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Background. Cancer stem cells (CSCs) are typically related to metastasis, recurrence, and drug resistance in malignant tumors.
However, the biomarker and mechanism of CSCs need further exploration. This study is aimed at comprehensively depicting
the stemness characteristics and identify a potential stemness-associated biomarker in hepatocellular carcinoma (HCC).
Methods. The data of HCC patients from The Cancer Genome Atlas (TCGA) were collected and divided based on the mRNA
expression-based stemness index (mRNAsi) in this study. Weighted gene coexpression network analysis (WGCNA) and the
protein-protein interaction (PPI) network were performed, and the genes were screened through the Cytoscape software. Then,
we constructed a prognostic expression signature using the multivariable Cox analysis and verified using the GEO and ICGC
databases. Even more importantly, we used the three-dimensional (3D) fibrin gel to enrich the tumor-repopulating cells
(TRCs) to validate the expression of the signature in CSCs by quantitative RT-PCR. Results. mRNAsi was significantly elevated
in tumor and high-mRNAsi score was associated with poor overall survival in HCC. The positive stemness-associated (blue)
module with 737 genes were screened based on WGCNA, and Budding uninhibited by benzimidazoles 1 (BUB1) was identified
as the hub gene highly related to stemness in HCC. Then, the prognostic value and stemness characteristics were well validated
in the ICGC and GSE14520 cohorts. Further analysis showed the expression of BUB1 was elevated in TRCs. Conclusion.
BUB1, as a potential stemness-associated biomarker, could serve as a therapeutic CSCs-target and predicted the clinical
outcomes of patients with HCC.

1. Introduction

Liver cancer, the fourth leading cause of cancer-related
death, seriously endangers health globally with an estimated
incidence of more than 100,000 cases by 2025 [1]. Hepato-
cellular carcinoma (HCC) is the most common kink of liver
cancer, accounting for exceeding 90% of cases. Chronic alco-
hol consumption, diabetes or obesity-related nonalcoholic
steatohepatitis (NASH), and HBV or HCV infection are
the primary risk factors for HCC [1]. Over the past decades,
some molecular therapies such as sorafenib and immuno-
therapies have been proven to be efficacy [2]. However, a

large proportion of patients were unresponsive to these
treatments because of recurrence and metastasis [3].

Cancer stem cells (CSCs), a subgroup of tumor cells that
have the ability to self-renew and produce heterogeneous
tumor cells, are responsible for cancer metastasis, recurrence,
and drug resistance [4, 5]. Recently, mounting evidence sug-
gests that CSCs-target therapy is promising in tumor treat-
ment [6, 7]. Therefore, there is an urgent need to develop
new therapies that can effectively inhibit CSCs in HCC.Malta
et al. [8] used the one-class logistic regression machine learn-
ing algorithm (OCLR) to get the mRNA expression-based
stemness index (mRNAsi) and epigenetically regulated-
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mRNAsi (EREG-mRNAsi) for tumors in the TGCA database.
Their research primarily showed that stemness features
extracted from transcriptomic data from TCGA tumors
could reveal new anticancer therapeutic targets [8]. Many
researchers have recently used this index to investigate the
characteristics of CSCs in various tumors and the therapeutic
targets, such as colorectal cancer [9], lung adenocarcinoma
[10], pancreatic ductal adenocarcinoma [11], gastric cancer,
and esophagus cancer [12, 13]. The biomarker identified by
mRNAsi within these studies mostly related to the impressive
progress of tumors and the poor prognosis of patients.

Weighted gene coexpression network analysis (WGCNA)
is a biological method to explore genes that are highly corre-
lated with different phenotypes. In this study, we intended to
screen out the stemness-associated biomarker using WGCNA
in HCC. BUB1 (Budding uninhibited by benzimidazoles 1)
was identified as the interested gene highly related to stemness
and served as a predictor of prognosis in HCC. As a serine/
threonine kinase, BUB1 was described as a core component
of the spindle assembly checkpoint (SAC) [14] to prevent
errors in chromosome segregation [15, 16]. Although studies
have reported the aberrant BUB1 expression was associated
with poor survival of HCC patients, no one digs into the
connection between the abnormal expression and stemness
features in HCC [17–20].

