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ABSTRACT: Nicotinic acetylcholine receptors are a diverse set of ion channels
that are essential to everyday brain function. Contemporary research studies
selective activation of individual subtypes of receptors, with the hope of increasing
our understanding of behavioral responses and neurodegenerative diseases. Here,
we aim to expand current binding models to help explain the specificity seen
among three activators of α4β2 receptors: sazetidine-A, cytisine, and NS9283.
Through mutational analysis, we can interchange the activation profiles of the
stoichiometry-selective compounds sazetidine-A and cytisine. In addition,
mutations render NS9283currently identified as a positive allosteric
modulatorinto an agonist. These results lead to two conclusions: (1)
occupation at each primary face of an α subunit is needed to activate the
channel and (2) the complementary face of the adjacent subunit dictates the
binding ability of the agonist.

Nicotinic acetylcholine receptors (nAChRs) are a diverse family
of the larger Cys-loop superfamily of ligand gated ion channels
(LIGCs). These channels are found throughout the brain and
CNS and play vital roles in the chemical and electrical
communication between neurons, contributing to memory,
learning, and other neural functions.1−3 Because of their diverse
properties and widespread distribution throughout the brain,
these LGICs are prominent targets in neurological disorders,
such as drug addiction, Alzheimer’s disease, and Parkinson’s
disease.4,5

Neuronal nAChRs have been extensively studied and much is
known about their assembly and structure.2,6−8 There are two
classes of subunits, identified as α2−α9 and β2−β4, which
assemble into homomeric (α only) or heteromeric (α and β)
channels consisting of five subunits in total.9 For each subunit,
there is a main agonist binding pocket, denoted as the primary
(+) face, which includes four of the five residues that make up the
canonical “aromatic box”.10 The fifth aromatic box residue and
other key binding residues, including backbone contacts, are
found on the complementary (−) face of the adjacent subunit.10
The five subunits then arrange in an alternating + and − fashion
to form a functional receptor (Figure 1A). For decades it has
been assumed that the (+) face of the agonist binding site is
provided by α subunits and the (−) face by β subunits. However,
recent evidence establishes the ability of α subunits to also
contribute the (−) face.
The core pharmacophore of a cationic nitrogen and a

hydrogen bond acceptor for agonists of the nAChR was first
introduced in 1970.11 Since then, the binding model has evolved
to consist of three specific interactions that include a cation−π
interaction on the primary subunit, along with hydrogen bonding
interactions on both the primary and complementary sub-
units.12,13 Based on this model, a number of studies have aimed

to explain the efficacies and selectivities of agonists to different
nAChRs of varying subunits and stoichiometries.12−14

Here, we studied the activation profiles of α4β2 receptors and
their responses to mutations for the following compounds:
sazetidine-A, cytisine, andNS9283 (Figure 1C). Our conclusions
lead us to propose an expansion of the published structural
models.10,12,15,16 We establish that (1) the selectivity of drug
binding at subunit interfaces is largely controlled by a pocket on
the complementary subunit that is hydrophobic in some subunits
and hydrophilic in others and (2) an agonist must be bound at all
α subunits in a given receptor to favor the activated channel. This
expansion aids in our understanding of subunit- and
stoichiometry-selective agents and can provide valuable insight
for further development and application toward therapeutic
strategies.

■ RESULTS AND DISCUSSION

Hydrogen Bonding: Unnatural Amino Acid Analysis.
Sazetidine-A has a unique activation profile, in that it selectively
activates the (α4)2(β2)3 stoichiometry over the (α4)3(β2)2;
these stoichiometries will be abbreviated A2B3 and A3B2,
respectively.17 Unnatural amino acids are useful tools used to
parse out specific chemical interactions between ligand and
receptor. Previous structure−function studies of cytisine, an
agonist that has the opposite activation profile for α4β2
receptors, showed that the active drug-receptor combination
(A3B2) favored the hydrogen bond to the TrpB backbone CO
(“donor”), while the inactive form favored the hydrogen bond to
the backbone NH on the complementary face (“acceptor”)
(Table 1 and Figure 2A).12 We proposed that this difference
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could explain the stoichiometry selectivity of the drug. Through
unnatural amino acid incorporation, we were able to characterize
the cation-π binding, hydrogen bond-donating, and hydrogen-
bond accepting properties of sazetidine-A and compare the
results to those previously measured for cytisine. We now find,

however, that the opposite hydrogen bonding pattern is not seen
for sazetidine-A and that the pattern roughly follows the one
observed for cytisine: a larger affect for the hydrogen-bonding
acceptor in the A2B3 stoichiometry and a larger affect for the
hydrogen-bonding donor in the A3B2 stoichiometry (Table1

Figure 1. (A) View from the extracellular side of the high affinity (A2B3) and low affinity (A3B2) α4β2 receptors. Agonist binding locations are
indicated by smaller circles at the interfaces of α4−β2 subunits and α4−α4 subunits. (B) Sequence alignment of the rat muscle and neuronal nAChR
subunits. The three residues that greatly influence agonist affinity are highlighted in gray. (C) Structures of sazetidine-A, cytisine, and NS9283.

