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Overexpressed tumor-self antigens represent the largest
group of candidate vaccine targets. Those exhibiting a role in
oncogenesis may be some of the least studied but perhaps
most promising. This review considers this subset of self
antigens by highlighting vaccine efforts for some of the better
known members and focusing on TPD52, a new promising
vaccine target. We shed light on the importance of both
preclinical and clinical vaccine studies demonstrating that
tolerance and autoimmunity (presumed to preclude this class of
antigens from vaccine development) can be overcome and do
not present the obstacle that might have been expected. The
potential of this class of antigens for broad application is
considered, possibly in the context of low tumor burden or
adjuvant therapy, as is the need to understand mechanisms of
tolerance that are relatively understudied.

Introduction

Current statistics reveal an increase in cancer incidence with very
little decrease in mortality. It is estimated that about 1 660290 new
cancer cases were diagnosed in the USA in 2013, with 580350
(35%) deaths.1 Improvement of treatments to decrease mortality
may be met through immune-based therapies. The employment of
the immune system to treat malignant tumors, commonly referred
to as tumor immunotherapy, encompasses two general categories:
passive and active.2 Passive immunotherapy largely involves the
administration of specific antibodies, cytokines, or cells (most com-
monly tumor antigen-specific T cells generated ex vivo, known as
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adoptive cell therapy). Passive administration of T cells or of mono-
clonal antibodies against the T cells inhibitory receptor CTLA-4,
which is referred to as immune checkpoint blockade, has recently
gained international acclaim as the breakthrough of the year
(2013),3 though not without immune related adverse effects.4 Active
immunotherapy can be most easily defined by vaccination. While
passive immunotherapies often engage the immune system indepen-
dent of the knowledge of defined tumor antigens (an exception
being some forms of adoptive cell therapy5), vaccines elicit specific
immune responses by targeting defined tumor antigens.6

With the exception of vaccines to prevent cervical cancer by
targeting select serotypes of human papillomaviruses,7 most if not
all vaccine clinical trials have focused on therapy. In this approach
the vaccine is administered when tumors are present in the patient,
with the primary goal of shrinking the tumor mass. However, the
majority of clinical trials to treat established solid tumors by vacci-
nation have yielded disappointing results.8 This lack of success is
underscored by the existence of only one FDA approved cell-based
therapeutic vaccine Sipuleucel T (Provenge�), approved in 2010.8

However this is not to say that cancer vaccination research is with-
out merit. On the contrary, much work is still being done to
advance and improve cancer vaccines.

The idea of preventive cancer vaccination has recently gained
new attention,9 and may represent the next significant advance in
the field of immune-based cancer treatments. The logic behind
preventive vaccination is sound and supported by centuries of
success against infectious agents. In this case, why hasn’t vaccina-
tion been applied more broadly to cancer prevention? It is reason-
able to speculate that cancer vaccines have been applied as an
option for compassionate administration as a last effort for
patients who have failed conventional therapy. This is essentially
the approved application for Sipuleucel T, which is not curative
but extends life for some late stage prostate cancer patients.10

Advances in early cancer detection have opened the door to
develop vaccines to prevent primary and recurrent tumors rather
than shrink existing tumor masses.

Whether the vaccine is therapeutic or preventive, it is clear
that future success will depend on the character of the tumor
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antigen targeted by the vaccine. The current collective of tumor
antigens ranges from specific to associated, non-self to self, and
comprises hundreds of vaccine candidates (far too many to dis-
cuss in a single review article). In this light, an emerging group of
cancer vaccine target antigens, defined primarily by their overex-
pression in tumor cells compared with low but detectable levels
in normal cells, and a role in oncogenesis, represents the focus of
this review. Other related topics such as comparisons of vaccine
strategies, or the use of adjuvants from different clinical studies,
have been recently reviewed elsewhere.11