We have used three-diameter (3D) fibrin gel to culture
tumor cells in our previous study. We demonstrated that
90 Pa (1mg/ml) fibrin gel could promote the growth and
selection of multicellular colonies of melanoma [21]. These
tumor cells have similar characteristics as CSCs and were
also called tumor repopulating cells (TRCs) [21]. Then, we
also used the 3D fibrin gel to successfully enrich the colon
TRCs which were examined by colony formation, tumorige-
nicity, and drug resistance, and the stemness markers, such
as CD133, CD44, SOX2, and OCT4, were also verified to
be upregulated [22, 23]. There have been reportsthat CSCs
promote the malignant characteristics of HCC and clarified
the importance of CSCs in treatment [24]. But, the investiga-
tion on the characteristics and potential biomarkers of CSCs
in HCC remains lacking. Therefore, our present study
identified BUB1 was highly related to mRNAsi through
bioinformatic analysis and confirmed the upregulation of
BUB1 expression in TRCs through experiments in vitro.
These results imply that BUB1 could serve as a potential
stemness-associated related to prognosis biomarker and
CSCs-target therapy strategy for HCC.

2. Materials and Methods

2.1. Data Collection and Processing. We collected the gene
expression, mutation, and clinical details of 374 HCC
patients and 50 normal samples from the UCSC Xena
website (https://xenabrowser.net/). The mRNAsi index of
368 HCC patients were downloaded from the study pub-
lished by Malta et al. listed in Table S1 [8]. We divided
HCC patients into the high-mRNAsi and low-mRNAsi
groups based on the median mRNAsi index (Table S2). The
raw gene microarray expression data of GSE14520 and
International Cancer Genome Consortium (ICGC-LIRI-JP)

and associated clinical information were downloaded from
the NCBI Gene Expression Omnibus (GEO) (http://www
.ncbi.nlm.nih.gov/geo/) and International Cancer Genome
Consortium (ICGC, http://www.icgc.org). Datasets with
missing clinical information were excluded. We calculated
the average value for those genes corresponding to more
than one probe and eliminated the probes matched with
more than one gene.

2.2. Weighted Gene Coexpression Network Construction. We
performed a gene coexpression network using the
“WGCNA” R package [25] to analyze and identify gene
modules strongly associated with mRNAsi. Genes were
sorted based on the median absolute deviation (MAD)
value > 1 and the top 5,000 ranked genes were used in the
analysis. When the degree of independence was above 0.9
and the average connectivity degree is relatively higher, the
appropriate soft threshold power parameter β (β = 7) was
determined [25]. Modules with similar expression proles
were merged with a merging threshold of 0.25. The mini-
mum number of genes in each module was set as 30.

2.3. Identification of Stemness-Based Module and Hub Gene.
The correlation between mRNAsi/EGFR-mRNAsi and mod-
ule eigengenes (MEs) was used to evaluate module-trait
associations. MEs were considered the major component in
the principal component analysis for each module. Then,
we calculated the correlation between MEs and mRNAsi to
identify the relevant module. Gene significance (GS), which
was defined by the minus log of a p value in the linear regres-
sion between gene expression and mRNAsi, was measured
to evaluate correlation strength [25]. The positive module
highly correlated to mRNAsi was selected as the key module.
To explore the potential mechanism of how module genes
regulate cancer cell stemness, we uploaded the genes in the
key module into the Metascape database [26] and performed
the pathway and process enrichment analysis.

Candidate genes were defined by module connectivity,
measured by the absolute value of Pearson’s correlation
(cor. module membership ðMMÞ > 0:8), and clinical trait
relationship of mRNAsi, measured by the absolute value of
Pearson’s correlation (cor. gene significance ðGSÞ > 0:2).
Then, we uploaded these genes to the Search Tool for the
Retrieval of Interacting Gene (STRING) database (https://
string-db.org/) and construct protein-protein interaction
(PPI) network [27]. Subsequently, we used the “CytoHubba”
and “MCODE” application of Cytoscape software (version
3.8.2) which provided the calculated results by maximum
neighborhood component (MNC), degree, bottleneck, stress,
radiality, and closeness methods to identify hub gene from
the PPI network [28].

2.4. Hub Gene Validation. To verify the reliability of the hub
gene, GSE14520 and ICGC databases were downloaded. The
mRNA differential expression levels of te hub gene between
tumor and normal tissues in various cancer types and corre-
lation with TP53 mutation were retrieved from the Tumor
Immune Estimation Resource (TIMER 2.0) (http://timer
.comp-genomics.org/) [29]. We analyzed the prognostic
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effect of the hub gene on patients, which was performed
using the Sangerbox tools (http://www.sangerbox.com/tool).

