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Introduction
The brain’s capacity to adapt to a changing envi-
ronment and effectively navigate daily activities is 
grounded in neuronal plasticity. Synaptic (re)

organization, dendritic remodeling, neuron-glial 
coupling, and epigenetic processes are mechanisms 
that underlie neuroplasticity, and consequently 
facilitate memory formation and consolidation.1–5 
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Brain activity-dependent pre- and postsynaptic 
specialization peaks in adolescence and continues 
at significantly lower turnover rates throughout 
life.1,2 Serotonergic modulation has been shown to 
influence learning and memory across species. 
Tryptophan depletion studies demonstrated dimin-
ished cognitive performance in animals, healthy 
participants, and patients.6–8 In a systematic review 
of effects of chronic selective serotonin reuptake 
inhibitors (SSRI) administration in healthy indi-
viduals, Knorr et al.9 reported significant changes in 
various physiological, behavioral, and neurophysi-
ological parameters, while also depicting marginal 
to no effects with regards to other parameters. In 
rodents, SSRIs have been shown to improve mem-
ory consolidation and relearning.10

The serotonergic neurotransmitter system is 
involved in neuronal organization and adaptation 
and affects neuronal circuit formations by regulat-
ing neuroplastic processes at the synaptic level.11 
Serotonergic agents such as SSRIs are frequently 
prescribed to treat mental disorders such as depres-
sion and anxiety12 and found to unfold action by 
modulating cell cascades that are relevant for neu-
ronal restructuring. SSRIs elevate protein synthe-
sis of cyclic adenosine monophosphate (cAMP) 
response element binding protein (CREB) and 
brain-derived neurotrophic factor (BDNF), two 
proteins that affect synaptic formation and subse-
quently memory and learning.13–15 Recent discov-
eries by Castrén and colleagues indicate a direct 
link between SSRIs and neuroplasticity that is 
mediated in part by the affinity of SSRIs to neuro-
tropic growth factor receptors.16 Stress models in 
animals are implemented to explore the relation-
ship between neuropathophysiology and behavior. 
Such studies have consistently shown an associa-
tion between dendritic degeneration and a decline 
in cognitive functioning. In fact, impairments of 
working memory and attentional set-shifting are 
consequences of stress.17,18 Notably, SSRIs have 
been shown to reverse both stress-induced hip-
pocampal and prefrontal dendritic atrophy as well 
as depressive behavior and are also suggested to 
balance neurotransmission by enhancing the syn-
thesis of synaptic cell adhesion molecules.19,20

Structural magnetic resonance imaging (MRI) has 
been used frequently to examine learning-induced 
neuroplasticity in numerous interventional stud-
ies.4 As a consequence of training and learning, 
physical activity and perceptual stimulation, the 
expansion of gray matter has been observed in 
stimulus-specific brain regions, suggesting that 

high-frequency, non-pharmacological interven-
tions impact neuronal activation and prime MRI-
detectable, morphological changes.21–23 With 
regard to brain plasticity, antidepressants have been 
found to alter gray and white matter as well as neu-
rotransmitter levels.24–28 These types of changes 
have been shown to affect learning and cognition in 
healthy cohorts, and to be clinically relevant.9,29

Several neuroimaging studies have focused on the 
assessment of SSRIs properties on neural activa-
tion during emotional and neutral processing 
using functional MRI.26,30,31 However, surpris-
ingly few studies have addressed structural brain 
changes following long-term administrations of 
SSRIs. In two imaging studies, SSRIs were found 
to affect gray matter of healthy humans and non-
human primates, with findings suggesting diver-
gent SSRI effects for healthy compared to 
depressive individuals.32,33 Further investigations 
are needed, since the mechanisms underlying the 
serotonergic modulation of gray matter, espe-
cially in combination with learning and memory 
consolidation, are insufficiently understood.

Aims of the study
This longitudinal drug- and learning-intervention 
study aimed to test the effects of serotonergic 
modulation on neuroplasticity using structural 
MRI during relearning. We hypothesized that 
SSRIs affect brain areas comprising the hip-
pocampus and parahippocampus during associ-
ative learning and relearning, independent of 
content, whereas relearning with emotional con-
tent would expand neuronal recruitment and 
thus change gray matter of emotion-regulating 
brain regions such as the amygdala, prefrontal 
cortex (PFC), insula, and anterior cingulate 
cortex.

