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Abstract: Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Tro-
phoblast cells invade maternal tissues while being tolerated by the maternal immune system. Sim-
ilarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly,
both trophoblast and tumor cells are supported by an abetting microenvironment, which influences
invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to
tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under
tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in
regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of
the abetting microenvironments.

Keywords: decidual microenvironment; tumor microenvironment; placenta; immune cells; prolifera-
tion; invasion; tumor cell; trophoblast

1. Introduction

The placenta is a transient fetal organ and develops from fetal tissues in a complex
interplay with the maternal uterine decidua, enabling unique functions such as: (1) the
protection of the fetus from the immune system of the mother, (2) the anchorage of the
conceptus, and (3) the provision of nutritional and gas exchange [1,2]. To accomplish this,
placenta-specific trophoblast cells establish the placental barrier, promote angiogenesis,
live in low-oxygen conditions, and invade maternal tissues—all while being tolerated by
the maternal immune system, although fetal cells are semi-allogeneic [1]. The decidual
microenvironment, in particular decidual immune cells, plays an important role in con-
trolling trophoblast invasion and regulating the immune balance at the fetal–maternal
interface [3,4]. Only a balanced activity between maternal and placental cells results in
normal trophoblast invasion and successful coexistence, and a disruption of this balance
could contribute to pathological conditions [3–6].

Interestingly, trophoblast and tumor cells share many striking characteristics [7,8],
and both are supported by an abetting microenvironment [9]. However, how tumor cells
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acquire or even hijack these advantageous characteristics—which in turn contribute to
tumorigenesis, tumor progression, and survival—is a matter of continuous investigation [7].
In contrast to tumor cells, the invasion of trophoblast cells into maternal tissues is precisely
controlled, and the invasive behavior declines once sufficient remodeling of the uterine
tissues has been achieved [4,8,10]. Therefore, the placenta has even been referred to as a
“well-behaved tumor” [10], a term we discuss in more detail in the conclusion.

The study of the fetal–maternal interface in physiological and pathological conditions
could facilitate the understanding of tumor biology and point towards new therapeutic
routes. In cancer, the suppression of the immune response in particular has severely im-
paired the design of effective anti-tumor therapeutic strategies, and even the emerging
immune checkpoint therapies are only effective in a small proportion of patients [11].
Hence, especially studying the interactions between trophoblasts and the decidual microen-
vironment could provide new perspectives (e.g., [12,13]). Here, we look beyond classic
tumor biology and review similarities and differences between the cells giving life and the
ones causing death, particularly focusing on their microenvironment.

1.1. The Placenta

The human placenta is a temporary organ of the developing embryo and fetus, that
is designed to persist for about nine months once established. During this short time of
existence, the placenta develops and grows while acting as the major organ of the fetus,
taking over the tasks of the lungs and kidneys and serving as the main endocrine organ of
the growing child [1]. The placenta is the only fetal organ that comes into direct contact
with maternal blood. Hence, within the placenta, the blood streams of mother and fetus
come into very close contact, only separated by a thin barrier comprising several layers of
placental cells. This placental barrier is mainly made of a specific epithelial layer called the
villous trophoblast, and it is the main site of exchange between both circulatory systems,
allowing for the transfer of nutrients and oxygen towards the fetal side and the transfer of
waste products and carbon dioxide towards the maternal side [1].

To allow maternal blood to enter the placenta, maternal vessels in the uterine wall need
to be transformed and opened towards the placenta by a second trophoblast subtype, the
extravillous trophoblast [14]. It was only recently shown that the invasion of extravillous
trophoblasts is much less specific than thought over the last six decades [14,15]. Extravillous
trophoblasts start their invasion from specific sites of proliferation (trophoblast cell columns)
and reach the connective tissues of the uterus [16]. From this position, they invade all
luminal structures of the uterine wall to which the placenta is attached, including uterine
arteries and veins [17–19], uterine glands [20], and uterine lymph vessels [18,19].

Looking at pregnancy pathologies with a putative involvement of the placenta, the
following pathologies and syndromes need to be listed: preeclampsia, intra-uterine growth
restriction of the fetus (IUGR), and placenta accreta spectrum (PAS) disorders. Preeclampsia
is most likely caused by a defect of villous trophoblast development and turnover, and
it results in maternal symptoms including hypertension and the failure of kidneys, liver,
and/or other major organs [21]. IUGR seems to be caused by a developmental failure of
the extravillous trophoblast that results in a reduced invasion capacity and thus reduced re-
modeling of maternal vessels in the uterus [21]. In contrast, PAS disorders are characterized
by an increased invasion capacity of extravillous trophoblasts [22].

Interestingly, a subset of preeclampsia (early-onset preeclampsia, comprising about
15% of all preeclampsia cases) is mostly associated with IUGR and thus comprises the
clinically most important cases because both mother and child have increased rates of
morbidity and mortality [21]. Precision medicine is already in place for this subgroup, as
predictive biomarkers have been identified and are used in clinical routine today to better
manage such cases and even offer first treatment options [23].
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1.2. Decidualization

The human endometrium is a complex network of cells that undergoes a transforma-
tion process called decidualization to prepare for implantation and pregnancy [24–27]. This
dynamic remodeling process transforms the endometrium into a microenvironment that is
able to accommodate pregnancy and the successful coexistence of fetal and maternal cells,
called the decidua [25]. In contrast to most other species, human decidualization begins in
the mid-secretory phase of each menstrual cycle in response to rising levels of progesterone
and estrogen and continues if a conceptus is present [24,26,28].

Decidualization includes the differentiation of endometrial stromal cells into decidual
stromal cells [29]. The latter are specialized secretory cells with rounded polyploid nuclei,
contain high amounts of glycogen and lipids, and synthesize a range of molecules such as
components of the extracellular matrix (ECM), prolactin, insulin-like growth factor binding
proteins, cytokines, and chemokines [29,30]. Decidual stromal cells are vital for the estab-
lishment of a nutritive and tolerant microenvironment for the growing placenta and affect
immune tolerance, remodeling of the ECM, and angiogenesis, among others [24,25,30,31].

Decidualization is accompanied by the recruitment of immune cells, including uterine
natural killer (uNK) cells, macrophages, T cells, and dendritic cells (DCs), which play key
roles in immune tolerance and the promotion of pregnancy [3,32,33]. In particular, uNK
cells represent a unique subtype of NK cells that exhibit weak cytotoxicity, facilitate the
remodeling of spiral arteries, and promote trophoblast invasion [33,34]. Additionally, fetal
extravillous trophoblasts become a vital part of the decidua when they start to invade
the maternal tissues during early pregnancy [1,3,35]. Eventually, decidual stromal cells,
immune cells, and extravillous trophoblasts build the interactive network required for suc-
cessful pregnancy [3]. However, as pregnancy progresses, the microenvironment exhibits
dynamic changes, including changes in immune cell proportions [3,36]. Indeed, defective
decidua formation may contribute to infertility and certain pathological conditions during
pregnancy [3,29,37].

1.3. Trophoblast Invasion

Trophoblast invasion starts as early as the fetal blastocyst implants into the maternal
uterus. Early attachment and implantation (i.e., invasion) into the maternal decidua
begin with the outer trophoblast layer of the blastocyst, called the trophectoderm, and
are completed around day 11 post conception (p.c.). The first differentiation of those
trophectoderm cells in direct contact with uterine epithelial cells results in the formation of
the multinucleated syncytiotrophoblast, which is an invasive tissue of the embryo at this
time. The further differentiation of the trophoblast layers takes place rapidly. Within the
first weeks of pregnancy (day 14 p.c.), mononucleated cells (cytotrophoblasts) differentiate
from the trophectoderm, detach as extravillous trophoblasts from the developing placenta,
and continue invading the maternal decidua, finally invading all potential sources of
nutrients (the decidual stroma, vessels, and glands) (Figure 1A) [1,35].

Invading extravillous trophoblasts fulfil two main functions during pregnancy:
(1) attaching the placenta to the uterus and (2) connecting the placenta with maternal tissues,
vessels, and glands for the exchange of nutrients and the drainage of waste/debris [17,38].
A fundamental characteristic of extravillous trophoblasts is that they stop proliferating as
soon as they begin to invade [1,39].