2.5. GSEA and GSVA of Hub Gene. To further understand
the biological function of BUB1 in HCC, GSEA was per-
formed using “ClusterProfiler” R package [30]. The GO
and KEGG items were ranked by their enrichment scores,
and p < 0:05 was considered significant. GSVA [31] is a
method to calculate the score of a certain pathway or a sig-
nature through the transcriptomic data. All hallmark gene
sets were downloaded from the Molecular Signature Data-
base (MSigDB, http://www.gsea-msigdb.org/gsea). Utilizing
the “GSVA” and “limma” R package, differential analyses
were subsequently conducted based on the score, and the
signatures with p < 0:05 were defined as significant differen-
tially expressed signatures. The results were visualized by
using the “Heatmap” R package.

2.6. Multivariate Prognosis Model Construction. The expres-
sion of the hub gene and clinical characteristics were com-
bined to be analyzed using multivariate Cox regression
analysis to determine whether the hub gene was an indepen-
dent risk factor in both the TCGA and ICGC databases. We
used the “rms” R package to build a prognosis nomogram
and draw calibration curves to compare the expected and
observed survival probabilities.

2.7. Cell Lines and Cell Culture. Human hepatocellular can-
cer cell lines Hep3B and Huh7 and colon cancer cell lines
HT29 and HCT116 were obtained from China Center for
Type Culture Collection (CTCC, Wuhan, China). Cells were
seeded on a rigid flask with DMEM (HyClone, USA) or
RPMI 1640 (HyClone, USA) containing 10% fetal bovine
serum (FBS) (Gibico, USA) at 37°C with 5% CO2.

2.8. Cell Culture in Three-Dimensional (3D) Fibrin Gels. For
3D cell culture, we purchased the salmon fibrinogen and
thrombin from Searun Holdings Company (SanDiego, CA,
USA). In brief, fibrinogen and cell solution were 1 : 1 mixed
to make 1mg/ml fibrinogen/cell solution, corresponding to
90Pa in elastic stiffness [21]. Next, 250μl of fibrinogen/cell
mixture and 5μl of thrombin (100U/ml; Searun Holdings)
were well mixed to coat 24-well plates, which were then incu-
bated for 30min in a 37°C with 5% CO2 incubator. Finally,
DMEM or MEM with 10% FBS was added. Tumor spheroids
were harvested using Dispase Π (Roche, Switzerland) after
culturing for 5 days. Tumor cells cultured in the flask were
used as control cells. At least three independent experiments
were performed for each cell culture experiment.

2.9. Quantitative Real-Time PCR. Both of the conventional
stemness genes and hub gene expression was further vali-
dated at the mRNA level using quantitative RT-PCR (qRT-
PCR). Total RNA of cells was extracted using TRIzol reagent
according to the supplier’s instructions (Invitrogen, USA).
Reverse transcription was performed using Transcript
First-strand cDNA Synthesis SuperMix (Roche, USA).
qRT-PCR was conducted with Ultra SYBR mixture (Cwbio,
China) on Roche LightCycler 96 according to standard PCR
condition. The primer sequences are provided as follows

(human): CD44, CTGCCGCTTTGCAGGTGTA (forward)
and CATTGTGGGCAAGGTGC-TATT (reverse); SOX2,
TACAGCATGTCCTACTCGCAG (forward) and GAGG
AAGAGGTAAC-CACAGGG (antisense); NANOG, CTCC
AACATCCTGAACCTCAGC (forward) and CGTCAC
ACCATTGCTATTCTTCG (reverse); and BUB1, GCTCTG
TCAGCAGACTTCCTTC (forward) and GCTCTGTCA-
GCAGACTTCCTTC (reverse).

2.10. Statistical Analysis. Two-tailed Student’s t-test or
ANOVA was used for the significance of differences between
groups. Statistical analyses were performed with GraphPad
Prism software (v9.0). Other statistical analysis was imple-
mented by R software (v4.0.5). Statistical significance was
defined as p < 0:05.