Methods

Study design
To assess SSRI-evoked structural brain changes, 
we conducted a randomized double blind pla-
cebo control, monocenter (re)learning study in 
healthy individuals. Structural MRI measure-
ments were carried out at 3 time-points through-
out the study: at baseline, after associative 
learning and finally after associative relearning, 
with a respective time-interval of 3 weeks between 
MRI sessions. Before MRI-assessment and asso-
ciative learning, participants were randomly 
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assigned to an associative learning group with or 
without emotional valence as well as to the sub-
stance group (escitalopram vs placebo). The 
emotional group consisted of pairwise matching 
of face pictures, whereas the group without emo-
tional content comprised of associations of 
Chinese characters with unrelated German 
nouns (i.e., the nouns are not accurate and are 
chosen randomly). The emotional (i.e., faces) 
group pairs shown indicate positive and neutral 
valence. After a 3-week learning period, partici-
pants either received a daily dose of 10 mg escit-
alopram or placebo while relearning new 
associations of the previously learned pairs, 
within the same group, for a further 3 weeks. For 
details and illustration, see Figure 1.

Study participants
The planned sample size of this study was 80 
healthy participants that completed the study. 

General health was assessed through the medical 
history and a physical examination. A structured 
clinical interview for DSM-IV (SCID I) was 
conducted to assure mental health. Besides gen-
eral health, willingness and competence to par-
take in this study, further inclusion criteria 
consisted of being between 18 and 55 years of 
age, right-handed and non-smoking. Exclusion 
criteria comprised any medical, psychiatric or 
neurological illness, any lifetime use of SSRIs, 
first-degree relatives with a history of psychiatric 
illness, color blindness, non-European ancestry, 
MRI contraindications and knowledge of the 
Japanese Kanji or the Chinese Hanzi. Participants 
that dropped out were replaced.

The study was registered at clinicaltrials.gov with 
the identifier NCT02753738. The distributions of 
sex and age in between groups were tested using 
Fisher’s exact and that of age with a Kruskal–Wallis 
test.

Figure 1. Study design. Healthy participants performed a computer-based association learning paradigm with 
(face pairs) and without emotional content (Chinese characters and unrelated German nouns) on a daily base 
for three weeks. Subsequently, individuals had to relearn shuffled associations (within their group) for a further 
3 weeks while receiving either a daily dose of 10 mg escitalopram or placebos. MRI measurements were scheduled 
at baseline, after associational learning (3 weeks) and after associational relearning (another 3 weeks). Study 
participants were randomly assigned to learning groups and treatment conditions (escitalopram vs placebo).
sMRI: structural magnetic resonance imaging.
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Associative learning paradigm
Associative learning paradigms using faces are 
associated with activation of hippocampal and 
parahippocampal.34–36 Work by our group dem-
onstrated neural activation of the amygdala, the 
frontal cortex and the fusiform gyrus in individu-
als performing facial emotion processing para-
digms.37,38 Also, Chinese characters in 
combination with German nouns represent com-
plex symbols lacking emotional valence where 
peak activations in semantic memory related areas  
was expected. Therefore, each participant was 
required to learn 200 image pairs via an in-house 
developed, online platform as previously pub-
lished.39,40 The image pairs were presented 
sequentially for 5 seconds, whereas each session 
consisted of a pseudorandom sub-selection (i.e. 
sampling with replacement) of 52 randomly 
selected image pairs of either faces or Chinese 
characters to German nouns. This creates a large 
subset of different pairs that was presented every 
day. After 7 days of learning, participants have 
been familiar with approximately 88% of the 
whole set by chance. Therefore, 21 days allows for 
each participant to familiarize themselves with 
each pair approximately 3 times before the next 
session MR session. Each learning session was fol-
lowed by a retrieval phase with a pseudorandom 
selection of 52 single images from all previously 
learned pairs. The correct association had to be 
selected out of 4 possible answers. The faces were 
extracted from the ‘10k Adult Faces Database’.41 
Each participant in the faces group was exposed to 
every facial stimulus during the learning and 
relearning phases, though at different days due to 
the randomization. Learning days 1, 22, and 42 
were completed during MRI session.