Tumor Antigen Classifications

Tumor antigens recognized by the immune system have been
most often defined based on the nature of the antigen (protein,
mucin) and its expression pattern, a practice that gave rise to
numerous categories and complexities. Examples include, viral
proteins specifically associated with virus-induced malignancies
(approximately 12% of all cancers),12 and oncogene and tumor
suppressor gene products or their mutant variants.6 Oncofetal
antigens and melanoma associated antigens represent those with
restricted expression in non-malignant tissues,13,14 whereas can-
cer testis antigens are only expressed, as the name suggests, in the
tumor and in testes, with testes being protected by mechanisms
of immune privilege.15 Overexpressed antigens are a large and
diverse group that includes any protein found at increased levels
in tumors compared with normal healthy cells and tissues.

Recently, Coulie and colleagues classified tumor antigens as
either high tumor specificity or low tumor specificity, each with
two sub-categories; mutation (most tumors) or tumor-specific
expression (many tumors) being associated with high tumor spec-
ificity, and tissue-specific expression (melanomas) or overexpres-
sion (some tumors) being associated with low tumor specifity.16

The overall premise of this classification is whether or not the
immune system (T cells in particular) recognizes the tumor
antigen.

Figure 1 illustrates a simplified classification based on the
immunologic character of the tumor antigen relative to its poten-
tial immunogenicity. Arguably tumor-specific antigens represent
the obvious choice for vaccine targets, with no or limited expres-
sion in normal cells, inferring the potential for a stronger
immune response without tolerance. Some examples of tumor-
specific antigens include viral antigens (non-self), cancer testis
antigens, and melanoma associated antigens (altered-self, with
respect to limited expression in normal cells). Antigens from each
of these groups are in the advanced stages of vaccine develop-
ment. Tumor associated antigens (variable expression in normal
cells) may represent a more obscure class of antigens, but ironi-
cally also represent the largest class of candidate vaccine target
antigens. It is presumed that tumor associated antigens will
induce a weaker immune response insufficient for tumor rejec-
tion, which may be why many have been understudied as vaccine
targets. A subclass of overexpressed tumor associated antigens
involved in the generation of oncogenesis and critical for main-
taining the oncogenic phenotype may represent some of the most
promising, widely applicable vaccine targets.

Overexpressed Oncogenic Tumor-Self Antigens

A National Cancer Institute sponsored project to prioritize
cancer vaccine target antigens for translational research revealed
that aberrantly expressed self-proteins represent the largest num-
ber of candidate antigens for vaccine development (nearly half of
those categorized).17 The study used preweighted objective crite-
ria for prioritizing candidate tumor vaccine target antigens and
selected 75 antigens for comparison and ranking (from hundreds
considered). Nine criteria were used to rank the antigens. Thera-
peutic function was considered as the most important followed
by immunogenicity, specificity, and oncogenicity. The relative
weights of the remaining five criteria were orders of magnitude
less than those applied to the top four.17 Cellular localization of
expression (internal or surface) carried the least weight of impor-
tance, but circulating antigen was determined to be not prefera-
ble. Therapeutic function data resulting from clinical trials were
heavily considered in selecting the 75 antigens that were
ranked.17 Because the goal of the study was to accelerate transla-
tional (clinical) research, this bias was logical and acknowledged.
However, some newer and potentially promising antigens were
not ranked, largely because relevant studies were still in the pre-
clinical phase. To summarize the conclusions, an ideal vaccine
target antigen would be immunogenic, eliciting a response that
eliminates tumor cells leaving normal cells unharmed (immuno-
genicity, therapeutic function, and specificity) and play a role in
inducing or maintaining the oncogenic phenotype making the
antigen indispensable to the tumor.