3. Results

3.1. Correlation between mRNAsi and Clinical Characteristics
in HCC. First of all, the flow diagram was shown to describe
this study design (Figure 1). Clinicopathological characteris-
tics of HCC patients were listed in Table S3. As shown,
mRNAsi of the tumor was significantly higher than normal
tissues, and survival analysis indicated that the high mRNAsi
predicted poor prognosis compared with the low mRNAsi
subgroup (p = 0:0028) (Figures 2(a) and 2(b)). Then, HCC
patients were classified by age, gender, TNM stage, tumor
stage, fetoprotein value, cancer status, Ishak score, and
vascular invasion, respectively; for which, mRNAsi was not
significantly associated with age (p = 0:9), gender (p = 0:063),
T (p = 0:85), N ðp = 0:42Þ, M (p = 0:63), stage (p = 0:43), and
Ishak score (p = 0:32), but significantly associated with
tumor grade (p = 0:0028), fetoprotein value (p = 0:0029),
cancer status (p = 0:042), and vascular invasion (p = 0:0307)
(Figure 2(c)–2(l)). Moreover, patients with vascular invasion
accounted for 40% in high mRNAsi subgroup while patients
with vascular invasion accounted for 13.6% in low mRNAsi
subgroup (p < 0:0001) (Figure 2(m)).

3.2. Construction of Weighted Coexpression Network and
Identification of Key Modules. A total of 368 HCC patients
with mRNAsi score were included using the “WGCNA” R
package [25]. The thresholding power of β = 7 (scale-free
R2 = 0:94) (Figure S1A-C) was selected to construct a
scale-free network (Figure 2(n)) and 7 modules were
identified. Of these modules, the turquoise module had the
highest negative correlation with mRNAsi (r = −0:57, p = 3e
− 33) and the blue module had the highest positive
correlation with mRNAsi (r = 0:26, p = 6e − 7) (Figures 2(o)–
2(q); Figure S1D). To reveal the biological role of these two
modular genes in biological processes, GO and KEGG
enrichment analyses were performed in the Metascape tool.
Herein, genes in the blue module were primarily enriched in
“mitotic cell cycle,” “G2/M checkpoints,” “PID PLK1
PATHWAY,” “DNA conformation change” (Figure 2(r)),
and genes in the turquoise module were enriched for “NABA
CORE MATRISOME,” “external encapsulating structure
organization,” “extracellular matrix organization,” and “blood
vessel development” (Figure 2(s)). Since we wanted to find a
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stemness-associated biomarker, the blue module containing
737 genes, which was positively related to mRNAsi
(Table S4), was selected for further analysis.

3.3. Identification the Hub Gene. Under the threshold of the
MM higher than 0.8 and the GS higher than 0.2, 112 candi-
date genes were chosen to perform the PPI network in the
STRING database (minimum required interaction score:
0.4) (Table S5). These consisted of 111 nodes and 4342
edges (Figure 3(a)). Through using 9 topological analysis
methods from the CytoHubba to sort the PPI network
nodes, we found that the Budding uninhibited by
benzimidazoles 1 (BUB1) score ranks in the top 10 of the 9
algorithms (Figure 3(b), Table 1). Furthermore, by
performing gene module analysis using the MCODE,
BUB1 was also found in cluster 1 (MCODE score = 63:40)
(Table S6). Therefore, BUB1 was selected as the hub gene
for further validation. In addition, BUB1 mRNA levels
were significantly increased in most types of tumor than
normal tissues in the TIMER 2.0 database (Figure 3(c)). In
the TCGA dataset, the BUB1 expression level was
significantly upregulated in high mRNAsi compared with
the low mRNAsi subgroup (p < 0:001) (Figure 3(d)).

3.4. Correlation between BUB1 Expression and Clinical
Characteristics in HCC. Similarly, we analyzed the correla-
tion between the BUB1 expression and clinical features.
Patients older than 60 years of age do not show a significant
increase in BUB1 expression (p = 0:082), as well as the result
of correlation with gender, child, N, and M stage (p > 0:05)
(Figure S2A-F). Compared with grade1, stage i, and T
stage, the expression of BUB1 showed a higher trend in