Study drug administration and monitoring
The verum subgroup received Escitalopram 
(Cipralex® Lundbeck A/S, provided by the 
Pharmaceutical Department of the Medical 
University of Vienna) 10 mg orally per day (o.p.d.) 
for 21 days during relearning (i.e. after the second 
MRI). A steady-state blood-level of escitalopram is 
obtained after 5 to 7 days (~ 5 elimination half-
lives) and 10 mg o.p.d. is a therapeutic dose that 
leads antidepressive effects following 2 to 3 weeks 
of continuous intake.12,42 Also, we previously per-
formed a longitudinal imaging study where escit-
alopram was administered to patients and healthy 
individuals and observed a comparably good toler-
ability.24,38 The other half of the study participants 
received placebo tablets for 21 days as a control 

group. To warrant adherence to study procedures 
and in particular to the administration of the study 
drug, pill count as well as an assessment of escit-
alopram plasma through levels were preformed 1, 
2, and 3 weeks after administration start (i.e. after 
the second MRI). The last blood sampling was 
performed directly before the third MRI. 
Escitalopram plasma levels were assessed with 
liquid chromatography–tandem mass spectrom-
etry (LC-MS/MS) at the Clinical Department of 
Laboratory Medicine of the Medical University of 
Vienna. The therapeutic reference range for escit-
alopram it is 15–80 ng/ml.43

MRI acquisition and processing
Each MRI session was conducted using a 3 Tesla 
MR Scanner (MAGNETOM Prisma, Siemens 
Medical, Erlangen, Germany) and a 64-channel 
head coil at the High-field MR Center, Medical 
University of Vienna. Whole brain T1 images 
were acquired during each MRI session, 
[Repetition time (TR) = 2300 ms; echo time 
(TE) = 2.95 ms; inversion time (TI) = 900 ms; 
flip angle (α) = 9°; PAT = GRAPPA2; 
matrix = 240 x 256, 176 slices; 1.05 x 1.05 x 
1.20 mm3; acquisition time (TA) = 5:09 min].

Surface-based analysis using FreeSurfer 6.0
The automated recon-all pipeline implemented in 
the FreeSurfer 6·0 software with default parameters 
was used for cortical surface reconstruction and par-
cellation of 34 cortical regions for each hemisphere, 
subcortical regions and the thalamus (Harvard 
Medical School, Boston, USA; http://surfer.nmr.
mgh.harvard.edu/). A within-participant template 
was created via inverse consistent registration using 
all time points for the longitudinal processing pipe-
line, which included the following processing steps: 
skull stripping, Talairach registration, and initializa-
tion of cortical surface reconstruction, cortical atlas 
registration, and subcortical parcellation.44 Cortical 
thickness and subcortical volumes for the Desikan-
Killiany (DK) atlas45 were extracted at each time 
point. After the automated processing, all volumes 
were visually inspected.

Voxel-based morphometry (VBM) analysis using 
CAT12
To calculate the voxel-based morphometric 
changes, data were processed using the CAT12 
 toolbox (https://neuro-jena.github.io/cat/) in MATLAB 
(version 9.4) via the CAT12 longitudinal pipeline 
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with default settings. Prior to preprocessing, all 
raw data were visually inspected for potential arti-
facts. For each participant, the scans for all 3 time 
points were registered, resampled and bias-cor-
rected. Each scan was then skull stripped and seg-
mented into gray matter, white matter and 
cerebrospinal fluid. Finally, these maps were 
transformed into MNI space and spatially 
smoothed using an 8-mm Gaussian kernel. 
Finally, the CAT12 reports and output data were 
visually controlled for miss registrations and seg-
mentation errors.

Statistics
The effects of substance, learning content and time 
on cortical thickness and subcortical volumes were 
analyzed using SPSS 25.0. To this end, a four-way 
repeated measures analyses of variance (rmANO-
VAs) was set up to test for substance * content * 
time * region of interest (ROI) interaction effects 
and lower. According to our hypothesis, we 
included cortical thickness of the following regions: 
hippocampus, amygdala, rostral, and caudal ante-
rior cingulate (frontal), parahippocampal, rostral 
middle frontal (frontal cortex), pars orbitalis (fron-
tal cortex), and the frontal pole. Subsequent, a sec-
ond rmANOVA was performed including all 34 
cortical, subcortical regions, and the thalamus 
extracted from the DK atlas.45 Statistical analysis of 
the VBM data was performed using the CAT12 
toolbox within SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/). To elucidate substance x content x 
time interaction effects on gray matter density on a 
voxel level a 2 * 2 * 3 rmANOVA was modeled. 
VBM analyses were corrected for multiple testing 
using Gaussian random field theory on a cluster 
level only as implemented in SPM12 where the 
threshold for significance was set at p ⩽ 0.001 
uncorrected and subsequently at p ⩽ 0.05 family-
wise error (FWE)-corrected. The threshold for sig-
nificance was set at p ⩽ 0.05 family-wise error 
(FWE)-corrected after p ⩽ 0.001 uncorrected at 
the voxel-level. Interaction effects were dropped in 
case of non-significance in both surface- and 
 volume-based analyses. Thereafter, we repeated 
rmANOVA only with study participants that devel-
oped escitalopram blood levels within the reference 
range and compared them to age- and sex-matched 
controls from the placebo group. Also, the mean 
VBM values of participants in the verum group, 
extracted from each ROI was correlated with their 
escitalopram blood plasma levels using Spearman’s 
correlation. To test if associative learning and 
relearning occurred, we compared learning and 