Factors secreted by extravillous trophoblasts may contribute to controlling their inva-
sion in an autocrine manner, as well as influence immune cell function within the decidua
in a paracrine way [40,41]. Probable ligand–receptor interactions between trophoblasts
and all other cell types within the decidua (such as immune cells, decidual stromal cells,
endothelial cells, perivascular cells, and glandular epithelial cells) were investigated in a
recent single cell RNA-seq study [9].
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Figure 1. Comparison between the decidual and the tumor microenvironment. Invasive trophoblasts
and tumor cells are both sustained by an abetting microenvironment. Intense crosstalk between
the extravillous trophoblast/tumor cells and the cells of their microenvironment, in particular
immune cells (e.g., via the secretion of molecules depicted as colored dots for certain cell types),
is essential for establishing and maintaining immune tolerance/suppression towards extravillous
trophoblast/tumor cells. Furthermore, cells of the microenvironment, including immune cells, are
involved in regulating invasion and angiogenesis in both settings. (A) On the left, extravillous
trophoblasts invade the uterine tissues of the mother, reaching the inner third of the myometrium.
The extravillous trophoblasts invade the decidual stroma, vessels, and glands—all potential sources
of nutrients. During the first trimester of pregnancy, the oxygen concentration within the villous part
of the placenta has been found to be below 20 mmHg. Trophoblasts proliferate in this low-oxygen
environment. From this physiologically low oxygen level (normoxia for the placenta at this stage of
pregnancy), extravillous trophoblasts invade normally oxygenated uterine tissues and thus follow an
oxygen gradient towards higher levels. (B) On the right, tumor cells can similarly invade surrounding
tissues and again follow an oxygen gradient towards higher oxygen levels. Similar to extravillous
trophoblasts, tumor cells proliferate in the peripheral zones around sites of low oxygen (real hypoxia),
while subsequent migration and invasion take place towards higher oxygen levels. Created with
BioRender.com (accessed on 23 April 2022).

The influence of numerous factors on trophoblast invasion has been investigated. In
addition to various proteases secreted by extravillous trophoblasts (such as the matrix
metalloproteinases (MMPs) MMP-2, MMP-3, and MMP-9), MMP-15 was also recently
discovered as a crucial factor for trophoblast invasion. Within the placenta, MMP-15
is restricted to the invasive extravillous trophoblast, and its in vitro silencing leads to
restricted trophoblast outgrowth, though it has demonstrated no influence on proliferation
or apoptosis [42,43]. Another important group of proteins relevant for trophoblast invasion
is the integrin family. Dependent on the composition of the various subunits, some integrins
promote adhesion while others facilitate invasion [44,45]. MMPs and integrins are key
players in both trophoblast and cancer invasion. Examples of MMPs playing significant
roles in both settings—trophoblast and tumor invasion—are MMP-2 and MMP-9, both
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known to be important facilitators of invasion [46–49]. In contrast, MMP-15 has no influence
on trophoblast apoptosis but does inhibit apoptosis in several tumor cell lines [50].

1.4. Tumor Microenvironment

Cancers are a complex and heterogeneous group of diseases that affect millions of
people. Yet, tumor cells exhibit certain advantageous characteristics called the hallmarks
of cancer, including growth and proliferative advantages, modified response to stress,
metabolic reprogramming, invasion and metastasis, stimulated angiogenesis, immune
evasion, and an abetting tumor microenvironment (TME) [51,52]. The TME is a complex
network of non-malignant stromal cells (including fibroblasts and endothelial cells), im-
mune cells, vessels, nerve fibers, ECM proteins, and secreted signaling molecules within
and around the tumor (Figure 1B) [53–55].

Tumor cells can sculpt the TME to support tumor survival, progression/metastasis,
and drug resistance [56,57]. Intercellular communication between the TME and tumor
cells is highly complicated and dynamic, occurring via direct cell-to-cell interactions, such
as membrane-tethered receptor–ligand binding or signaling through gap junctions and
tunneling nanotubes, and via indirect mechanisms, such as the secretion of cytokines,
chemokines, growth factors, exosomes, and metabolites [57,58]. Generally, the TME is a
highly complex ecosystem that exhibits profound heterogeneity within tumors, between
different malignancies, and between individual patients and that crucially affects tumor
biology [55,59–64]. The TME may be envisioned as a combination of specialized niches that
can overlap as well as communicate, including the hypoxic, immune, acidic, innervated,
metabolic, and mechanical niches [55]. Advancing the understanding of the TME and its
crosstalk with tumor cells could promote the development of new and tailored therapeutic
regimens [55,57,65]. In particular, considering the profound complexity and heterogeneity
of tumors and their microenvironments, combination therapies hold promise [11,53,57].

2. Tumor and Decidual Microenvironment: How Much Do They Have in Common?

Trophoblast and tumor cells are both supported by an abetting microenvironment
(Figure 1) that influences/regulates invasion, angiogenesis, and immune tolerance/evasion,
among others. In both settings, the cells invade from low to high oxygen levels, show
very close interactions with vessels on their way through the tissue, and are tolerated
by/evade the immune system. This is facilitated by the intense crosstalk of the extravil-
lous trophoblast/tumor cells with the cells in their microenvironment (Figure 1). In the
subsequent sections, we offer an overview of similarities and dissimilarities in regulatory
processes driving trophoblast and tumor cell fate, with an emphasis on the role of the
abetting microenvironments.

2.1. Growth Suppression in Tumor and Decidual Microenvironment

One biological capability acquired during the multistep development of human tumors
is the hallmark of evading growth suppressors, representing the competence of cancer cells
to circumvent powerful programs that negatively regulate cell proliferation [52]. Many of
these programs depend on the actions of dozens of previously identified tumor-suppressor
genes. Amongst these, many have been characterized as bona fide tumor suppressors by gain-
or loss-of-function experiments in animal models, including the classical tumor suppressors
retinoblastoma (Rb)-associated proteins, tumor protein p53, and phosphatase and tensin
homolog (PTEN). While some of these factors transduce growth-inhibitory signals that largely
originate outside the cell, others receive inputs from intracellular operating systems based
on stress and abnormality sensors inside the cell. Extrinsic signals may originate from
fibroblasts in the TME. In this environment, it seems as if such signals help cancer cells to
evade various forms of growth suppression. Co-culture experiments have clearly shown
that normal connective tissue fibroblasts, but not cancer-associated fibroblasts, can inhibit
the growth of cancer cells in a mechanism that requires the contact of fibroblasts with cancer
cells [66]. Thus, normal fibroblasts may serve as extrinsic growth suppressors.
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As mentioned above, endometrial stromal cells in women of childbearing age are
subject to cyclic decidualization, including the transformation of these cells into secretory
decidual stromal cells. Their secretion products have a variety of functions including
the control of trophoblast invasion. Culture of differentiating trophoblasts with decidual
stromal cell-derived culture supernatant was shown to induce the phosphorylation of
Smad2/3 [67], suggesting signaling through members of the transforming growth factor
(TGF)-β superfamily. TGF-β signaling is one of the most extensively studied tumor-
suppressor pathways in epithelial cell malignancies. In fact, most epithelial cells are
growth-inhibited by TGF-β, and the loss of this response has been suggested as a key event
in the progress towards malignancy [68]. Recent studies in normal epithelial cells showed
that TGF-β1 induced the expression of growth suppressor p12, which in turn inhibited
growth via the CDK2-catalyzed phosphorylation of Rb [69]. In contrast, deficiency in p12
expression resulted in partial resistance to TGF-β1-mediated inhibition of cell proliferation.
The molecular mechanisms driving trophoblast invasiveness are considered to be identical
to those of cancer cells, even though their proliferation, migration, and invasiveness in situ
are stringently controlled by decidua-derived TGF-β [70]. In contrast to normal extravillous
trophoblasts, hyperproliferative and hyperinvasive premalignant trophoblasts, as well as
malignant trophoblast-derived choriocarcinoma cell lines such as JAR and JEG-3, have been
shown to be TGF-β-resistant. Notably, the loss of TGF-β response in malignant trophoblasts
was explained by the loss of expression of the SMAD3 gene. Moreover, differential mRNA
display of normal and premalignant trophoblasts revealed deregulation of numerous genes
in premalignant trophoblasts, with potential oncogenic and/or tumor-suppressor functions.
Amongst these, the loss of insulin-like growth factor binding protein 5 (IGFBP5) and insulin-
like growth factor 2 receptor (IGF2R) was suggested to enable unrestricted proliferation in
an IGF-1-rich microenvironment of the fetal–maternal interface [70,71].

However, whether decidual stromal cell-derived factors, such as TGF-β superfamily
members, can directly affect the classical tumor suppressors Rb, p53, and PTEN in human
trophoblasts has not yet been described in great detail. Most knowledge has been gained
from different mouse models, substantiating the fundamental role of tumor-suppressor
genes during placental development in mice. Initial morphological surveys suggested that
the deletion of Rb leads to extensive microanatomical changes in the mouse placenta, in-
cluding reductions in the total volume and vasculature of the placental labyrinth, increased
infiltration from the spongiotrophoblast layer to the labyrinth layer, and clustering of
labyrinthic trophoblast [72]. For the human placenta, immunohistochemistry revealed that
the retinoblastoma family members, p107 and Rb2/p130, are most abundantly expressed
during the first trimester of gestation and progressively decline to barely detectable levels
in the placenta in late gestation [73].

