and line segment features between consecutive frames on the MH_02_easy sequence. Point features
are shown in green and line segments are shown in red. As can be seen from Figure 7, a large
number of line features are successfully tracked between consecutive frames, which is advantageous
for improving the accuracy of the pose estimation.

(a) (b)

(c) (d)

Figure 7. The MH_02_easy sequence tracks the point and line features of successive frames. The points
are indicated in green and the segments are indicated in red. Figure (a–d) are consecutive images on
the MH_02_easy sequence, drawed with point and line features which can be successfully tracked.
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Figure 8 shows a comparison of the estimated trajectory and the reference trajectory of our
algorithm on several sequences. The dashed line indicates the ground-truth of the sequence, and the
solid line is the trajectory estimated by our algorithm, and the color indicates the APE error from the
true value. As we can see, our algorithm shows good performances on different sequences.

(a) (b)

(c) (d)

Figure 8. The comparison of the estimated pose trajectory and the ground-truth on several
EuRoC sequences. (a) MH_01_easy; (b) MH_02_easy; (c) MH_03_medium; (d) V2_01_easy. The dashed
line indicates the reference trajectory, the solid line is the trajectory estimated by our algorithm, and the
color indicates the absolute pose error (APE) error from the true value.

For detailed analysis, we have visualized the APE and RPE in a sequence. As shown in
Figures 9 and 10, we paint the APE and RPE error on MH_02_easy over time. We can analyze
from this that the RPE and APE are relatively large when camera moves faster.

For quantitative evaluation, our algorithm is compared to OKVIS-mono, ORB-SLAM, and SVO.
The algorithm in this paper has no loop-closure detection and global bundle adjustment optimization.
For a fair comparison, compare our algorithm to ORB-SLAM and OKVIS-mono without loop-closure.
As shown in Table 1, in a total of 8 sequences, our method achieved the smallest APE error in the
three sequences MH_01_easy, MH_02_easy, V2_02_medium, and OKVIS-mono achieved the smallest
APE error in the remaining five sequences. From the above analysis, we can achieve an absolute
attitude evaluation result with OKVIS-mono, which is better than the ORB-SLAM algorithm without
loop-closure. Compared to SVO, we achieved better performance in the four sequences MH_01_easy,
MH_02_easy, V2_01_easy, V2_02_medium. However, SVO tracks failures in most sequences, and our
algorithm can successfully track the entire trajectory, showing superior robustness.
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We further estimate the results of the algorithm on the RPE and evaluate the local trajectory
accuracy of the algorithm. Figure 9 shows the RPE over time in the MH_01_easy sequence. Table 2
shows the root mean error (RMSE) of the translation part of the RPE of our algorithm on 8 different
sequences and compared with ORB-SLAM and OKVIS-mono. Our proposed algorithm achieves the
smallest RPE error in seven sequences. It shows that the local location accuracy of the algorithm is
very high.

Figure 9. Absolute pose error of MH_01_easy sequence as a function of time.

Figure 10. Relative pose error of MH_01_easy sequence as a function of time.
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Table 1. Evaluation results of the evo tools on different algorithms. The table shows the error in the
translation part of the APE in meter. Bold numbers indicate that the estimated trajectory is closer to
the true value. The results of ORB-SLAM are for reference only and do not participate in comparison.
Compare our algorithm to Oriented FAST and Rotated BRIEF-Simultaneous Localization and
Mapping (ORB-SLAM) (no loop closure), Open Keyframe-based Visual–Inertial SLAM (OKVIS-mono),
and semi-direct VO (SVO).

Ours ORB-SLAM (No Loop Closure) OKVIS-Mono SVO
Sequences APE (Translation) APE (Translation) APE (Translatin) APE (Translation)

MH_01_easy 0.076546 0.61 0.394244 0.17
MH_02_easy 0.227209 0.72 0.309899 0.27

MH_03_medium 0.927710 1.70 0.316398 0.43
MH_04_di f f icult 1.852429 6.32 0.432456 1.36
MH_05_di f f icult 2.574021 5.66 0.496211 0.51

V1_01_easy 1.089041 1.35 0.073794 0.20
V2_01_easy 0.203892 0.53 0.150363 0.30

V2_02_medium 0.192047 0.68 0.207845 0.47

Table 2. Evo tool evaluation results on different algorithms. The table shows the error in the translation
of the relative pose error (RPE) in meter. Bold numbers indicate that the estimated trajectory is closer
to the true value.

Ours ORB-SLAM OKVIS-Mono
Sequences RPE (Translation) RPE (Translation) RPE (Translation)

MH_01_easy 0.027975 0.574031 0.068366
MH_02_easy 0.028485 0.467114 0.064683

MH_03_medium 0.070834 1.333867 0.172124
MH_04_di f f icult 0.173901 0.728156 0.094539
MH_05_di f f icult 0.065546 0.637773 0.139324

V1_01_easy 0.027194 0.585675 0.049214
V2_01_easy 0.019217 0.230216 0.044451

V2_02_medium 0.043202 0.625564 0.094399

In order to analyze the impact of loop closure on APE, we compared the ORB-SLAM algorithm
with and without loop closure on APE. The results show in Table 3. It can be seen from the comparison
of the presence or absence of loop-closure of the same sequence that the global error APE is reduced
by adding loop-closure detection. The reason for the analysis shows that the purpose of loop-closure
detection and global optimization is to reduce the cumulative error and make the system output
trajectory have global consistency, which is consistent with the experimental results obtained in this
paper to reduce the APE error.