When considering the specificity criterion and focusing only
on those antigens exhibiting aberrant expression (varying degrees
of normal cell expression) 87% (65/75) of the ranked antigens
can be classified as having some normal cell expression.17 If post-
translational modifications (e.g., the mucin, MUC1), and tissue
specific (e.g., gp100), mixed (e.g., ALK), stromal (e.g.,

Figure 1. Immunologic character of tumor antigens. Simplified tumor
antigen classification based on the immunologic character of the tumor
antigen relative to its potential immunogenicity. Depicted are two main
classes of antigens represented by tumor-specific and -associated anti-
gens defined by normal cell expression, and four sub-classes ranging
from stronger to weaker immunity. Non-self (e.g., viral proteins) and
altered-self (e.g., mutant protein or restricted expression) antigens are
proposed to elicit strong immune responses, and self antigens, whether
involved in oncogenesis (tumor-dependent) or not (tumor-independent),
would elicit weaker immune responses.
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VEGFR2), and oncofetal (e.g., WT1) expression are excluded
from the aberrant expression class, only overexpressed antigens
remain, representing nearly 40% of the ranked antigens (28/75).
If overexpressed antigens that do not play a role in oncogenesis
are excluded from the list of 75, there are 9 overexpressed tumor-
self antigens that are immunogenic and oncogenic (two criteria
considered to be heavily weighted and important for an ideal
tumor vaccine antigen).17 In the following sections, we will
briefly highlight several of the ranked overexpressed oncogenic
tumor-self antigens, and end by focusing on perhaps the newest,
widely shared overexpressed oncogenic tumor-self antigen, tumor
protein D52 (TPD52).

Limited tumor expression

Androgen Receptor
The androgen receptor (AR) is a steroid receptor involved in

prostate development, and a target for hormone deprivation ther-
apy for advanced metastatic prostate cancer. Its function ascribes
the AR with a role in prostate oncogenesis. AR is expressed in
normal tissues with the prostate being a major site, and is widely
overexpressed in prostate cancer, and in a subset of breast can-
cers.18,19 Pre-existing AR-specific antibodies and T cells have
been detected in prostate cancer patients, demonstrating immu-
nogenicity and the potential for targeting the AR by vaccina-
tion.20 The fine specificity of the AR-specific CTL responses in
prostate cancer patients was defined by recognition of two HLA-
A2-restricted peptides, AR805 and AR811, with the latter capa-
ble of eliciting specific CTLs following immunization of A2/
DR1 transgenic mice.21 An AR-based DNA vaccine targeting the
AR ligand-binding domain (LBD) effectively induced CTLs
responses in HHDII-DR1 (HLA-A2C and HLA-DR1C) trans-
genic mice which were capable of lysing HLA-A2C human pros-
tate cancer cells.22 In vivo prostate tumor regression was also
observed in rats immunized with the AR-LBD DNA vaccine,
supporting the potential for targeting the AR with vaccination.22

These studies demonstrate that AR is immunogenic in patients
and AR-based vaccines are capable of in vivo tumor rejection in
pre-clinical animal models.

Shared tumor expression
We defined shared tumor expression as overexpression in mul-

tiple different cancers, but not as widely shared or potentially
universal in tumor overexpression as that reported for human tel-
omerase reverse transcriptase (hTERT) and survivin (discussed in
the following section). The following are three examples of
shared overexpressed oncogenic tumor-self antigens that are cur-
rently being evaluated in clinical trials as vaccine targets. Her-2/
neu and p53 are perhaps the most commonly recognized and
extensively studied TAAs of this category.