grade 2/3/4, stage ii/iii, and T 2/3/4, but the difference was
also not significant (p > 0:05) (Figures 3(e) and 3(f);
Figure S2D). It was worth noting that compared with
fetoprotein value ≤ 25μg/l, the status of alive and tumor-
free showed higher levels of BUB1 in patients with
fetoprotein value > 25μg/l, the status of death, and with
tumor (p < 0:001) (Figures 3(g)–3(i)). Then, patients were
divided into high and low subtypes according to the
median expression of BUB1. We found the BUB1
expression was significantly associated with vascular
invasion (p = 0:0129), and patients with vascular invasion
accounted for 41.6% in high BUB1 subtype while patients
with vascular invasion accounted for 28.4% in low BUB1
subtype (p = 0:018) (Figure 3(j)). We visualized the
mutational features utilizing the “maftools” R package in
HCC. In summary, we found the missense mutation
accounts for the majority of the mutation classifications,
the single-nucleotide variants (SNP) occurring the most
frequently, and C >A was the top type of SNP class
(Figure S3A). Besides, we exhibited the top mutated genes,
including TP53 (Figure S3B). Therefore, we explored and
discovered the BUB1 expression was significantly higher in
the TP53-mutant group than in the TP53-WT group in
HCC using the TIMER2.0 database (p < 0:001) (Figure S3C).

3.5. Stemness Characteristics of BUB1 Subtypes. First, we
downloaded the upregulated genes list in six human embry-
onic stem cell lines tested from MSigDB (Table S7). As
shown in Figure 3(k), BUB1 expression was positively
correlated with most of the genes in the list. Previous
studies had shown that cancer stem cells maintain their
stem cell-like biological characteristics through a high
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Figure 1: Flow diagram presenting the process of the study.
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expression of specific stemness markers (such as SOX2,
CD44, CD133, and MYC). Therefore, we identified that
there was a significant positive correlation with the
expression of CD133, CD44, SOX2, OCT4, CDC20,
FOXM1, NANOG, and MYC (p < 0:001) (Figure 3(l)).
Subsequently, GSVA was performed to analyze potential
biological characteristics of BUB1 in HCC patients.
According to HALLMARK gene sets defined by MSigDB,
high BUB1 subtype was significantly enriched in “G2/M
checkpoint,” “DNA repair,” “cell cycle,” “DNA replication,”
and “WNT/MYC/NORCH/HEDGEHOG/mTOR signaling
pathway,” which were established hallmarks and pathways
associated with cancer cell proliferation and stemness
(Figures 3(m) and 3(n)).

3.6. Prognostic Value of BUB1 in HCC Patients. We next
investigate the prognostic value of BUB1 in HCC. Survival
analysis showed a significant difference between high and
low BUB1 subtypes in the TCGA, ICGC, and GSE14520
cohorts (p < 0:001) (Figures 4(a)–4(c)). Then, multivariate
Cox regression analysis was performed among the clinical
variables. After controlling for other confounding factors,
BUB1 expression remained an independent predictor of
overall survival (OS) in both the TCGA (HR = 1:36, 95%CI
= 1:16–1.6, p < 0:001) (Figure 4(d)) and the ICGC cohorts
(HR = 1:2, 95%CI = 1:12–1.3, p < 0:001) (Figure 4(f)).
Meanwhile, we established a nomogram that could better
predict the survival of HCC patients and visualized the pre-
diction results, which showed that the nomogram composed
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Figure 2: Relationship between the mRNAsi and clinical characteristics and weighted gene coexpression network analysis (WGCNA). (a)
Differences in mRNAsi between normal and tumor tissues. (b) Survival curves of high/low mRNAsi group in HCC patients. (c–m)
Differences in mRNAsi and clinical characteristics: age (c), gender (d), grade (e), stage (f), fetoprotein value (g), cancer status (h), T/N/
M stages (i–k), Ishak score (l), or vascular invasion (m). (n) The cluster dendrogram was based on the expression data of the top 5,000
genes with the MAD value > 1 by WGCNA. (o) Heatmap of correlation between ME and mRNAsi/EGFR-mRNAsi. (p) Distribution of
average gene significance and errors in the modules associated with mRNAsi. (q) Scatter plot of MEs in the blue module. (r, s) GO and
KEGG enrichment analyses of genes in blue (r) and turquoise (s) module by Metascape.
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of BUB1 expression and clinical phenotype was effective
both in the TCGA and ICGC cohorts (Figures 4(e) and
4(g)). The calibration curve also demonstrated good capacity
for the nomogram between prediction and observation in
both of the databases (Figure S4A, B). These results
indicated that the BUB1 expression could predict the
prognosis of HCC patients independently.