In addition to Rb, a growing body of evidence suggests that p53 plays fundamental
roles in placental development and physiology. Placental tissue from p53−/− mice at E14.5
have shown structural abnormalities, including mild-to-moderate labyrinth trophoblast
hyperplasia, collapsed vasculature, and nuclear enlargement of labyrinthic trophoblast
(polyploidy) [74]. In general, the stabilization of p53 inhibits cell proliferation through
the activation of its transcriptional target p21, which in concert with p16 maintains the Rb
protein in its hypophosphorylated and active state. An active Rb protein suppresses the
transcription factor E2F1-dependent expression of genes that regulate the progression of
the G1/S phase of the cell cycle, thereby irreversibly blocking cell cycle entry [75,76]. The
consequence of this process is cellular senescence, a state of irreversible, terminal arrest of
cell proliferation. A recent proteomics approach identified candidate proteins involved in
p53 high-molecular-weight complex formation that were suggested to be responsible for the
inactivation and stabilization of p53 in primary first trimester trophoblasts. Amongst the
binding partners, glucose-regulated protein 78 (GRP78) was demonstrated to be involved
in p53 stabilization and trophoblastic invasion since the decreased expression of membrane
GRP78 decreased p53 stability and increased the invasion of trophoblasts [77]. p53 is a
transcription factor that can upregulate MMP-2 and downregulate MMP-1, -9, and -13.
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Thus, the sequestration of p53 by GRP78 or many other binding partners may affect the
invasiveness of cells. In contrast to the observations in trophoblasts, metastatic cells show
increased levels of GRP78, which has been suggested to promote tumor metastasis through
the binding of α2-macroglobulin to GPR78 at the cell surface, thereby activating the PAK2
pathway [78]. Whether GRP78 binds to p53 and thereby affects MMP activity in tumor cells
has not been described so far. Recently, the E3 ligase TRIM72 was shown to directly interact
with p53 and promote its ubiquitination and proteasomal degradation, leading to reduced
apoptosis and enhanced migration in trophoblasts [79]. In addition to ubiquitination, a
complex array of post-translational modifications, including phosphorylation, sumoylation,
neddylation, acetylation, and methylation, affects the stabilization of p53 or its sequestration
by many binding partners to modulate p53 activity (comprehensively summarized in [80]).
Hence, a comparison of the post-translational modifications of p53 and its stability between
trophoblasts and metastatic cells represents an intriguing issue that could further contribute
to our understanding of differences between placentation and cancer.

PTEN, another tumor suppressor that has attracted increasing attention in tumor
research during the last two decades, plays a pivotal role in apoptosis, cell cycle arrest,
and possibly cell migration [81]. PTEN functions through converting phosphatidylinositol
triphosphate into phosphatidylinositol 4,5-bisphosphate, thereby negatively regulating the
Akt/PKB signaling pathway [82]. In normal human pregnancy, placental PTEN expression
decreases with progressing pregnancy and placental development [83]. Endometrial PTEN
expression is higher during the first trimester of pregnancy compared to any time in the
normal menstrual cycle, and it is directly regulated by the ovarian steroids, estradiol and
progesterone. While estradiol is suggested to downregulate PTEN activity by increasing
its phosphorylation, progesterone is likely to regulate the PTEN pool by decreasing its
phosphorylation and increasing its protein level [84]. Decidual PTEN expression is signifi-
cantly increased in cases of spontaneous abortion compared to controls [83]. Recent in vitro
studies with the trophoblast cell line HTR-8/SVneo suggested that PTEN is involved in the
regulation of trophoblast invasion [85]. Moreover, PTEN is part of the hypoxia-responsive
network in the placenta, including HIF1α and microRNA-20a as upstream regulators, and
it has been shown to be upregulated in trophoblast-derived choriocarcinoma JAR cells
cultured under 2% oxygen for 24 h [86,87].

Overall, data from mouse models and in vitro experiments suggest an important role
for tumor-suppressor genes in regulating trophoblast cell expansion and invasion processes.
While a high level of cell proliferation is required for the rapid growth of embryonic and
placental tissues in the early stages of pregnancy, transition to cellular differentiation and
senescence is mandatory towards term. The disruption of this balanced regulation manifests
in the pathogenesis of gestational trophoblastic disease, characterized by abnormally
proliferating trophoblastic tissues, including partial and complete hydatidiform moles,
invasive moles, choriocarcinoma, and placental-site trophoblastic tumors [88].

2.2. Proliferative Signaling in Tumor and Decidual Microenvironment

During placental development, trophoblasts form clusters of highly proliferative
cells at the attachment site to the uterine wall (trophoblast cell columns), where they
proliferate for a limited time period [35]. At around mid-gestation, the pool of proliferative
cells seems to be mostly exhausted. All the non-proliferative daughter cells of this pool
undergo differentiation into extravillous trophoblasts and acquire an invasive phenotype
(Figure 1) [1,35]. At the sites of the trophoblast cell columns and in the course of the
rapid proliferation, trophoblasts engage in common proliferative signaling pathways to
sustain their growth in a tightly regulated manner, by which they are intrinsically and
extrinsically instructed to proliferate [89]. As in other healthy tissues, trophoblasts need a
mitogenic growth signal to initiate division [90]. The most notable growth factors guiding
trophoblast proliferation are epidermal growth factor (EGF), hepatocyte growth factor
(HGF), IGF, vascular endothelial growth factor (VEGF), placental growth factor (PlGF),
and TGF [91,92]. Most of the corresponding receptors are receptor tyrosine kinases (RTK),
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which activate downstream pathways such as Ras/Raf/MAPK or PI3K/AKT, resulting
in cell division [89]. Importantly, the RTKs in trophoblast are activated after receptor
dimerization and ligand binding, thereby causing the phosphorylation of the receptor C-
terminal tail [91]. Some of the proteins participating in proliferation signaling are encoded
by proto-oncogenes (e.g., RAS), which are expressed at similar levels in transformed tumor
cells [89]. In the placenta, however, these proto-oncogenes are expressed with a cell-
type- and time-dependent specificity, confirming the high level of thoroughly regulated
proliferation [89,93].

The constituents of the decidual microenvironment participate in placentation and
trophoblast proliferation and invasion. Many growth factors and cytokines, such as EGF,
TGF-β, and tumor necrosis factor alpha (TNF-α), that are secreted by decidual stromal cells
and uNK cells regulate trophoblast function in a paracrine manner [24,94]. These factors
may also be secreted by the trophoblast and act in an autocrine manner [89] (Figure 1). In the
context of cell proliferation, uNK cells produce signaling molecules such as cytokines (e.g.,
TNF-α), growth factors (e.g., TGF-β), angiogenic factors (e.g., VEGF and PlGF), and MMPs,
all of which contribute to the regulation of the proliferative capacity of trophoblasts [94].
Through MMP activation, the growth factors embedded in the ECM can be released and
activated [95].

Even though trophoblasts and transformed tumor cells share similar molecular cir-
cuitries regulating proliferation, there are major differences in the regulatory pathways.
Tumor cells hijack the proliferative signaling to sustain their unlimited growth [52], thus
avoiding the spatiotemporal regulation present in placental development [91]. In tumor
cells, the sustained proliferation is mostly intrinsically regulated by underlying mutations
in proto-oncogenes that encode members of the proliferative signaling pathways [52,96,97].
For example, gain-of-function mutations in the various subdomains of an RTK lead to
the constitutive activation of the RTK, typically in the absence of a ligand. Additionally,
the overexpression of RTKs, usually arising from the genomic amplification of the RTK
gene, leads to increased local concentrations of receptors [98–100]. Hence, tumor cells
uncouple their proliferative signaling from the extracellular proliferation instructions. Still,
tumor cells rely on their microenvironment to sustain their growth. Similar to the decidual
microenvironment, proteolytic enzymes are a major component of the TME, enabling the
release and activation of growth factors [101]. Tumor cells are also capable of modifying
their microenvironment, either by secreting factors or by direct cell–cell contact with the
purpose of attaining nutrients, proliferative stimuli, and immune evasion [53].

The knowledge coming from placental research can be used to identify the regulatory
modalities that could be used for cancer treatment. Interestingly, many targeted thera-
peutics already target a variety of proteins with different functions shared by trophoblast
and cancer cells (such as growth pathway signaling molecules or enzymes regulating
invasion (reviewed in [102])). A recent study suggested that the permissiveness of pla-
cental stroma to trophoblast invasion in mammals correlates with higher susceptibility to
malignancy [103]. Although based on in vitro models that compared the permissiveness
of human and bovine fibroblasts to trophoblast invasion, this study illustrated the impor-
tance of the microenvironment for tumor growth, proliferation, and invasion, which could
be traced back to the placenta’s distinct invasive properties in mammals. However, this
hypothesis is still under investigation [104].

2.3. Angiogenesis in Tumor and Decidual Microenvironment

The growth and development of a tissue, an organ, or an organism require an ade-
quately formed vasculature to ensure oxygen and nutrient supply. Angiogenesis is the
formation of new blood vessels from a pre-existing vasculature. It is a multistage process
tightly regulated by pro- and anti-angiogenic factors. In adults, angiogenesis is a rare
phenomenon, and endothelial cells remain mostly quiescent. Thus, for the induction of
angiogenesis, endothelial cells require activation by pro-angiogenic signals. Once acti-
vated, endothelial cells produce proteases, detach from the endothelial monolayer, and
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migrate towards the concentration gradient of the pro-angiogenic signals. VEGF, PlGF,
and basic fibroblast growth factor (FGF2) are among the most potent pro-angiogenic fac-
tors, but the list of angiogenic stimuli covers a plethora of growth factors, cytokines, and
hormones [105,106].