Her-2/neu
The transmembrane tyrosine kinase Her-2/neu is one of the

most studied cancer proteins and therapeutic targets (nearly
1000 reviews). Her-2/neu is overexpressed in multiple cancers
including lung, prostate and most notably breast cancer.23 To
date the majority of clinical vaccine trials have been conducted in

patients with breast cancer.24,25 Early evidence supporting Her-
2/neu as a vaccine target came from the demonstration that spe-
cific CTLs exist in the peripheral blood of breast cancer
patients.26 Clinical trials evaluating vaccines targeting the intra-
cellular and extracellular domains of Her-2/neu demonstrated
the generation of specific T cells without the induction of auto-
immunity and no significant toxicity, supporting the use of vac-
cines in the adjuvant setting.27

p53
The important role played by p53 in cancers of multiple types

has been recognized for decades.28,29 CTLs have been generated
against mutated and non-mutated epitopes of p53 without
inducing autoimmunity30 and pre-existing p53-specific CTLs
have been demonstrated in cancer patients.31,32 Clinical trials are
underway evaluating therapeutic vaccines targeting p53 in ovar-
ian cancer, colorectal cancer, and non-small cell lung cancer.33-37

Overall, p53-specific immune responses have been observed in
patients, but significant reductions in tumor burdens have not
been demonstrated. It has been suggested that multiple epitope
vaccines, Treg elimination, and/or CTLA-4 blockade should be
assessed in combination with p53 vaccines to increase their clini-
cal efficacy.38

EphA2
EphA2 is a cell surface-expressed receptor tyrosine kinase and

is one of 14 members of the Eph family (named for erythropoie-
tin-producing hepatocellular carcinoma cell lines).39 This family
and its ligands play key roles in normal development and in
tumorigenesis, where EphA2 is overexpressed in multiple cancers
including brain malignancies, which have been the focus of most
vaccine trials.40 The vaccine potential of targeting EphA2 in glio-
mas was initially demonstrated by generating HLA-A2-restricted
CTLs from the peripheral blood of HLA-A2C normal donors
and glioma patients using a single synthetic peptide
(TLADFDPRV), and by vaccination of HHD mice with the
same EphA2 peptide, demonstrating that tolerance could be bro-
ken by vaccination without inducing autoimmunity.41 Subse-
quent studies in murine models of colon, liver and brain cancer
further support the potential of EphA2 as a vaccine target.42-44

Initial clinical trials testing EphA2 vaccines against adult and
pediatric brain cancers have shown them to be safe, immuno-
genic and promising.45,46

Widely shared (universal) tumor expression
There are but a few tumor associated antigens that appear to

be universal for most if not all cancers, and these have shown
promise as candidates for vaccine development. The two most
studied universal tumor associated antigens are hTERT and the
anti-apoptotic protein survivin. Neither of these antigens are spe-
cific for tumor cells, but both are over-active and/or aberrantly
expressed in tumor cells compared with normal or non-malig-
nant cells, and play a role in prolonging survival of tumor cells
by preventing natural death mechanisms associated with prolifer-
ation such as telomere shortening and apoptosis. These attributes
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classify hTERT and survivin as shared overexpressed oncogenic
tumor-self antigens.

hTERT
The activity of hTERT is a rate limiting step in the prolifer-

ative capacity of advanced cancers and represents a prototypical
and universal cancer antigen and marker.47,48 Variations in
hTERT function in normal self-renewing tissues and tumors exist
that can be taken advantage of for vaccine development.49 hTERT
was first characterized as a widely shared tumor associated antigen
by demonstrating the induction of specific CTLs against more
than 85% of human cancers, and by the identification of an
HLA-A2 peptide vaccine candidate, 1540 (ILAKFLHWL).50

Circulating 1540-specific CTLs were detected in nearly 91% of
HLA-A2C patients with 6 different cancers supporting vaccine
development.51 Additional CTL-specific hTERT-peptides include
peptides restricted by additional HLAs.52 A 16 amino acid hTERT
peptide (GV1001) comprised of HLA class II and class I epitopes
capable of inducing both CD4C and CD8C T cells when admin-
istered is also under investigation as a vaccine.53 Several clinical tri-
als assessing the efficacy of hTERT vaccines in patients with
multiple cancers have been conducted or are underway, and
although variations were reported in terms of tumor reductions,
specific T cells were commonly induced in the majority of
patients, with no adverse toxicities.54-62