3.7. Validation of Stemness Characteristics of BUB1 in
External Database. The stemness-associated features of
BUB1 were further validated in the ICGC and GSE14520
cohorts. BUB1 expression was significantly positively corre-
lated with stemness-related genes in the ICGC cohort
(Figure 5(a)) and the GSE14520 cohort (Figure 5(b)). KEGG
and GO enrichment analyses also confirmed that the genes

in the high BUB1 subtype were enriched in the cell cycle
and related stemness pathways both in the ICGC cohort
(Figures 5(c) and 5(e)) and the GSE14520 cohort
(Figures 5(d) and 5(f)). Then, we verified the BUB1expres-
sion was significantly elevated in HCC cell lines than normal
liver cell line (Figure 5(g)). To further validate the BUB1
expression in HCC cancer stem cells, we explored the
mRNA expression patterns of BUB1 in TRCs of HCC which
had the same characteristics as the CSCs using established
TRCs 3D enrichment methods (Figure 5(h)). It was signifi-
cantly upregulated in TRCs of both Hep3B and Huh7 than
control cells (p < 0:05), which was consistent with the valida-
tion results of the database (Figures 5(i) and 5(j)). Interest-
ingly, we got the same results in TRCs of colorectal cancer
cells (Figures 5(k) and 5(l)).
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Figure 3: Protein-protein network (PPI) construction and the relationship between hub gene BUB1, clinical, and stemness characteristics in
HCC samples from the TCGA cohort. (a) The PPI construction of candidate genes in the blue module. (b) The hub gene was identified using
the Cytoscape software. (c) The levels of BUB1 in various tumor and normal tissues were examined using TIMER2.0. (d) Correlation
between BUB1 expression and mRNAsi group. (e–k) Differences in BUB1 expression and clinical characteristics: grade (e), stage (f),
fetoprotein value (g), vital status (h), cancer status (i), or vascular invasion (j). (k) The correlations between BUB1 expression and
upregulated genes in human embryonic stem cell lines from MSigDB. (l) The correlations between BUB1 expression and specific
stemness markers. (m, n) Heatmap of the significantly differential hallmarks and pathways of BUB1 subtypes in HCC.

Table 1: Top genes were shown using CytoHubba in Cytoscape software.

Category
Rank methods in CytoHubba

Bottleneck Stress Radiality MNC Degree Closeness

1 BUB1 TTK CDCA8 CDCA8 CDCA8 CDCA8

2 ORC1 CDCA8 CDK1 CDK1 CDK1 CDK1

3 UHRF1 BUB1 BUB1 BUB1 BUB1 BUB1

4 ASF1B CDK1 TTK CCNA2 TTK TTK

5 TTK CCNA2 CCNA2 KIF20A CCNA2 CCNA2

6 RAD51 KIF20A KIF20A BUB1B KIF20A KIF20A

7 KIF2C BUB1B BUB1B TTK BUB1B BUB1B

8 PBK CCNB1 CCNB1 CCNB1 CCNB1 CCNB1

9 PRC1 TOP2A AURKB AURKB AURKB AURKB

10 ASPM AURKB TOP2A TOP2A TOP2A TOP2A
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4. Discussion

HCC, as the main type of liver cancer, is an ongoing chal-
lenge for public health. Therapies to prevent and treat recur-
rence and metastasis of HCC are still inadequate and
ineffective. CSCs have self-renewal capacities that drive
tumorigenesis and aberrant differentiation, and CSCs are
responsible for cellular heterogeneity, recurrence, metastasis,
and therapy resistance [32]. To gain insights into the stem-
ness characteristics of HCC, WGCNA was conducted to
explore the modules related to mRNAsi, followed by hub
gene selection and survival analysis (Figure 1). Our results
showed the potential value of BUB1 as a biomarker of stem-
ness and survival for HCC.

As well known, levels of AFP, tumor grade, or vascular
invasion are the prognostic indictors of HCC [1, 33–35].
Among them, vascular invasion is a primary factor of tumor
recurrence and metastasis. A study was using the markers
that reflect aggressive tumor characteristics, such as vascu-
larization, P53 overexpression, and biliary/stem cell markers,
and found it seems adequate to the reality with effects in OS,
feasible in biopsies, which may identify patients that could
benefit from aggressive treatments [34]. So, we initially ana-
lyzed the relationship between clinical features and mRNAsi
in HCC and found the HCC tissues exhibited a higher
mRNAsi as the pathological tumor grade elevated and with
the vascular invasion, and the higher mRNAsi predicted
the shorter OS, which was in accordance with the research
in ovarian cancer, colorectal cancer, and esophageal cancer
[9, 12, 36].