Table 3. Evaluation results of the evo tools on ORB-SALM algorithms. The table shows the error in the
translation part of the APE in meter. Bold numbers indicate that the estimated trajectory is closer to the
true value.

ORB-SLAM ORB-SLAM (No Loop Closure)
Sequences APE (Translation) APE (Translation)

MH_01_easy 0.043234 0.61
MH_02_easy 0.037499 0.72

MH_03_medium 0.036133 1.70
MH_04_di f f icult 0.062301 6.32
MH_05_di f f icult 0.065937 5.66

V1_01_easy 0.094841 1.35
V2_01_easy 0.056340 0.53

V2_02_medium 0.056987 0.68
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4.2. Processing Time

Finally, we analyze the processing time comparison between the direct method of combining
point and line features and the feature-based method. Table 4 shows the comparison of the mean
consumption time of tracking one frame using our algorithm with other algorithms. We also recorded
the runtime of each module of the algorithm in this paper. The time of each module of the algorithm
in this paper is shown in Table 5.

Table 4. The mean time to process a camera frame on a hardware platform using the Intel Core i5-7500
CPU (3.4 GHz × 4).

Meantime (ms)

This Work 11.91
ORB-SLAM (No loop closure) 28.25

OKVIS-mono 25.16

Table 5. The algorithm in this pap5.

Meantime (ms)

Pyamid Creation 0.23
Sparse Image Alignment 4.37

Feature Alignment 6.58
Pose and Structure Refinement 0.73

Total Motion Estimation 11.91

By analyzing Tables 4 and 5, it can be concluded that on the same hardware platform, the average
time of our algorithm to process one camera frame is 16.34 ms less than the ORB-SLAM without
loop-closure, which indicates that the real-time performance of the algorithm is good. This is also the
advantage of the direct method compared to the feature-based method. The reason for the analysis
shows that our algorithm does not need to detect and match features in every frame. Especially for
line segment features, LSD line segment feature detection and LBD [44] line segment feature matching
scheme is a feature time-consuming method. Our method only performs feature extraction of points
and line segments on key frames in the map thread. The feature-based method ORB-SLAM requires
feature matching between successive frames and between the latest frames and maps, which takes
a lot of time.

4.3. Discussion

The algorithm in this paper can be seen as an extension of SVO, adding line segment features
and motion priors. In challenging environments such as lighting changes, motion blur, and fast
motion, camera tracking robustness can be improved. Compared with the feature-based method,
this algorithm is based on the direct method to construct the photometric error of adjacent frames,
which is free of feature extraction and matching of image frames, and can achieve fast tracking with
competitive accuracy. Compared with SVO, the line segment feature can increase the number of
feature tracking. When the point feature tracking is insufficient, the line segment feature can increase
the number of feature tracking, increase the probability of successful consecutive frame tracking,
and improve the robustness of the algorithm. Combined with the motion prior information of IMU,
the accurate scale is successfully restored.

Compared with the ORB-SLAM and OKVIS-mono algorithms, the algorithm does not have
loop-closure detection and global bundle adjustment module to reduce the long-term accumulated
trajectory drift. Therefore, the absolute pose error (APE) of the estimated trajectory is slightly
weaker, but better than the ORB-SLAM algorithm without the loop-closure detection module.
However, the relative pose error (RPE) is kept at a good level, and most of the EuRoC datasets
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sequences are superior to ORB-SLAM and OKVIS-mono. The algorithm of this paper is accurate
enough to estimate the pose change of adjacent frames, and the short-term pose estimation can achieve
better accuracy. For applications that require short-term fast motion estimation, our algorithm is more
suitable for such scenarios, and for map reconstruction, the ORB-SLAM algorithm is more suitable for
reconstructing accurate scene maps. The algorithm in this paper is significantly faster than the other
two methods under similar accuracy, so it is more suitable for lightweight applications, such as AR
applications on the mobile terminal, to achieve fast tracking with a small computational load.

5. Conclusions

In this paper, we propose a novel visual odometry algorithm, which can be seen as an extension
of SVO, combining line segment features and motion prior information. Line features help to improve
system robustness in the lack of point features, such as weak textures and illumination change, so we
have a more robust system. When a new camera frame is introduced, there is no need to detect and
match features, achieving faster speed and less resource consumption than a feature-based approach
with similar accuracy.

The direct method can quickly track line segment features and combine motion prior to obtaining
accurate scales. We also provide a comparison of the proposed algorithm with the most advanced
SLAM method on the EuRoC datasets, including OKVIS-mono, ORB-SLAM. The experimental results
show that the proposed algorithm has a smaller RPE error, better than ORB-SLAM and OKVIS-mono,
indicating better local accuracy. For the absolute pose error, the algorithm can achieve the accuracy
equivalent to OKVIS-mono, which is better than the loop-closure ORB-SLAM algorithm. Compared
with semi-direct method SVO, our method shows better results in half of the total sequences and has
better robustness. In addition, we also evaluate the mean time that the algorithm takes to process one
image frame. The results show that the algorithm has a great speed advantage and better real-time
performance than ORB-SLAM and OKVIS-mono.
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