relearning performance levels from the beginning 
and the end of each learning period. According to a 
previous published study of our group,46 we 
assessed performance of the initial and final retrieval 
(to elude outliers due to exceptional sup- or inferior 
retrieval performance on a single day, we averaged 
retrieval performance from 3 initial and final days 
of each period; for details see).46 Linear mixed 
models were estimated for each learning phase sep-
arately to test for main and interaction effects, with 
time points, learning group and substance group as 
the fixed effects and subject as the random effect 
(age and sex were included as covariates). Also, to 
control for learning effects, we compared perfor-
mance levels (correct answers, mean value of 
21 days in %)47 of individuals developing proper 
escitalopram concentrations with individuals 
beneath the therapeutic range and correlated per-
formance levels with gray matter density of the left 
DLPFC in participants with proper escitalopram 
concentrations. The significance threshold was set 
at p ⩽ 0.05. Bonferroni correction was used to cor-
rect for all post hoc comparisons in the VBM analy-
sis and for the number of ROIs and post hoc tests 
for the FreeSurfer parcellation. To correct for dif-
ferent brain sizes and volumes the total intracranial 
volume was included as a covariate.

Results

Study population
Out of the 138 participants recruited only 84 
successfully completed both phases of the study. 
Of the 84 participants, 4 were dropped due to 
insufficient data quality, further 3 individuals 
had to be excluded as their escitalopram plasma 
levels were under the measurable threshold  
(< 10 ng/mL) and 1 was dropped due to irregular 
learning performance. For the analyses, 76 par-
ticipants were encompassed the final sample 
which included, 44 women, 32 men, with a mean 
age (±SD) of 25.6 ± 5 years (age range: 
18-47 years; n = 8 > 30 years of age). No signifi-
cant group differences regarding age, sex or 
group participation numbers (p > 0.15) were 
found. See Table 1 for detailed demographics 
and participant stratification.

Side effects assessment of escitalopram and 
placebos
Thirty-six from 76 healthy participants that 
completed the relearning period with the last 
and third MRI developed side effects. None of 
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them developed serious adverse events. Twenty-
four out of 33 participants developed mild to 
moderate side effects (72%) in the drug inter-
vention group, in the placebo group 12 out of 43 
(28%). Thirteen out of 17 participants (76%) 
that developed sufficient escitalopram plasma 
levels at the third MRI suffered from mild side 
effects. Similar side effect rates (11/16; 69%) 
were found in the escitalopram group that did 
not develop escitalopram plasma concentrations 
within the reference range. The type side effects 
did not substantially differ between drug-groups, 
except for sexual dysregulation (escitalpram-
group: 7/33; placebo-group: 0/43). Side effects 
were mostly present in the first 7 days and did 
regress thereafter.

Associative learning and relearning
Linear mixed models were calculated to assess 
learning and subsequent relearning performances 
for learning and substance groups. We found a 
main effect of time (F = 125.01, p < 0.001), but 
no significant interaction effect of time and learn-
ing group (F = 0.04; p > 0.1) for the learning 
period, and similarly for the relearning phase 
(main effect of time F = 60.65, p < 0.001; no sig-
nificant interaction effect of time and learning 
group F < 0.01; p > 0.1). The average retrieval 

performance levels at the beginning and end the 
associative learning period were 57.0% 
(SD ± 16.1) and 72.2% (SD ± 20.2), and for 
the relearning 58.2% (SD ± 19.3) and 67.4% 
(SD ± 23.4). Post hoc analysis revealed that per-
formance levels increased significantly during the 
associative learning (p < 0.001) and relearning 
period (p < 0.001). The learning group did not 
have a significant influence on these findings, 
since the performance levels both learning group 
did significantly increase with time (for each com-
parisons p < 0.001).

Next, when analyzing data from the associative 
relearning period, we found no significant time-
by-substance interaction effect (F < 0.03; p > 0.1) 
and no significant 3-way interaction between 
time, learning group, and substance group 
(F < 1.69; p > 0.1), indicating that participants 
receiving escitalopram did not significantly differ 
in terms of learning and relearning from partici-
pants taking placebo. Similar increases of average 
performance levels were found for the escitalo-
pram and placebo group (verum group, initial 
average performance levels: 58.6%, SD ± 17.6, 
final average performance levels: 67.7%, 
SD ± 22.7; control group: 57.9%, SD ± 20.8, 
and 67.1%, SD ± 24.2; all comparisons 
p < 0.001).