To supply the developing and growing fetus with sufficient nutrients and oxygen,
the decidual vasculature enlarges and adapts with angiogenesis and vascular growth,
starting with implantation. Impaired decidual angiogenesis is implicated in implanta-
tion defects and early pregnancy loss [107]. Trophoblasts possess a unique endocrine
ability and are a source of hormones, growth factors, and cytokines with pro-angiogenic
effects [108–110] (Figure 1). These factors promote decidual angiogenesis in the placental
bed; a culture medium conditioned by blastocysts was found to stimulate endometrial
angiogenesis in vitro [111], suggesting that the trophectoderm of the early embryo already
releases pro-angiogenic signals. During early pregnancy, trophoblasts differentiate to the
syncytiotrophoblast, the epithelial cover of the placental villous trees. As such, the syncy-
tiotrophoblast secretes human chorionic gonadotropin to maintain pregnancy, stimulating
angiogenesis and recruiting pericytes [112]. Indeed, the angiogenesis of decidual blood
vessels predominantly occurs around the implantation site [113]. However, decidual an-
giogenesis is a physiological, controlled, and limited process. Therefore, not only is the
microenvironment of the decidua enriched in pro-angiogenic signals but trophoblasts also
produce molecules that inhibit angiogenesis [114,115], highlighting the need for the spatial
restriction of vascular sprout outgrowth.

The establishment of a surrounding vasculature significantly promotes the devel-
opment and growth of a tumor. The connection to the blood system enables oxygen
and nutrient supply, as well as spreading of the tumor via the bloodstream (Figure 1).
Thus, the microvessel density of a tumor is associated with increased tumor growth and
metastasis [116]. Additionally, tumor cells have the ability to secrete growth factors and
pro-angiogenic signals that can stimulate the ingrowth of blood vessels [117]. Hypoxia
arising within the growing tumor may further enhance the expression and release of
pro-angiogenic factors including VEGF, angiopoietins, and FGF2 [118,119]. Trophoblasts
also respond to low oxygen with the increased expression of VEGF [120], but due to the
particular paracrine activity of trophoblasts and the release of a variety of different pro-
angiogenic factors that are not regulated by low oxygen, the role of low oxygen in decidual
angiogenesis may not be as important as in solid tumors.

Apart from the promotion of decidual angiogenesis, trophoblasts can further increase
the blood supply to the placenta by remodeling the uterine vasculature. Invading tro-
phoblasts change phenotype [121], replace the endothelium of the uterine spiral arteries,
and convert them into large, low-resistance vessels [122]. Vasculogenic mimicry, i.e., the
formation of microvascular channels by non-endothelial cells, also exists in some kinds of
aggressive tumors; tumor cells form vessels to increase nutrient and oxygen supply [123].
Interestingly, extravillous trophoblasts and tumor cells invade lymph vessels and reach
local lymph nodes, again showing similarities in their invasive behavior [18].

Leukocytes play a central role in angiogenesis (Figure 1). Upon recruitment, leuko-
cytes extravasate from the circulation into their target tissue, where they differentiate and
produce and release large amounts of cytokines and growth factors that modulate the mi-
croenvironment and may act in a pro-angiogenic manner [124,125]. Trophoblasts recruit
different types of leukocytes into the decidua, including uNK cells [126–129], decidual
macrophages [127,130,131], and DCs [126,132]. All of them secrete a plethora of pro-angiogenic
factors. DCs are thought to contribute to decidual angiogenesis during embryo implanta-
tion [133]. Later in pregnancy, uNK cells and macrophages are thought to facilitate spiral artery
and tissue remodeling by extravillous trophoblasts [134,135]. Additionally, tumor angiogene-
sis involves various classes of leukocytes [136,137], which are recruited by tumor cell-derived
chemokines [138,139]. The most abundant leukocytes present in tumors are tumor-associated
macrophages. In fact, the pro-angiogenic action of tumor-associated macrophages has been



Biomedicines 2022, 10, 1065 10 of 35

shown in many types of cancer [140–142]. Moreover, NK cells, alone or in combination with
mast cells [143], and DCs [142] have been shown to promote tumor angiogenesis.

2.4. Evasion of Immune Destruction in Tumor and Decidual Microenvironment

In addition to fetal trophoblasts and maternal decidual stroma cells, the decidua
contains maternal immune cells, including uNK cells, macrophages, T cells, and DCs,
though B cells are rarely found (Figure 1). Interestingly, maternal immune cells account
for 30–40% of all decidual cells in early pregnancy [127,144]. All different immune cell
types and the stromal cells are involved in promoting immune cell homeostasis during
pregnancy [145]. In the following section, the different decidual immune cells and their
functions are briefly summarized, with a focus on their immunosuppressive properties.

uNK cells are the most important immune cells during pregnancy, comprising the
largest immune cell population in the decidua (50–70% of all decidual immune cells) [146].
They possess a CD16neg CD56high surface phenotype. This phenotype is similar to that
of blood-derived cytokine-producing NK cells, which possess a weak cytotoxicity and
produce a variety of cytokines [127,147,148]. uNK cells also produce cytokines such as IL-8
and IL-10 to regulate trophoblast invasion and VEGF-C, Arg1, Arg2, and TGF-β to initiate
artery remodeling within the decidua [134,149]. In addition, uNK cells can produce G-SCF,
GM-SCF, m-SCF, and TNFα, which are involved in achieving successful pregnancy [150].
The cytotoxicity of uNK cells is regulated by the HLA class I molecules expressed by
extravillous trophoblasts and the activating or inhibitory receptors on the uNK cells [150].
Extravillous trophoblasts express HLA-C, HLA-E, and HLA-G but not HLA-A and HLA-B.
This HLA expression pattern is different to that of most somatic cells [151]. uNK cells
express inhibitory receptors, including LILRB1, KIR2DL4, and CD94/NKG2A [144], and
their cytotoxic effects are suppressed once an interaction occurs between these inhibitory
receptors and the ligands—namely HLA-C, HLA-E, and HLA-G—expressed by the tro-
phoblasts [147]. uNK cells also express activating receptors, NKp46, NKp44, NKp30,
NKG2D, and CD94/NKG2C [152], but the cytolytic effects mediated by these receptors are
inhibited by macrophages through a TGF-β1-dependent mechanism [148].

Decidual macrophages are the second largest category of immune cells, accounting
for approximately 20% of all decidual immune cells [153,154]. They can be divided into
CD209+ and CD209− subgroups by flow cytometric analysis. The CD209+ macrophages
may identify pathogens in the decidua and are therefore implicated in immune defense
against pathogens. In contrast, CD209− macrophages tend to have a similar phenotype to
M2 macrophages and are implicated in immunosuppressive processes via the secretion of
IL-10 [155,156].

Decidual T cells account for 10–20% of decidual immune cells and mainly consist of
CD3+ T cells, whereas γδ−, CD3+, CD4−, CD8−, and NK-T cells are rarely found. CD3+ T
cells can be further subclassified as CD4+ (also called T helper cells (Th), accounting for
30–45% of T cells) and CD8+ T cells (also called cytotoxic T cells, accounting for 45–75% of T
cells). Among the T helper cells, FOX3p+ regulatory T cells (Tregs), Th2 cells, Th17 cells, and
Th1 cells account for 5%, 5%, 2%, and 5–30% of decidual T cells, respectively [157]. Decidual
maternal cytotoxic T cells have the potential to recognize semi-allogeneic fetal cells directly
via HLA class I molecules on extravillous trophoblasts or indirectly via maternal antigen
presenting cells [158]. However, it was shown that compared to peripheral cytotoxic T cells,
cytotoxic T cells in the decidua express higher co-inhibitory receptors, such as PD1 and
TIM3, which bind to their corresponding ligands, such as PD-L1 and PD-L2, expressed
on extravillous trophoblasts. This co-inhibitory receptor–ligand interaction results in the
induction of immune tolerance [159]. Decidual Th cells, mainly Th1 and Th2 cells, also
possess the ability to recognize fetal cells [160]. When activated, Th1 and Th2 cells produce
inflammatory cytokines to promote inflammatory processes. It was shown that Th2 cells
in the decidua possess a different differentiation state, causing Th1-repressing properties
that are mainly IL-10-mediated, than Th2 cells in any other type of tissue [161,162]. Tregs
are known to maintain immune homeostasis by suppressing the activity of other immune
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cells after the appropriate elimination of the invading organisms [163]. The mechanism by
which Tregs mediate immunologic tolerance in the decidua is not yet fully understood. It
was shown that Tregs stimulate decidual stromal cells, macrophages, and DCs to express
indoleamine 2,3 dioxygenase (IDO), whose metabolite is toxic to T cells [164–166].