Survivin
Survivin is an inhibitor of apoptosis and acts upstream of the

main effector proteases of apoptosis, caspase 3 and 7, and is active
in a cell-cycle regulated manner during the G2/S phase, as a safe-
guard against activated cell death during successive rounds of cell
division.63,64 Like hTERT, survivin is expressed at low levels in
normal, differentiated adult tissues but is overexpressed in cancers
originating from a variety of tissues including lung, colon, breast,
pancreas, and prostate cancer and several hematopoietic can-
cers.65-68 The immunogenic potential of survivin was initially
demonstrated by the induction of specific HLA-A2-restricted
CD8C cytotoxic T cell responses by dendritic cells that had proc-
essed and presented recombinant survivin protein.69 CTLs spe-
cific for survivin were also detected in the peripheral blood of
cancer patients supporting its potential as a vaccine target.70 A
survivin peptide vaccine administered with IFNa demonstrated
efficacy and benefit for patients with advanced pancreatic can-
cer,71 although contrasting clinical benefits were observed for
similar vaccine approaches in in advanced melanoma
patients.72,73

Tumor protein D52
A third example of a new overexpressed oncogenic tumor self

antigen with widely shared tumor expression is tumor protein
D52 (TPD52) and like p53, survivin and hTERT is an intracel-
lular protein. Early clinical support for the promise of TPD52 as
a vaccine target antigen came from the identification of circulat-
ing serum antibodies with specificity for TPD52 in patients with
breast cancer.74,75

Expression of TPD52 in cancer
TPD52 is an overexpressed tumor self-protein actively

involved in transformation, leading to increased proliferation
and metastasis. TPD52 overexpression has been demonstrated in
several human malignancies including breast,76-78 prostate,79-81

and ovarian carcinomas.82 Expression microarray and other anal-
yses predict TPD52 overexpression in many other cancers includ-
ing multiple myeloma,83,84 Burkitt’s lymphoma,85,86 pancreatic
cancer,87 testicular germ cell tumors,88-90 and melanomas,91,92 as
well as multiple other adult and pediatric cancers.93

Murine ortholog of TPD52
The murine ortholog of TPD52 (mD52) parallels normal tissue

expression patterns and known functions of human TPD52
(hD52), with 86% amino acid identity.94 mD52 induced anchor-
age independent growth and spontaneous lung metastasis when
overexpressed in normal, non-tumorigenic cells.95 Reduction of
hD52 expression via RNAi resulted in increased apoptosis in
human breast cancer cells, and hD52 overexpression was associated
with decreased overall survival in human breast cancer patients.96

These studies demonstrate that TPD52 overexpression is important
for initiating and maintaining an oncogenic and metastatic pheno-
type and may be important for tumor cell survival. TPD52 is natu-
rally expressed and involved in tumor formation and metastasis in
human cells (hD52) and in mouse cells (mD52). This makes
mD52 a unique and powerful overexpressed tumor-self antigen for
study as a cancer vaccine target in murine models of cancer.

TPD52 as a vaccine target
The first demonstration that tumor protective immunity could