Table 1. Demographics for all participants included in the final analysis. (A) indicates the demographics of the 
1st 3-week learning period, where participants were assigned to either learn faces pairs (emotional content) or 
Chinese characters and German nouns (non-emotional content). (B) shows the demographics for the second 
period, where participants had to relearn previously learnt associations (i.e. randomly shuffled pairs) while 
taking 10 mg/day escitalopram or placebos.

(A) Faces Character

Mean SD Mean SD

N 38 38

Age [years] 25.61 5.40 25.39 4.48

Sex [M/F] 13/25 19/19

(B) Verum Placebo Verum Placebo

Mean SD Mean SD Mean SD Mean SD

N 16 22 19 19

Age [years] 25.50 5.21 25.91 25.53 4.94 25.26 4.10

Esitalopram plasma 
concentration [ng/mL]

18.01 10.51 0 0 18.97 9.28 0 0

Sex [M/F] 7/9 6/16 8/11 11/8
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Analysis of cortical thickness
To test if SSRIs effecting the (para)hippocampal 
structures during associative relearning and emo-
tional content learning increasing the involvement 
of the amygdala, prefrontal cortex, insular, and the 
anterior cingulate cortex, a four-way rmANOVA 
was conducted to analyze interaction effects on the 
brain regions listed above. We found no significant 
4-way or lower interactions in both cortical and 
subcortical regions (pBonferroni > 0.05).

To test for interaction effects outside of our 
hypothesis on the remaining cortical and subcorti-
cal parcels, further four two-way rmANOVAs were 
run. No significant interactions (substance, con-
tent by time, ROI) in either cortical or subcortical 
structures were discovered (pBonferroni > 0.05). 
Also, no interaction effects of substance or content 
of learning with time were found in participants 
that developed adequate blood concentrations.

Analysis of voxel-based gray matter changes
To assess the influence of substance and learn-
ing content interactions on cortical gray matter 
and subcortical volume, a VBM analysis was 
also conducted. Again, no 3-way (substance, 
content by time) or lower interactions were 
found after correction for multiple comparisons 
pBonferroni > 0.05.

Analysis of study participants with sufficient 
escitalopram blood levels
In study participants that developed escitalopram 
blood levels within the therapeutic reference 
range (vs group and sex matched participants of 
the placebo group) the statistical analysis was 
repeated (see Table 2 for demographics and esci-
talopram blood levels). We found no 3-way inter-
action of substance group x relearning content x 
time. However, we demonstrate a 2-way interac-
tion between substance (escitalopram vs placebo) 
x time in this participant group. We examined 
increased gray matter density in the left PFC sub-
sequent to 3 weeks of escitalopram administration 
(pBonferroni < 0.05, peak voxel coordination: -42 
52-16, x y z; see Figures 2 and 3 for a visual depic-
tion). We found no differences in cortical thick-
ness in left lateral prefrontal regions following 
3 weeks of escitalopram administration. A corre-
lation between the mean VBM values of partici-
pants that developed sufficient blood levels 
extracted from the left dorsolateral prefrontal cor-
tex (DLPFC) and the escitalopram blood plasma 

levels yielded no significant relationship (p > 0.1, 
r < 0.2).

To control for potential effects of learning perfor-
mance on the left PFC, we compared perfor-
mance levels (percentages of correct answers, 
mean value of 21 days in %, according to Klöbl 
et  al.47) of participants with escitalopram levels 
within the therapeutic reference range with par-
ticipants not developing adequate escitalopram 
blood concentrations (<15 ng/ml) and found no 
significant differences between these groups 
(p > 0.05; two-sample t-test). In addition, we cor-
related performance levels with gray matter den-
sity of the left DLPFC in participants with proper 
escitalopram concentrations. We examined no 
significant correlation between performance and 
the left DLPFC (p > 0.05; r = 0.18).

Discussion
In this study, we investigated long-term effects of 
SSRI administration and relearning on gray mat-
ter in healthy humans in vivo. To ensure meth-
odological reliability, we performed surface-based 
and voxel-based gray matter analyses. We found 
no effects of escitalopram (vs placebo) or relearn-
ing (as well as on previous learning) on cortical 
and subcortical gray matter. Among those partici-
pants that received escitalopram and developed 
sufficient drug blood levels (n = 17), increased 
density in the left DLPFC was found. However, 
in this subgroup, there was no interaction between 
study drug and relearning content over time and 
no association of left DLPFC changes with learn-
ing parameters.