Then, we constructed a coexpression network using
WGCNA to compute the key module highly related to
mRNAsi in HCC. Results demonstrated that the turquoise
and blue modules took the highest negative and positive
weights. GO and KEGG showed that genes in the blue mod-
ule were particularly enriched in the regulation of the cell

cycle. These results suggest that genes in the blue module
may play a role in improving the self-renewal and prolifera-
tive abilities of CSCs, and genes or proteins involved in reg-
ulating the cell cycle may be a target for anti-CSC therapies.
Furthermore, when combined with a PPI network and
Cytoscape software, BUB1 was identified as the hub gene
and might serve as a potential stemness-associated bio-
marker and correlated with poor prognosis in HCC.

BUB1 is a serine/threonine kinase that prevents errors in
chromosome segregation in mitosis [15, 16]. As the central
component of the mitotic checkpoint for SAC, BUB1 is
essential for chromosome congression and kinetochore loca-
tion [14, 15]. Moreover, several studies have shown that
inhibiting spindle checkpoints may be a viable cancer treat-
ment method. Previous studies have shown that the BUB1
mutation causes a high rate of chromosomal mis-segrega-
tion, accompanied by growth defects and premature senes-
cence [16]. These studies disclosed that BUB1 plays a vital
role in changing cell progression, including the CSCs. How-
ever, studies on the role of BUB1 in the stemness character-
istics of CSCs in HCC remain poorly understood. To further
explore the role of BUB1 in cancer progression, we per-
formed a pan-cancer study from the TCGA cohorts using
TIMER2.0 and unveiled that BUB1 was upregulated in
numerous cancers. In vitro, we found a higher BUB1 expres-
sion level in HCC cell lines than normal liver cell lines. The
high BUB1 subtype had a higher mRNAsi value than the low
BUB1 subtype, implying that the high BUB1 subtype had
more inherent heterogeneity and a protumorigenic role than
the low BUB1 subtype. It has been reported that depleting
BUB1 could reduce cancer stem cell potential in a breast
cancer cell line, resulting in inhibiting the formation of
xenografts in mice [37]. Similarly, high BUB1 expression
with higher mRNAsi score was significantly associated with
the aggressive progression of HCC, such as tumor grade
and vascular invasion, which reflected that the BUB1 was
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contributed to the progression of HCC. Additionally, the
high BUB1 expression subtype predicted shorter survival
than the low expression subtype, consistent with the study
of ovarian cancer [36], gastric cancer [38], and pancreatic

ductal adenocarcinoma [11]. These results suggested the high
BUB1 expression associated with high stemness may partly
contribute to the poor outcome of HCC. Recent studies have
tried to establish morphological and immunohistochemical
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Figure 5: Validation of stemness characteristics and expression of BUB1 in HCC patients from the GEO and ICGC cohorts and TRCs. (a, b)
The correlations between BUB1 expression and upregulated genes in human embryonic stem cell lines in the ICGC (a) and GSE14520 (b)
cohorts. (c–f) GSEA of BUB1 in the ICGC (c, e) and GSE14520 (d, f) cohorts. (g) qRT-PCR of BUB1 expression in Hep3B and Huh7 vs.
LO2. (h) Representative images of liver TRC spheroids. Scale bars, 20μm. (i, j) qRT-PCR of BUB1 expression in Hep3B and Huh7 liver
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patterns that could be important to individualized treatments
to assess a better classification for the clinical reality [34, 39].
In Tsujikawa and his colleagues research, they found the
biliary/stem cell marker-positive group exhibited more
aggressive features, such as poor tumor differentiation and
increased frequency of portal vein invasion, and also
the group has the shortest time to recurrence among
the three groups [39]. So, immunohistochemical profiling
could reflect tumor aggressiveness. BUB1 might serve as a
potential biomarker in the biopsy samples for morphophe-
notypic analysis and the overall survival correlation of
HCC. And it could be more feasible in biopsies with routine
antibodies for identifying patients with aggressive HCC,
which was more beneficial in less developed institutions.