be induced against TPD52 involved a recombinant protein-based
mD52 vaccine that induced protection against tumor challenge
when administered with CpG-ODN as a molecular adjuvant.
mD52 protein administered without CpG-ODN failed to elicit
an immune response, indicating that the TLR agonist was neces-
sary to break tolerance.97 Subcutaneous injection of mD52 protein
with CpG-ODN required concomitant CD4CCD25C T regula-
tory (Treg) cell depletion to improve tumor protection.98 DNA-
based vaccine approaches using the TRAMP model of prostate
cancer demonstrated that mD52 DNA vaccination induced an
immune response that prevented tumors with increased efficacy
when administered with GM-CSF and induced long-term immu-
nologic memory.99 When mD52 DNA vaccination was compared
head-to-head with hD52 DNA vaccination, the partial xeno-anti-
gen (hD52) was more effective at protecting against tumor chal-
lenge, however both strategies induced durable responses that
rejected secondary tumor challenge months later.100 The T cell
cytokine secretion patterns for all the TPD52 vaccine studies dem-
onstrated that a TH-1-type cellular immune response was respon-
sible for tumor rejection97-99 and that a complete response may be
hindered by a potentially unique subset of CD8C IL-10C regula-
tory T cells.100 An overlapping peptide-based mD52 vaccine, eval-
uated independently, demonstrated efficacy in a murine breast
cancer model.101 Important facts have been revealed by preclinical
TPD52 vaccine studies to date (summarized in Table 1). First,
the successful use of the basic vaccine formulation demonstrated
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that a tumor self-protein can be immunogenic when delivered as a
simple protein, peptides or plasmid DNA. Second, TPD52 vac-
cines prevent tumor formation without inducing autoimmu-
nity,97 even when classical CD4C CD25C Treg cells were
depleted.98,100 These studies suggest that TPD52-specific T cells
are present and not completely eliminated by central tolerance,
and that peripheral tolerance is involved in obstructing complete
tumor rejection to include suppression by an as yet undefined but
potentially unique subset of CD8C Treg cells.100 An additional
note-worthy observation from our preclinical vaccine studies is
that DNA-based vaccines (most notably xenogeneic hD52 DNA)
appear to be more potent and effective suggesting that TLR-9
plays a role as a molecular adjuvant. This is supported by the
requirement for the inclusion of CpG ODN with recombinant
protein to induce protective immunity.

As a first step to human studies and eventual clinical trials, we
generated CTLs specific for hD52 from the peripheral blood of an
HLA-A2C male normal donor by in vitro stimulation with a syn-
thetic peptide (QLFHSFSV; modified at P2 and P9 to increase
affinity for HLA-A2) derived from the amino acid sequence of
hD52 using established protocols.102 These CTLs only lysed
HLA-A2C prostate cancer cell lines that naturally overexpressed
hD52 (Fig. 2).103 This initial experiment further supports the
potential use of TPD52 as a vaccine target in humans.

Concluding Remarks

Employing the immune system to fight cancer has long been
viewed as promising, as is evidenced by the extensive list of publi-
cations attesting to the hard work of many. This promise is now
being realized by FDA approval of two of the newest treatments
for prostate cancer and melanoma, Sipuleucel T and CTLA-4
blockade.3,8 Both of these immunotherapies rely on eliciting T
cell-mediated immunity which requires antigen recognition and
specificity. Sipuleucel T is a therapeutic vaccine, and CTLA-4 (T

Table 1. TPD52 vaccines in murine models of sarcoma and prostate cancer

Vaccine Approach
Route

Administered
Primary Tumor

Rejection
Prevents
Recurrence

Mouse
Strain/Model

mD52-DNA i.m. 14–50% protection (av. < 30%) YES C57BL-6/TRAMP
hD52-DNA i.m. 70% protection YES C57BL-6/TRAMP
mD52-DNACGM-CSF s.c. 70% protection YES C57BL-6/TRAMP
mD52-Protein/ODN/Alum i.m. No protection NO C57BL-6/TRAMP
mD52-ProteinCODN/IFA s.c. No protection NO C57BL-6/TRAMP
mD52-ProteinCODN/IFA, CD4 Treg depletion s.c. 70% protection YES C57BL-6/TRAMP
hD52-ProteinCODN/IFA s.c. No protection NO C57BL-6/TRAMP
hD52-DNA (2)/mD52 protein C ODN/IFA (2) i.m./

s.c.
80% protection YES C57BL-6/TRAMP

mD52-DNA, CD4 Treg depletion i.m. 50% YES C57BL-6/TRAMP
Protein/ODN/Alum i.m. 50% YES Balbc/mKSA
Protein/ODN/IFA s.c. No protection, possibly due to

dominant role of Treg cells
NO Balbc/mKSA

Protein/ODN/IFA, deplete Treg cells s.c. 70% protection YES Balbc/mKSA

mD52, murine TPD52; hD52, human TPD52; ODN, oligodeoxynucleotide; IFA, incomplete Freund’s adjuvant; Treg, T regulatory cell; GM-CSF, granulocyte
monocyte colony stimulating factor; i.m., intramuscular; s.c., subcutaneous; TRAMP, transgenic adenocarcinoma of the mouse prostate; see refs. 97–100.