Decidual DCs are less abundant but possess the ability to present fetal antigens [167].
These cells have been poorly investigated in the decidua so far, but they possess an im-
portant role in regulating the activated decidual T cell function [168,169]. Two different
DC phenotypes exist in the human decidua: a large number of immature DC-SIGN+ DCs
and a small number of CD83+ DCs [33]. Physiologically, CD83+ DCs possess the ability to
migrate to the secondary lymphoid organs to initiate T cell activation, whereas DC-SIGN+
DCs promote Th cell responses and are implicated in the recruitment of uNK cells [168,170].
In the absence of stimulation or in anti-inflammatory conditions, DCs differentiate into
tolerogenic DCs and produce anti-inflammatory cytokines [171].

The immune cells of the TME have been intensively studied during the last few
years [172], and similarities to those of the decidual microenvironment have been observed
(Figure 2). For example, it has been suggested that NK cells in the TME could exhibit
uNK-cell-like features, have low-cytotoxic capacity, and promote angiogenesis [173–179].

Figure 2. Comparison of the immune interactions found in (A) the decidual microenvironment
and (B) the tumor microenvironment. In both, similar immune cells (NK cells, T cells, Tregs, and
macrophages) are found. Both may also use similar mechanisms of immune evasion to suppress
the immune responses of the host, mediated by the secretion of immunosuppressive cytokines,
metabolites (e.g., IDO), co-inhibitory signals, non-classical MHC class I molecules and/or by the
recruitment of Tregs and/or NK cells. Secreted factors are shown as dots. Created with BioRender.com
(accessed on 23 April 2022).

Both the decidua and TME contain NK cells, macrophages, T cells, Tregs, and
DCs [180–184]. Additionally, B cells and neutrophils are also frequently found in the
TME [180–183] but rarely found in the decidua. Tumor cells also express HLA-C and
the non-classical MHC class I molecules HLA-E and HLA-G similarly to extravillous tro-
phoblasts, resulting in NK and cytotoxic T cell inhibition in both conditions [185–191]. In
tumors, immune cells can be activated by neoantigens, which are expressed by acquired
genetic alterations in the malignant cells. In the decidua, extravillous trophoblasts express
fetal antigens due to their semi-allogeneic background. Hence, extravillous trophoblasts in
the decidua and malignant tumor cells may use similar immune inhibitory mechanisms
to suppress the immune response of the host. In tumors, this is achieved by expressing
immune inhibitory ligands, such as PD-L1, PD-L2, CD80, CD86, and TIM3L, on the tumor
cell surface. These inhibitory ligands interact with the corresponding co-inhibitor receptors,
such as PD1, CTLA-4, and TIM3, on immune cells, therefore inhibiting the anti-tumor im-
mune responses [182,184,192]. In addition, anti-tumoral immune responses are suppressed
by the expression of IDO in the malignant cells or by other immune cells such as Tregs and
M2 macrophages [193–200].
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2.5. Promotion of Invasion in Tumor and Decidual Microenvironment

With their capability to invade, proliferate, and induce a blood supply, cancer cells
show substantial similarities but also dissimilarities to extravillous trophoblasts in early
pregnancy, when they invade the uterine decidua [102,103]. In both settings, conditions
for successful cellular invasion include alterations in cellular programs responsible for cell
adhesion, protease secretion, and the presence of growth factors, resulting e.g., in reduced
cell-to-cell contacts [102,201,202]. During both processes, high amounts of MMPs are
produced and secreted, thus causing the degradation of ECM components [4,102,203–206].

While cancer cells spread throughout the invaded tissues, even forming distant metas-
tases, extravillous trophoblasts follow a highly organized differentiation pattern from pro-
liferation to invasion [102,207]. This organized pattern is regulated by different signaling
pathways. The Janus kinase-signal transducer and activator of transcription (JAK/STAT)
pathway is suggested as one of the most significant signaling pathways in this context [208].
In many cell types, a plethora of cytokines and growth factors activates the JAK/STAT
pathway, leading to the phosphorylation of the cytoplasmic STAT3. STAT3 then translocates
into the nucleus and binds and activates the expression of its target genes (mainly MMPs)
involved in invasion [209–212]. In addition, STAT3 signaling also influences the expression
and function of a number of genes that are crucial for cell survival, cell proliferation, angio-
genesis, and immune evasion. Regarding cancer cell invasion, the activation of STAT3 by
oncogenic proteins is one of the most common pathways, resembling the signaling routes
of trophoblast invasion [210]. More precisely, it was found that epidermal growth factor
(EGF) is associated with the invasiveness of tumors and is also responsible for stimulating
the motility of extravillous trophoblasts [102,213,214].

The decidua plays an active role in regulating the process of trophoblast invasion
rather than just being a stiff matrix that passively waits to be invaded [35,208,215]. Decid-
ual stromal cells express and secrete a variety of different cytokines and growth factors,
including LIF, IL-6, IL-11, IL-15, CXCL-10, HGF, and GM-CSF, which are known to be direct
regulators of trophoblast invasion (Figure 1) [24,208,209,216]. These factors are able to
induce the chemotaxis of invasive trophoblasts and guide them towards uterine vessels,
especially uterine spiral arteries [216,217]. Decidual IL-6 upregulates the expression of
MMP-2 and MMP-9 in extravillous trophoblasts [208], which is counteracted by tissue
inhibitors of metalloproteinases (TIMPs), also secreted by decidual stromal cells [4,203,205].
This way, the decidua can actively promote and limit trophoblast invasion. MMPs also play
important roles in cancer invasion. In particular, MMP-2 and MMP-9 are key factors in this
process [50].

Interestingly, as described for trophoblast invasion, IL-6 is also expressed and secreted
by cancer cells and cells in the TME. Thus, the IL-6/JAK/STAT-3 pathway appears to
regulate a majority of invasion-promoting functions in various cancer types [218–220], as
well as in trophoblasts. In addition, chemokines are known to be frequently expressed
in the inflammatory microenvironment of tumor cells. Ren et al. showed that the over-
expression of CXCL10 significantly enhances the migration, invasion, and metastasis of
hepatocellular carcinoma, thereby playing an important role in the regulation of cancer
invasiveness [221]. Recent findings by Godbole et al. described an additional regulatory
pathway for trophoblast invasion based on a two-step process controlled by decidual
cells. The downregulation of the homeobox transcription factor HOXA10 in decidual cells
leads to a burst in the production of LIF and IL-6, which activates STAT3 in trophoblasts
and stimulates the expression of MMPs in a paracrine manner. Decidual cells containing
HOXA10 exhibit limited production of pro-invasive molecules, thus inhibiting invasion.
It is assumed that the activity of HOXA10 in vivo prevents premature invasion and helps
define the limit of invasive depth within the decidua [209]. According to recent studies,
HOXA10 also plays a role in the development of a variety of cancer types. The disrup-
tion or abnormal expression of HOXA10 thereby promotes the malignant behavior of
tumor cells [222,223], especially in prostate cancer, in which a tumor-suppressor role of
HOXA10 was identified [222]. Furthermore, investigations using various trophoblast cell
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models have demonstrated that transcription factors, including GCM1, AP2α, and FOS-
like 1, are also involved in the control of trophoblast-specific gene expression and thus
invasion [35,224–226].

In addition to decidual stromal cells, there is evidence that the invasion of extravillous
trophoblasts is influenced by immune cells [41,227] (Figure 1). In utero, high numbers of
maternal immune cells can be detected prior to the implantation of the embryo, and thus
may be involved in preparing the uterus for pregnancy [227]. uNK cells and macrophages,
especially, are found in proximity to extravillous trophoblast cells, promoting invasion
and tissue remodeling [228,229]. In vitro and animal model studies have suggested that
these immune cells promote decidual and spiral artery invasion through the secretion of
cytokines, angiogenic mediators, and growth factors [228,229]. In the tumor setting, tumor-
associated macrophages have been linked to tumor progression and metastasis [230,231].
In contrast, increased intratumoral levels of activated NK cells appear to prevent cancer
invasion and thus metastasis [231,232]. However, a number of evading strategies have
been observed in tumors, including limited NK cell infiltration into solid tumors and NK
cell dysfunction [172,185,232,233]. A number of reports have even suggested that NK cells
could adopt a uNK cell-like phenotype [173–179].

Furthermore, the invasion of trophoblast cells also seems to be hormonally regu-
lated. During implantation, the endometrium forms the decidua in response to release of
the ovarian hormone progesterone (P4). Decidualized stromal cells are characterized by
secreting prolactin, which stimulates trophoblast invasion and the formation of ciliated
glandular epithelial cells in vitro [215,234]. The secreted factors coming from the uterine
glands regulate the development and function of the placenta, including trophoblast at-
tachment, invasion, and growth [234,235]. Whether the secretions of the uterine glands
directly stimulate trophoblast invasion remains elusive. Increased prolactin levels have also
been linked to the higher invasiveness of specific tumor types [234,236]. This correlation
seems to be particularly strong in breast cancer. The similarity between prolactin and
growth hormones and its influence on the JAK/STAT signaling pathway strongly indicate
its impact on tumor invasiveness [236]. Hence, it is assumed that both trophoblast and
tumor invasion are also affected and regulated by the hormonal products produced by cells
of their microenvironments [215,236].