An abundance of research, from pharmacological 
to genetic to (pre)clinical studies, has aimed to 
clarify the role of serotonin in neurobiological 
mechanisms and its relevance to the development 
of neuropsychiatric disorder. Given this vast 
effort in the field of neuroimaging, studies that 
assess the impact of antidepressants on gray mat-
ter in vivo using MRI are surprisingly rare. In a 
placebo-controlled study in non-human primates, 
20 mg/kg sertraline (a frequently used SSRI) 
administration for 18 months (approximately 5 
human years) was found to decrease the volume 
of the hippocampus and anterior cingulate cortex 
in non-depressed monkeys and increase the hip-
pocampus bilaterally and the left anterior cingu-
late in depressed monkeys, suggesting opposite 
trajectories of brain structure formation following 
sertraline administration.33 In a voxel-wise 
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structural study in healthy humans, work by our 
group shows that escitalopram administered for 
10 days prompted gray matter increases in multi-
ple brain regions including the posterior cingulate 
cortex, ventral precuneus, insula, and fusiform 
gyrus, and decreases in the pre- and postcentral 
gyrus.32

The hippocampus is the primary brain region 
responsible for mediating learning and memory, 
and orchestrates inputs in close relation with 
other limbic regions and the PFC.48 Emotional 
processes associated with memory and extinction, 
where fear is mostly utilized as an emotional 
valence, are mapped to brain regions including 
the amygdala, orbitofrontal cortex, and hip-
pocampus.49 Dysfunctional limbic networks and 
abnormal monoaminergic signaling are associ-
ated with negative affective states, whereas suc-
cessful treatment with SSRIs has been found to 
normalize negative attentional bias.50–52 We 
expected to observe escitalopram-associated neu-
roplastic effects on hippocampal and adjacent 
structures according to their central involvement 
in memory and learning and in addition in brain 
regions related to emotional processing as the 
amygdala, PFC, insula, and anterior cingulate 
cortex. Independent of relearning content (i.e. 
matching face pairs vs Chinese characters to unre-
lated German nouns), we found no structural 

changes in the hippocampus and emotion regula-
tion areas subsequent to the learning and relearn-
ing period. Results from functional and metabolic 
MRI studies of our group show escitalopram- and 
content-specific neuroplastic effects of global 
functional connectivity during resting state as well 
as glutamate and GABA levels 28,47. Functional 
connectivity was primarily elevated from the 
medial PFC to Broca’s area for the emotional con-
dition and bidirectionally between medial PFC 
and lingual gyrus for the non-emotional condi-
tion.47 Also, task-related activation during learn-
ing demonstrated a significant effect of content, 
with an amplified activation in the left angular 
gyrus during the face-matching paradigm com-
pared to the non-emotional condition, which was 
examined independent of escitalopram adminis-
tration.40 Contrary to our assumption, these learn-
ing- and region-specific brain changes did not 
translate to detectable effects of gray matter.

In a multimodal imaging study that aimed to 
investigate age-dependent plastic effects in the 
visual cortex following texture training, white 
matter changes were found only in the elderly, 
with apparent functional, but not structural dif-
ferences observed in the visual cortex after train-
ing in younger individuals. The authors 
suggested that brains of the elderly may require 
structural change to enhance performance, 

Table 2. Demographics and escitalopram blood levels of participants that developed escitalopram blood 
concentrations within the reference range (15-80 ng/mL) after 3 weeks of associative relearning and 
concomitant escitalopram intake (i.e. 10 mg/day) and of group-, sex-, and age-matched participants that 
received placebos.

(A) Faces Character

Mean SD Mean SD

N 12 22

Age [years] 25.05 4.64 26.08 3.90

Sex [M/F] 6/6 10/12

(B) Verum Placebo Verum Placebo

Mean SD Mean SD Mean SD Mean SD

N 6 6 11 11

Age [years] 26.00 4.65 26.17 3.43 24.91 4.72 25.18 4.79

Esitalopram plasma concentration 
[ng/mL]

28.25 11.30 0 0 23.94 9.42 0 0

Sex [M/F] 3/3 3/3 5/6 5/6
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whereas altered neuronal activation is sufficient 
to enhance performance in younger people.53 
Since our study group consisted of healthy indi-
viduals who were relatively young (mean 
25 years), it is possible that learning interven-
tions altered the brains of individuals at the cell, 
activity, or functional levels rather than changing 
brain morphology that is assessed with structural 
MRI. Another explanation for stable gray matter 
across the intervention periods could lie within 
hormone related changes across the menstrual 
cycle54–56, since we randomly included more 
females than males. Future imaging studies 
might consider an assessment of menstrual 
phase, ovarian hormones fluctuations across the 
menstrual cycle, and even symptoms associated 
with premenstrual dysphoric disorder.