Figure 2. Generation of CTLs from normal PBLs with D52 peptide. The
data show hD52-specific HLA-A2-restricted killing of human prostate cell
lines. hD52 expression in the human prostate cell lines was determined
by 30 cycle RT-PCR using hD52-specific primers and GAPDH as an inter-
nal reference. (A) Human normal prostate cell line 568 NPTX and tumor
cell line LnCap are hD52-low expressors. (B) Killing of human prostate
cancer cell lines determined using a standard lysis assay at an E:T of 5:1.
Targets: human prostate cancer and normal-derived cells from HLA-A2C
patient 568 (normal D NPTX, tumor D CP1TX and CP2TX) were gener-
ated as previously described,103 human prostate cancer cell lines PC-3
(HLA-A2-) and LnCap (HLA-A2C) are commercially available. Methods:
The method used to generate hD52 peptide-specific CTLs by IVS with
hD52 peptide Q(A/L)FSHSFS(I/V) has been previously explained in
detail.102
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cell checkpoint) blockade is being explored in combination with
vaccination.104 Most vaccine trials focus on patients with
advanced cancer (therapeutic vaccines) and have largely produced
disappointing results.8 Historically vaccines have been successful
only when applied to prevent disease. Perhaps immunization to
prevent primary cancer, recurrence and/or metastasis as opposed
to eliminating already existing primary and metastatic tumors is
the next step in cancer vaccine development.

Regardless of the application, cancer vaccines are only as good
as the antigens they target. In this context it is logical to argue
that the antigen content of the vaccine formulation is more
important than the delivery vehicle. A review of the literature will
reveal that much of the past vaccine development work has
focused on generating new delivery vehicles and formulations to
make a few well-studied antigens more potent in murine models
of cancer and clinical trials. This focus on a minority of antigens
is also true for the study of oncogenes in general.93 The recent
prioritization of vaccine antigens for translational studies sup-
ports the notion that it is time to find new, better antigens on
which to focus vaccine efforts.16

What constitutes an ideal cancer vaccine antigen? Many
would argue, and logically so, that completely foreign (e.g., viral)
non-self proteins would be the most immunogenic (Fig. 1) and
therefore effective. Much of the early preclinical experimental lit-
erature and the FDA approval of preventive cervical cancer vac-
cines would be in agreement.7 Unfortunately most clinically
significant cancers are not (or at least have yet) to be associated
with viruses. This truth led to the TAA discovery movement and

the development of various technologies for its accomplishment.6

This produced many candidate vaccine antigens that with further
effort, could yield ideal targets for the next generation of cancer
vaccines, among them being the overexpressed tumor-self anti-
gens. This large group of understudied vaccine targets represents
(as the name implies) self proteins with limited or low but detect-
able expression in many normal healthy cells and tissues and
overexpression in multiple to most cancers. A subset of this group
comprises those with the added desirable feature of being
involved in oncogenesis, making their expression indispensible to
the tumor.17 Preclinical murine models of cancer have been criti-
cal for development of this group of antigens as vaccine targets,
and for demonstrating that these self proteins are immunogenic
and thus capable of eliciting immunity that will kill tumors and
not healthy cells (no autoimmunity). Perhaps the newest promis-
ing overexpressed oncogenic tumor-self antigen is the oncopro-
tein TPD52.93
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