2.6. Chemo-Physical Aspects of Tumor and Decidual Microenvironment: Oxygen as an Example

The chemo-physical aspects of the TME compared to the microenvironment during
trophoblast invasion appear to be similar in a number of ways, especially when it comes to
oxygenation. Oxygen levels have been shown to be low in both tumors and first trimester
placenta. In addition, both scenarios show high proliferation at sites of low oxygen and
migration and invasion towards higher levels of oxygen (Figure 1).

Maternal blood flow into a first trimester placenta is blocked by plugs of invaded
endoarterial trophoblasts and thus, only a plasma flow through the placenta is established
at this time of pregnancy [237]. This allows only physically solved oxygen to enter the pla-
centa, resulting in pO2 levels between 10 and 25 mmHg [238]. As the sources for invading
trophoblasts and sites of highest trophoblast proliferation, the trophoblast cell columns are
bathed in this plasma flow and hence develop in a low-oxygen environment [239,240]. It
needs to be stressed here that in a first trimester placenta, the low pO2 levels are normoxic
and there are no such low oxygen levels in the surrounding maternal tissues [239]. Starting
from the cell columns, trophoblasts start to differentiate and invade the uterine wall tissues
with much higher pO2 levels (from 55 to 70 mmHg [238]) than those present in the placenta.
Hence, there is migration along an oxygen gradient from a low-oxygen environment with
proliferation to a high-oxygen environment with invasion [239], similar to tumor cells
escaping from the tumor mass and invading the surrounding tissues.

With the onset of maternal blood flow through the placenta at the beginning of the
second trimester of pregnancy, the pO2 levels within the placenta rise to values between
40 and 55 mmHg [238]. This is correlated with reduced proliferation rates within the cell
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columns, demonstrating that the rates of cell division are oxygen-dependent in both tumor
and fetal cells.

Tumors are known to develop hypoxic areas within the tumor mass due to lack
of sufficient blood supply to these sites [241,242]. At the same time, a reduced oxygen
supply changes the glucose uptake of tumor cells [242] and increases the “evolutionary
velocity”, thus raising the chances of new mutations [243]. Tumor sites where the pO2
level is too low develop necrosis. Interestingly, the tumor sites surrounding necrotic sites
display pO2 levels in a range between 10 and 20 mmHg [241,242]. These are the sites of
the highest proliferation rates [243], similar to what can be observed in the first trimester
placenta. Glucose uptake follows, with higher rates of uptake at 10 mmHg compared
to 20 mmHg [242]. From such sites, cells escape from the tumor and start to invade the
surrounding tissues, which are normally vascularized and hence no longer show any signs
of hypoxia.

2.7. Energy Metabolism in Tumor and Decidual Microenvironment

The low-oxygen microenvironment at the fetal–maternal interface in the first trimester
of pregnancy is one of the major drivers of the glycolytic metabolic profile of the
trophoblast (Figure 1). The fact that cytotrophoblasts are highly proliferative also supports
their dependence on glycolysis, as this is a common feature of proliferating cells [244].
Glucose is the main carbohydrate catabolized by trophoblasts [245], and it is mostly pro-
vided by the rich supply from the endometrial glands [246]. Glucose import into the cells is
governed by glucose transporters, with glucose transporter 1 (GLUT1) being predominant
in the trophoblast of the first trimester placenta [247]. Other GLUTs, such as GLUT8 and
GLUT9a, are present in the plasma membranes of the cells in the third trimester [248]. The
high abundance of GLUTs, as well as their differential spatiotemporal distribution in the
placenta, implies a regulated process that is mediated by transcriptional and epigenetic
changes and initiated by nutritional, endocrine, and metabolic inputs from the microenvi-
ronment. Furthermore, GLUT expression and distribution can be distorted in pregnancy
complications [248,249].

In many aspects, the metabolic phenotype of transformed tumor cells resembles the
metabolic phenotype of highly proliferating cytotrophoblasts in the placenta. Proliferating
tumor cells are largely considered glycolytic, meaning that they shift their metabolism
from respiration (mitochondrial oxidative phosphorylation) towards glycolysis even in
the presence of sufficient oxygen (also known as the Warburg shift) [250]. The glycolytic
phenotype is common for dividing cells in general, because it allows for rapid glucose
turnover and enables the quick production of building molecules for the rapidly prolifer-
ating cells [244]. This is achieved, for example, by shunting glycolysis intermediates to
branching metabolic pathways, such as the pentose phosphate pathway for nucleotide pro-
duction [251]. However, metabolic rewiring is an intricate part of cancer progression, and
it is regulated by a delicate interplay between intrinsic factors (e.g., oncogenic mutations)
and extrinsic factors from the TME [250,252–254]. The availability of nutrients within the
unstable microenvironment influences the energy metabolism of cancer cells, which are
able to shift between glycolysis and mitochondrial oxidative phosphorylation to produce
ATP [250,255].

One more benefit coming from increased glycolysis that is utilized by both cancer and
trophoblast cells is the reduction in reactive oxygen species (ROS), which can be destructive
to cells with high oxidative phosphorylation [250]. In this sense, trophoblasts are more vul-
nerable to hyperoxia or fluctuating levels of oxygen than hypoxia [246]. In complications of
pregnancy, such as early-onset pre-eclampsia or maternal diabetes, high levels of oxidative
stress cause the release of factors that precipitate the maternal syndrome [246,256].

Finally, the increased nutrient uptake that can be attributed to both cancer and tro-
phoblast cells can play a role in immune evasion. The results of cancer research have shown
that cancer cells compete for nutrients with immune cells within the TME. For example,
the increased uptake of glucose by cancer cells can deplete the TME of glucose, leading to
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dysfunctional T cells that are also highly glycolytic [257]. As a consequence of high glycoly-
sis rates, lactate (the end product of aerobic glycolysis) is accumulated in both the tumor
and decidual microenvironments [258]. Lactate can be used as an energy source by both
the fetus and placenta, and it can also serve as a signaling molecule implicated in immune
evasion [259]. In the TME, lactic acid has been shown to be a key signaling molecule in
tumor cell migration, invasion, growth, angiogenesis, and immune escape [260,261].

Data from in vitro investigations of trophoblast metabolism are scarce, and their
interpretation is often difficult. This is due to the use of non-physiological oxygen con-
centrations in in vitro cultures and a lack of good trophoblast-like cell lines or explant
models [246,262,263]. Based on what we have learned so far, it seems plausible that the
metabolism of both cytotrophoblasts and cancer cells is driven by the demand of their high
proliferation rates. However, the high glycolysis rate does not change after implantation,
even after circulation is established and oxygen levels are ‘normalized’ [258]. This depen-
dence on glycolysis has provoked a novel hypothesis that proposes that the metabolic state
of trophoblasts, rather than oxygen availability, regulates their fate, at least in part because
the histone acetylation and open chromatin state of trophoblasts rely on the production of
acetyl-CoA through glycolysis [264].

2.8. Long Non-Coding RNAs as Important Regulatory Players

Long non-coding RNAs (lncRNAs) are regulatory RNA molecules that are nowa-
days considered to be important players in numerous biological processes [265,266]. In
human malignances, they have been implicated in cell proliferation, tumorigenesis, metasta-
sis/invasion, immune evasion, and tumor metabolism, among others [265–268]. However,
knowledge on expression profiles and functionality of lncRNAs in both tumor and tro-
phoblast cells and/or their microenvironments is limited at the moment.

For example, the lncRNAs MALAT1 and LINC00473 have been implicated in regulating
invasion in both settings. Experiments in a number of trophoblast-derived cell lines have
shown that the lncRNA LINC00473 appears to affect migration and invasion [269–272];
however, further experiments are needed to elucidate its role. In cancer, this lncRNA
is upregulated in a variety of cancer types and has been associated with poor clinical
outcomes [273–275]. Studies in cancer cell lines have also implicated LINC00473 in the
regulation of cell migration and invasion [274–278]. In trophoblast-derived cell lines,
the silencing of MALAT1 has been reported to inhibit migration and invasion [279–282].
In cancer, MALAT1 has been suggested to promote invasion and metastasis; however,
other reports have described a tumor-suppressing role of this lncRNA [283–292]. Another
interesting example is the lncRNA EPB41L4A-AS1. Its low expression has been associated
with poor prognosis in some cancer types [293,294]. The silencing of this lncRNA in
cancer cell lines was found to trigger the Warburg effect, promoting aerobic glycolysis
and glutamine metabolism [293]. As trophoblast and cancer cells both use glycolysis
for fast growth, Zhu et al. investigated the regulatory effect of EPB41L4A-AS1 on the
metabolism of trophoblast-derived cell lines [295]. However, further investigation is
required to explore the functional roles of these lncRNAs in trophoblasts and cancer cells.
Furthermore, lncRNAs are being increasingly investigated for their regulatory roles within
the TME [268,296–301]. Within the decidual microenvironment and the decidualization
process, the regulatory involvement of these molecules is also being explored [302–307].