We included an assessment of pharmacokinetics 
of escitalopram and its effects on brain regions, 
where T1 data of individuals that developed blood 
levels within the therapeutic reference range was 
analyzed.43 In this subsample, escitalopram 
administration increased the density of the gray 
matter in the left PFC, particularly in the dorsolat-
eral area. However, no correlation of mean VBM 
values of the left DLPFC and escitalopram blood 
levels was found, suggesting that escitalopram has 
to be present at adequate levels to modulate mor-
phology, but the magnitude of the blood concen-
tration is found to be negligible in our rather small 
sample for this secondary analysis. The left 
DLPFC regulates emotional processing and exec-
utive control, prioritizing individually relevant 
information in a context-dependent manner and 
enhancing goal hierarchy-associated demands57,58. 
In contrast, dysfunction was shown to occur in 
mood disorders. The attenuation of cerebral blood 
flow during rest and diminished neuronal activity 
in the left DLPFC have been reported in patients 
with depression59,60. In a functional MRI study, 
neuronal activity of the DLPFC was upregulated 
in depressive patients who were treated with 
SSRIs over a period of 8 weeks.61 Duloxetine, a 
serotonin and noradrenaline reuptake inhibitor, 
was found to modulate functional connectivity 
between the striatum and the left DLPFC, and 
cognitive behavioral therapy increased functional 
connectivity between the left DLFPC and the 
anterior cingulate in depression61,62. In addition, 
brain stimulation methods such as repetitive tran-
scranial magnet stimulation (rTMS) specifically 
target the left DLPFC in patients with depression, 
since rTMS-induced activation in this area is 
described to diminish symptom severity.63

Findings from preclinical and clinical investiga-
tions focus on elucidating mechanisms of response 
to SSRIs to provide a basis for the rational of phar-
macological treatment for affective disorders. 
SSRIs act by facilitating various neuroplastic pro-
cesses,27 including binding to the BDNF recep-
tor16 and the serotonin transporter on a molecular 
level 64 and modulating functional connectivity 
networks.47,65 As an additional mechanism of 
action, SSRIs have been found to alter regional 
cerebral blood flow. Citalopram led to an atten-
uation of regional cerebral blood flow of the 
 amygdala, fusiform gyrus, insula, and orbitofrontal 

Figure 2. Substance-by-time interaction effect of gray matter density in 
the left dorsolateral prefrontal cortex. Subsequent to 3 weeks of associative 
relearning and daily intake of escitalopram 10 mg (orally) or placebos, the 
verum group showed a significantly greater gray matter density of the 
left dorsolateral prefrontal cortex (Bonferroni corrected P < 0.05). The 
upper image depicts a 3D brain and the area in orange the altered area 
(peak voxel coordination: -42 52-16, x y z). Below: bar graph (red: verum 
group, blue: placebo group) * depicts significant increases of density of 
gray matter in the left dorsolateral prefrontal cortex in the escitalopram 
group over time. # Describes the interaction effect between time-point and 
substance group.
TP, time-point.
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cortex in healthy individuals.66 In patients with 
depression, escitalopram normalized (i.e. reduced) 
regional blood flow in the temporal and frontal 
cortex and in the anterior cingulate cortex,67 while 
a higher baseline cerebral blood flow in the orbito-
frontal and anterior cingulate cortex was associ-
ated with smaller changes in symptom severity 
over a 12-week treatment period with sertraline.68 
Reports from imaging studies support that depres-
sion and antidepressive therapy are to some extent 
related to altered cardiovascular properties as cer-
ebral blood flow, whereas findings are inconclusive 
across studies. We found no correlation between 
performance levels and density of the left DLPFC 
and no interaction between content of relearning 
and substance group with regards to changes of 
gray matter. Thus, the presented results challenge 
the assumption that escitalopram-associated 
changes in the left DLPFC are merely a conse-
quence of neuroplasticity. However, we observed 
that participants sufficiently learned and relearned 
new associations. The specific learning content or 
if participants received escitalopram or placebo did 
not have an effect on learning and relearning. We 
previously demonstrated an effect of escitalopram 

on relearning performance and on neuronal activa-
tion assessed with task-based functional MRI.40,47 
Also, SSRIs and escitalopram have been described 
to amplify relearning and induce neuroplasticity in 
animals and humans 10,69,70 Together, these results 
underline the effects of escitalopram and relearn-
ing on neuronal activation, that only partially 
transfer to changes in brain morphology in our 
study.