The association between BUB1 and stemness may be
related to various mechanisms. In glioblastoma (GBM),
BUB1 was highly expressed [40, 41] with elevated expression
related to poor prognosis and radioresistance in GBM
patients. Mechanistically, BUB1 was directly regulated by
FOXM1, a transcription factor [41]. According to GSVA
analysis, the genes in the high BUB1 subtype were clustered
mostly in the hallmark of G2M checkpoint, E2F targets, and
DNA repair, suggesting that BUB1 plays an important role
in maintaining cell growth and viability and may affect can-
cer stemness features through regulating the cell cycle. The
research found BUB1 could promote the formation of the
mitotic checkpoint complex (MCC) and phosphorylate
CDC20, which are necessary for spindle point signaling.
The inactivation of any one of these mechanisms will cause
checkpoint defects, leading to chromosomal mis-segregation
and aneuploidy, which are associated with cancer [42]. Fur-
thermore, the BUB1-BUB3 complex worked with telomeric
repeat binding factor 1 (TRF1) and promoted the recruit-
ment of BLM helicase to maintain and promote telomere
replication [43]. In addition, transforming growth factor-β
(TGF-β) signal transduction, which regulates cell prolifera-
tion and differentiation, may be regulated by BUB1 [44].
In osteosarcoma, inhibition of BUB1 markedly suppressed
cell proliferation, cell migration, and invasion through
blocking of the PI3K/Akt and ERK signaling pathways
[45]. Our results confirmed that BUB1 plays a vital role in
the regulation of MYC, Wnt, Notch, and Hedgehog path-
ways, which are sharply associated with stemness signaling
[6, 8]. This may indicate a probability of BUB1 in the
regulation mechanism of CSCs in HCC. Thus, a reasonable
conclusion can be drawn that BUB1 can not only regulate
the cell cycle of CSCs but also influence the cellular
stemness-related pathway to promote cancer progression
and enhance the stemness capacity. In other words, BUB1
may play a role in enhancing the self-renewal and prolifera-
tion properties of CSCs.

CSCs can be isolated through specific biomarkers on the
cell surface, such as CD133, CD44, and SOX2 [6]. The cor-
relation analysis pointed out that BUB1 was significantly
positive correlated with the classic stemness biomarkers
(i.e., CD44, SOX2, and NANOG). Human embryonic stem
(huES) cells have the ability to differentiate into a variety
of cell lines, Bhattacharya B and his colleagues used high-
quality microarray to identify and provide a distinct set of

the “stemness” signature which was upregulated in 6 human
embryonic stem cell lines [46]. We downloaded these genes
and explored their correlation with BUB1, and we got a sim-
ilar result. These findings indicate that samples with high
stemness biomarker expression levels may have a high
BUB1 expression level. Or, the BUB1 expression level was
higher in CSCs than in normal cancer cells. Interestingly,
with the help of GEVA, we found the KEGG of the P53 sig-
naling pathway was significantly enriching the high BUB1
subtype. As we all know, TP53 is the most common muta-
tion in HCC. Mutations of TP53 can not only lose their
tumor-suppressive functions but also promote tumorigene-
sis as well as promote the self-renewal and differentiation
of CSCs [47]. Moreover, it has been found that driving cells
into premature senescence by P53 is dependent on BUB1
binding [48, 49]. Therefore, we explored that a higher
BUB1 expression level in the TP53-mutant group than in
the WT-TP53 group, which implied that cells overexpressed
BUB1 to promote tumorigenesis may have a connection
with TP53 mutation in HCC.

More importantly, we used 3D fibrin gel to enrich liver
TRCs, which had similar characteristics as CSCs and verified
that the BUB1 expression was higher than control cells, as
same as in colon TRCs. Simultaneously, the biomarkers of
CSCs, such as CD44 and SOX2, were upregulated in TRCs.
We have to mention some defects in our study. First, the
prognostic effect of BUB1 needs to be validated in more
samples and a prospective cohort of patients containing
follow-up data. Then, more basic research is required to sys-
tematically elucidate the underlying stemness molecular
mechanisms of BUB1 in vitro and in vivo.

Taken together, using the coexpression analysis, BUB1
was identified as a potential stemness-associated biomarker
related to prognosis in HCC. The high expression of BUB1
in HCC might be one of the reasons that CSCs maintain
stemness characteristics. Therefore, we provide evidence that
BUB1 might serve as a new therapeutic CSCs-target in HCC,
such as the BUB1-specific inhibitors, and contribute to bet-
ter understanding the CSCs-related molecular mechanism
of the metastasis and recurrence of HCC. However, the con-
clusion we draw from bioinformatics analysis and limited
experiments needs more basic research to verify.
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