Further research is needed to investigate similarities and dissimilarities in expression,
regulation, and functionality of lncRNAs between tumor and trophoblast cells and/or their
microenvironments but could offer new perspectives for both fields of research. Notably, a
number of lncRNAs are dysregulated in pregnancy pathologies [308–310].

3. Selected Pathologies of the Placenta and the Decidua
3.1. Preeclampsia and Intra-Uterine Growth Restriction

The identification of the etiologies of the two major pregnancy pathologies preeclamp-
sia and intra-uterine growth restriction (IUGR) is still pending. Hence, the origins of
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both pathologies are still a matter of debate, and respective hypotheses are steadily devel-
oping [311–313]. Still, it is most likely that most cases of both pathologies are based on
placental origins [21].

For preeclampsia, it is tempting to claim the dysregulation of the villous trophoblast as
a cause [311]. This subtype of the trophoblast, serving as the epithelial cover of the placental
villi, bathes in and continuously releases vesicles and factors into maternal blood [314]. The
dysregulation of this layer during preeclampsia results in the release of so-far unknown
factors that have negative impacts on the maternal vascular system. Depending on the
susceptibility of the mother, she may develop the clinical symptoms of preeclampsia,
hypertension, proteinuria, and other organ-based insults. This pregnancy pathology does
not seem to be based on alterations of trophoblast invasion [21,311] but shows features of
an upregulated inflammatory response of the mother to fetal components in her system.

In contrast, IUGR seems to develop following a failure in trophoblast invasion [311].
It has been shown that invasion of the uterine spiral arteries is reduced, leading to the
reduced widening of the arterial ends connected to the placenta [315]. This in turn leads to
a 10–20-fold increase in the flow velocity of maternal blood entering the placenta, which has
dramatic morphological effects on its fragile villous tissue [315]. Villi are disrupted from the
uterine wall, and the fetal vessels within the villous tissue experience a higher resistance.
The combination of all these effects leads to an increase in placental oxygenation from
less than 50 mmHg to more than 63 mmHg [316]. At the same time, the oxygen content
in the umbilical vein, which transports blood from the placenta to the fetus, is reduced
from 3.95 to 3.46 mmol/l [316]. Hence, while the placenta develops a hyperoxia, the fetus
becomes hypoxic [240]. Higher oxygen levels in the placenta may further diminish the
proliferation of trophoblasts serving as source for the invading population of trophoblasts,
thus further decreasing the number of invading trophoblasts. Interestingly, so far, the initial
trigger of reduced trophoblast invasion in IUGR is not known.

Both pregnancy pathologies, especially IUGR, may be linked to tumor biology. The
changes in the maternal inflammatory response to so-far inert fetal/placental material
could be used as a trigger in identifying respective molecular patterns in tumor cells that
could be used for a tumor therapy. Knowledge on how the reduced invasion behavior of
extravillous trophoblasts develops in IUGR may also be used to tone down the invasive
capacity of tumor cells.

3.2. Placenta Accreta Spectrum

In the normal process of implantation, blastocysts attach to the decidua, which stim-
ulates the proliferation and differentiation of the cytotrophoblast, eventually leading to
the development of the two major subtypes of trophoblast: the villous and extravillous
trophoblast [317]. Extravillous trophoblasts migrate through the decidua into the under-
lying inner third of the myometrium, thus forming the placental bed [317–319]. As they
move through the maternal tissues, extravillous trophoblasts not only invade connective
and muscular tissues but also penetrate into each and every luminal structure, including
uterine arteries, veins, glands, and lymph vessels [15,17].

Placenta accreta spectrum disorders (PAS) fall into the group of placental implantation
abnormalities [22]. Clinically, PAS features abnormal adherence of the placenta to the
uterine wall and the absence of or/and a defective decidua [320]. Recently, the subgroups
of placenta accreta, increta, and percreta were re-defined into grades 1, 2, and 3, respectively,
according to the degree of invasiveness and the respective localization of the villous tissue.
Histologically, in grade 1 (accreta), the placental villi directly attach to the myometrium,
and in grade 2 (increta), placental villi intervene with the myometrial fibers or extend
deep into the uterine vasculature. Grade 3 (percreta) features villous tissue/trophoblasts
within or even penetrating the serosa; in severe cases, they also invade the bladder wall
or other pelvic organs [320]. Extravillous trophoblasts are thought to undergo minimal
or no EMT, which may influence the stringent regulation of their migratory capacity and
invasiveness [321]. Their invasive driving forces steadily decrease during pregnancy [322],
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such that trophoblast invasion is usually restricted to the first half of gestation [323]. In
PAS, extravillous trophoblasts seem to maintain their invasiveness into later stages of
pregnancy and may also acquire EMT characteristics [324,325]. The activation of EMT has
been proposed as a crucial dedifferentiation step from noninvasive to invasive phenotypes
of epithelial cancer cells, cancer invasion, and metastasis [326,327].

When extravillous trophoblasts invade the decidua, they secrete regulatory factors
such as proteolytic enzymes that dissolve ECM proteins. The secreted activators act on
proteinases and MMPs present in the decidua. The intensive crosstalk between trophoblasts
and cells within the decidua ensures controlled yet sufficient invasion [318]. Cells within
the decidua secrete pro-invasive factors such as IL-1ß, IL-6. LIF, IL-11, IL-8, IL-15, IP-
10, RANTES, eotaxin, and IL-7 and anti-invasive factors such as IL-10 and IL-12 [4,328].
IL-10 and IL-12 regulate MMP-2, MMP-9, and TIMP-1 expression [329]. MMP-2 and
MMP-9 are the most studied MMPs secreted by extravillous trophoblasts [330]. The
immunohistochemical analysis of MMP2 expression of placenta percreta tissue sections
revealed higher expression of MMP-2, supporting the hypothesis of deeper invasion in
such cases [331]. However, this could not be noted at the mRNA level in placenta accreta
cases [332]. As placenta accreta cases show lower invasion severity compared to placenta
percreta, the expression levels of MMP-2 probably differ between the grades of invasion.
In cancer, higher MMP-2 and MMP-9 activities have been linked to not only tumor cell
invasion but also angiogenesis [333–337].

The increased expression of VEGF, a pro-angiogenic factor, was observed in PAS [338].
Duzyj et al. suggested that the absence of endostatin, a VEGF-inhibiting factor expressed
by decidual stromal cells, may promote trophoblast invasiveness [339,340]. Similarly,
VEGF also plays a key role as a mediator of angiogenesis in cancer, where its expression
is upregulated under hypoxic conditions [341]. The decidua, and to some extent the
myometrium as well, regulate the extent and depth of trophoblast invasion through the
secretion of TIMPs [342]. Specifically, TIMP-1 binds to complexes with MMP-9 and TIMP-2
regulates MMP-2 activity [343–345]. Higher numbers of extravillous trophoblasts were
observed in the absence of decidua, supporting the hypothesis of the enhanced invasiveness
of trophoblasts in the absence of decidua [346]. Similarly, in cancer, surrounding tissues
secrete TIMPs, while excess TIMPs in the MMP–TIMP balance block the processing of
tumor cell invasion [347–349]. Recently, an analysis of the immune cell population in PAS
reveled decreased uNK cells, CD4+ T cells, Fox3P+ Tregs, and rare B cells with higher
immune cell infiltration rates in the placental bed [350,351]. On the other hand, Schwede
et al. reported increased Fox3P+ cell count and decreased counts of immature non-activated
CD209+ DCs [352].

3.3. Choriocarcinoma

Choriocarcinoma is a rare and aggressive neoplasm originating from villous tro-
phoblast, with varied incidence worldwide [353]. It can manifest as a gestational or
non-gestational subtype and mainly occurs in women but can also occur in men as part of
a mixed germ cell neoplasm. Choriocarcinoma develops from hyperplastic and anaplastic
villous trophoblast, most frequently following a molar pregnancy [354]. The pathogenesis
of choriocarcinoma is not fully understood. Studies have indicated that villous cytotro-
phoblasts undergo malignant transformation and thus do no longer only differentiate into
the syncytiotrophoblast, but they may also upregulate EMT feature and thus differentiate
into invasive and malignant trophoblasts [355,356].