Emotional and cognitive paradigms that effect var-
ious aspects of memory provoke neuronal changes 
in different but also in overlapping brain regions. 
For instance, the high load of working memory 
during the performance of both our tasks under 
escitalopram provides evidence for a more general 
effect of memory and in particular working mem-
ory, independent of other task-specific effects. 
However, since we did not detect an interaction 
between substance group, relearning group and 
structural changes over time, we speculate that the 
changes the left DLPFC can primarily be explained 
by escitalopram and the impact of relearning on 
gray matter is negligible. Within this complex ran-
domized, placebo-controlled 6-week trial, we did 
not include a group that was excepted from per-
forming daily associated relearning or had to per-
form a different learning task (e.g. working memory 
task) to control for primary escitalopram effects, 
which should be tested in future projects.

Though this study included a rather large sample 
and utilized state-of-the-art methods, it has limita-
tions that may have affected the interpretation of 
results. In this study, blood levels of escitalopram 
were below the reference area of escitalopram in 
approximately half of the individuals receiving esci-
talopram considered (n = 17/34).43 To prevent high 
dropout rates, individuals received therapeutic 
doses of escitalopram, since high-dosing is accom-
panied with higher risks for side effect and thus, 
study discontinuations.71 In a PET study, it was 
previously shown that even small doses of citalo-
pram are sufficient for occupying the serotonin 
transporter.72 Therefore, escitalopram was assumed 
to be sufficient for conferring adequate pharmaco-
dynamic drug potency. Nevertheless, we cannot 
exclude the possibility that an increased dose of 
escitalopram, or the use of a different type of SSRI 
may have resulted in sufficient escitalopram blood 
levels in a greater number of study participants and 
facilitated substantial differences of gray matter. 
Also, plasma concentrations of escitalopram were 
measured at three time points throughout the 
relearning phase in all participants. However, since 

Figure 3. Triplanar view of the significant substance-by-time interaction 
effect of gray matter density in the left dorsolateral prefrontal cortex. The 
area in orange depicts one cluster that comprises of 2 sub-clusters (peak 
voxel coordination: -42 52-16, x y z). The subclusters are interconnected 
in one area. The color bar represents the degree of the change in density 
in the left dorsolateral prefrontal cortex after relearning and concomitant 
study drug intake; orange indicates highest changes.
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the daily drug intake was in the domestic setting, we 
cannot be certain that all participants adhered pre-
cisely to study drug intake procedures. Furthermore, 
the time interval and intensity of interventions 
applied in this study may have been sufficient for 
altering neuronal activity and metabolic factors,28,73 
despite being insufficient for affecting brain struc-
ture. In addition, paradigm parameters such as 
learning quantity (e.g. time spent on the task, days 
scheduled) may have also been insufficient to pro-
mote morphological changes. Next, although we 
observed an increase in voxel-based gray matter in 
the left PFC using the CAT12 toolbox, FreeSufer 
analysis did not indicate such results. Structural 
brain studies employing voxel-based and surface-
based neuroanatomical techniques are scarce. VBM 
is one of the most widely used computational neu-
roanatomy techniques, whereas surface-based anal-
ysis gained popularity due to its ability to record 
subtle neuroanatomical changes in regions of inter-
est. In a structural imaging study in dyslexic patients, 
voxel-based and surface-based analyses partly 
revealed coexistent gray matter findings, while in 
general, more morphological changes were revealed 
by voxel-based measures.74 These findings support 
the notion that automated voxel-based calculations 
rely on different variables such as cortical volume 
and surface area. In addition, to avoid false posi-
tives, which were observed in a voxel-based study in 
which unequal group sizes led to inflated false posi-
tive rates,75 we matched individuals that received 
placebos by and learning group (by content), sex 
and age.

In this randomized placebo-controlled imaging 
study, we found that 3 weeks of escitalopram 
administration increased gray matter density in 
the left DLPFC in individuals that developed suf-
ficient escitalopram blood levels of the drug. 
Since left DLPFC is involved in neuronal net-
works underlying depression and represents a key 
region for treatment outcome, our findings 
emphasize the left DLPFC as a treatment target 
for serotonergic agents.
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