Since choriocarcinoma is a rare neoplasm [354], only a few studies have focused on the
investigation of the TME with limited numbers of tumor samples [357–359]. All of these
studies showed that the immune cell infiltration occurred locally or was even missing within
the tumor, whereas the vigorous infiltration of NK cells, cytotoxic T cells, and Tregs was
detected in the adjacent tissue [357–359]. Furthermore, it has been shown that malignant
trophoblasts and the villous syncytiotrophoblast express the immune inhibitory PD-L1 lig-
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and [357]). However, data on that topic are rather preliminary, and further comprehensive
studies are needed to fully elucidate the development and TME of choriocarcinoma.

4. Conclusions

Trophoblast and tumor cells exhibit many striking similarities [7,8], and they are
both supported by an abetting microenvironment [9]. Interestingly, similarities in gene
expression and DNA methylation have also been highlighted [8,89,184,360–366]. In this
article, we discuss the similarities and dissimilarities in the regulatory processes driving
trophoblast and tumor cell fate, with a focus on the role of the decidual and tumor mi-
croenvironments (summarized in Table 1). In pregnancy, decidual cytotoxic T cells have
the potential to recognize the semi-allogeneic fetal cells through fetal antigens [158], and,
to ensure a healthy pregnancy, these must be tolerated by the maternal immune cells in the
decidual microenvironment. In cancer, cytotoxic T cells can recognize tumor cells via tumor
antigens, which comprise a number of categories, including neoantigens, HERV-derived
antigens, cancer testis antigens, and tumor-associated antigens [172,367–369]. Hence, tumor
cells are pressured to find mechanisms to circumvent their elimination by immune cells
in the TME [172]. Particularly, the interactions of immune inhibitory ligands with the
corresponding co-inhibitory receptors, which suppress immune cell responses and induce
suppressive immune cell types, are involved in establishing these supporting microenviron-
ments [182,184,192,370]. Interestingly, non-classical MHC class I molecules are emerging as
potent players in immunomodulatory processes, particularly involving NK cells [151,370].
Both microenvironments support the promotion of invasion and angiogenesis, as outlined
in the designated sections of this review. As the developing fetus and a growing tumor
increase in size, they need to reinforce their supply with oxygen and nutrients. To do
so, trophoblasts and tumor cells alter their microenvironment by releasing a plethora of
matrix-degrading proteins [42,335] and pro-angiogenic signals [112,117]. These signals
activate and attract endothelial cells on the one hand and recruit leukocytes on the other
hand [126,127,136,137], both of which further participate in tissue remodeling processes
and angiogenesis.

Table 1. An abetting microenvironment sustains both trophoblasts and tumor cells, as well as
influences/regulates invasion, angiogenesis, and immune tolerance/evasion, among others. In
comparison to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast
cells are under tight regulatory control. This table summarizes the main characteristics/aspects
discussed in this review.

Topic Tumor Setting Decidual Setting

Growth Suppression in Tumor
and Decidual

Microenvironment

• Tumor-suppressor genes (e.g., Rb, PTEN,
and p53) are mutated in many cancers

• Post-translational modifications of tumor
suppressors regulate their function

• Many different binding partners of
tumor suppressors

• Tumor-suppressor genes not mutated in
trophoblasts

• Post-translational modifications of tumor
suppressors regulate their function

• Many different binding partners of
tumor suppressors

Proliferative Signaling in Tumor
and Decidual

Microenvironment

• Dysregulated proliferation (through
growth pathway-activating oncogenes)

• Sustained proliferation refractory to
growth factors in the microenvironment

• Transition between invasive and
proliferative states

• Tightly regulated proliferation
• Proliferation regulated by growth factors

in the microenvironment (e.g., EGF, HGF,
IGF, and PIGF)

• Resident placental trophoblasts
proliferate

• Invading extravillous trophoblasts do
not proliferate
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Table 1. Cont.

Topic Tumor Setting Decidual Setting

Angiogenesis in Tumor and
Decidual Microenvironment

• Increasing demand for oxygen
and nutrients

• Release of pro-angiogenic factors
• Recruitment of leukocytes (macrophages,

NK cells, and DCs)
• Vasculogenic mimicry

• Increasing demand for oxygen
and nutrients

• Release of pro-angiogenic factors
• Recruitment of leukocytes (macrophages,

uNK cells, and DCs)
• Spiral artery remodeling

Evasion of Immune Destruction
in Tumor and

Decidual Microenvironment

• TME contains NK cells, macrophages,
DCs, neutrophils, T cells, Tregs,
and B cells

• Immune suppression facilitated by
co-inhibitory signals, secreted
immunosuppressive cytokines,
metabolites (e.g., IDO), non-classical
MHC class I molecules, and/or the
recruitment of Tregs and/or NK cells

• Decidua contains uNK cells,
macrophages, DCs, T cells, and Tregs

• Immune tolerance facilitated by
co-inhibitory signals, secreted
immunosuppressive cytokines,
metabolites (e.g., IDO), non-classical
MHC class I molecules, and/or
recruitment of Tregs and/or uNK cells

Promotion of Invasion in Tumor
and

Decidual Microenvironment

• Changes in cellular programs
e.g., responsible for the loss of
cell–to-cell contacts

• Uncontrolled invasion of the
surrounding tissues with no endpoint
(forming distant metastases)

• Dysregulated HOXA10 pathway
• Hormonal influence on invasion

depending on tumor type
• Cells of the TME are involved in

regulating invasion

• Changes in cellular programs
e.g., responsible for the loss of
cell–to-cell contacts

• Highly organized differentiation pattern
with invasion endpoint (decidua plays
important role)

• Regulated HOXA10 pathway
• Hormonal regulation of invasion
• Cells of the decidual microenvironment

are involved in regulating invasion

Chemo-Physical Aspects of
Tumor and Decidual

Microenvironment: Oxygen as
an Example

• Proliferation at various oxygen levels
• Transition between invasive and

proliferative states
• Invasion towards higher oxygen levels

• Proliferation only at low oxygen levels
• Separation of proliferation and invasion
• Invasion towards higher oxygen levels

Energy Metabolism in Tumor
and Decidual

Microenvironment

• Glycolytic
• Glucose provided by intra-tumoral

vasculature (variable supply)
• Lactate as an energy source and

signaling molecule
• Metabolic flexibility and plasticity
• Rewired metabolism promotes tumor

initiation, growth, and metastasis

• Glycolytic
• Glucose provided from endometrial

glands (steady supply)
• Lactate as an energy source and

signaling molecule
• Regulated metabolic state
• Altered energy metabolism in placental

pathologies (e.g., preeclampsia)

Long Non-Coding RNAs as
Important Regulatory Players

• Regulatory players in many biological
processes including invasion

• A number of lncRNAs are dysregulated
in malignances

• Regulatory players in many biological
processes including invasion

• A number of lncRNAs are dysregulated
in pregnancy pathologies

Nevertheless, we recommend caution in defining the placenta as a well-behaved
tumor, as this term may be misleading. While cancer cells use similar pathways and mecha-
nisms, there are crucial differences in regulatory processes between trophoblast and tumor
cells, as well as between their microenvironments. Importantly, trophoblast cells only
proliferate or invade in a tightly controlled fashion [1,8,10]. The proliferative capability is
limited to trophoblasts residing on the basement membrane of placental tissues, and the
invading extravillous trophoblasts do no longer proliferate [1]. In contrast, cancer cells
exhibit uncontrolled proliferation and show plasticity in transitioning between invasive
and proliferative states, which has been suggested to be regulated by microenvironmen-
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tal conditions [371–373]. Moreover, while a high proliferation rate is essential for the
rapid growth of embryonic and placental tissues in early stages of pregnancy, transition
to cellular differentiation and senescence occurs towards term. The disruption of this
balanced regulation could lead to gestational trophoblastic diseases [88]. Tumor-suppressor
genes may play a key role in regulating trophoblast cell expansion and invasion processes.
However, these are tightly regulated, whereas in many cancers, such genes are commonly
mutated, which can result in tumor formation or growth [52]. Tumor suppressors (wild
type and mutated) are subject to a complex array of post-translational modifications that
may differentially affect stability, high molecular complex formation, and activity of tumor
suppressors in trophoblasts and tumor cells. Additionally, uNK cells are highly abundant
in the decidual microenvironment and are thought to have important regulatory roles
in pregnancy, including regulating invasion and spiral artery remodeling [33,34]. In the
tumor setting, NK cells play an important part in immune surveillance, but tumor cells
can develop a range of evading strategies, which include limited NK cell infiltration into
solid tumors, NK cell dysfunction [172,185,232,233], and possibly even the adoption of a
uNK cell-like phenotype [173–179]. Furthermore, even though both cell types show similar
metabolic states that are strongly reliant on glycolysis, cancer cells also demonstrate aston-
ishing metabolic flexibility [264], while trophoblasts maintain their metabolic state [374].
Additionally, alterations in placental energy metabolism can be the underlying factors of
placental pathologies, such as preeclampsia [374].

Taken together, although trophoblast and tumor cells share an astonishing degree of
similarity, including an abetting microenvironment, both cell types are clearly distinguish-
able. Trophoblasts are tightly controlled via intrinsic and extrinsic factors, while tumor
cells can escape many control mechanisms.
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