Table 1. Agonist Binding Model Comparison

aSee Methods for wild type EC50 corrections. bRatio of Imax of compound divided by Imax of acetylcholine.
cRatio of EC50 values for 4,5,6,7-

tetraflouro-Trp and Trp incorporation at α4 W154 (Figure 2A). dRatio of EC50 values for Thr-α-hydroxy and Thr incorporation at α4 T155 (Figure
2A). eRatio of EC50 values for Leu-α-hydroxy and Leu incorporation at β2 L119 (Figure 2A). fPreviously reported values from Tavares et al.12
1Measured EC50 values reported in the SI Table 1.
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and Figure 2A). This pattern suggests an alternative explanation
is needed to identify the properties of stoichiometry selective
agonists.
Sazetidine-A and the β2 Complementary Face. It has

been shown that the unique hydrophobic appendage off of the
pyridine ring of sazetidine-A gives the compound its subunit and
receptor selectivity and that the alcohol group at the end of the
appendage does not play a significant role.15,18,19 Because this
aliphatic adjunct interacts mostly with the complementary side,
we began by focusing on the known differences between α4 and
β2 subunits in this region.16 Previous investigations identified an
α4−α4 binding site and suggested the differences between the
“high” affinity (α4−β2) and “low” affinity (α4−α4) binding
pockets are due to three key residues that reside on the
complementary face.20−22 The β2(−) face residues (V109, F117,
and L119) generate a hydrophobic pocket for the high affinity
case, while the aligning α4(−) face residues (H114, Q122, and
T124) create a hydrophilic, low affinity pocket (Figure 1B and
Figure 2B). We have evaluated the triple mutant of the α4(−)

face by swapping these three residues (H114V, Q122F, and
T124L) to make them resemble the β2(−) face. We were able to
generate receptor responses and measure an EC50 curve for
sazetidine-A in the A3B2 receptor, which was not possible with
the wild type α4 subunit (Figure 3) (Table 2). The EC50 value for
the triple mutant was about 5-fold larger than the wild type A2B3
response, a small difference compared to having zero response in
the wild type A3B2 receptor. Single mutations at the α4 subunit
did not give rise to sazetidne-A response at low μM doses (SI
Table 2). Combinations of double mutations saw some response
to low μMdoses of sazetidine-A (SI Table 2). Mutations to make
the β subunit more like the α subunit resulted in a large loss of
function for sazetidine-A (SI Table 3).

Cytisine and the β2 Complementary Face. Since these
three residues had a large affect on receptor agonist selectivity
and activation for sazetidine-A, we considered cytisine in an
attempt to explain its selectivity for A3B2 over A2B3 receptors.
Early chimera analysis showed that cytisine selectivity for human
β4 over β2 subunits is strongly influenced by the extracellular

Figure 2. Binding models of sazetidine-A and analogs. (A) Binding model for sazetidine-A based on established interactions seen with nicotine. 12 The
cation−π interaction is in purple, the hydrogen bond donor is in red, and the hydrogen bond acceptor is in green. (B) Crystal structure showing a
sazetidine-A analog bound to Ct-AChBP (PDB: 4B5D).15 The three key residues identified for the hydrophobic pocket associated with the β2 subunit
(V109, F117, and L119) are shown as is the TrpB residue from the α4 subunit. These residues were mutated into the crystal structure to show general
spatial locations (no residue minimizations calculated).
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region,23 and more recent analyses provide further details.24

Sequence alignment shows that of the three residues considered
here, the only difference lies in the 117 position − β2 F117 and
β4 L117 for the human subunits. For the rodent subunits
considered here, β4 is Q117, which is identical to the α4 residue
at this same position (Figure 1). In the rodent wild type α4β2
receptors, cytisine is a partial agonist with a biphasic response for
the A3B2 receptor. No response is observed for the A2B3
receptor (Table 3), although signal can be obtained in receptors
with hypersensitive mutations (seeMethods). However, with the
single mutation of F117Q in the β2 subunit, cytisine generated a
sizable response for the A2B3 receptor. The mutation also raised

the efficacy of the A3B2 receptor compared to the wild type
response (Table 3).

NS9283 and the α4 Complementary Face. We next
considered NS9283, which has a binding preference for the
α4−α4 interface.25 This compound has been previously
characterized as a benzodiazepine-like positive allosteric
modulator (PAM) for only the A3B2 stoichiometry of receptors
containing either α2 or α4 subunits.25,26 In addition, its effects
are lost when the α4(−) face is mutated to resemble the β2(−)
face in the region of the classical agonist binding site.27 Since we
have molecules that selectively associate with α4−α4 (NS9283)
and α4−β2 (sazetidine-A) interfaces, coapplication should
generate an A3B2 receptor response. As shown in Figures 3
and 4 and Table 2, we find that individual applications of NS9283
and sazetidine-A show essentially no activation of wild type A3B2
receptors. However, coapplication generates full activation of the
receptor, compared to acetylcholine. The A3B2 α4 triple mutant
(H114V, Q122F, T124L) was then exposed to similar
conditions. The sazetidine-A response for the mutant was
preserved, but the effect of NS9283 was completely lost (Figure
4) (Table 2). The mutations eliminate the ability of NS9283 to
bind at the α4−α4 interface and allow sazetidine-A to replace it in
binding. These data suggest that occupation of an agonist at each
α subunit is necessary for a receptor response. We generated the
A3B2 β2 triple mutant (V109H, F117Q, L119T) to test if
NS9283 could alone activate the channel. A response was seen in
a dose dependent manner, suggesting the drug is a partial agonist,
albeit, not potent or highly efficacious (Figure 4). Because
NS9283 is sparingly soluble, a full EC50 curve could not be
obtained. Nevertheless, we were able to transform a compound
once designated as a PAM into an agonist, suggesting it could be
binding to the canonical aromatic binding site. Also, due to its
low potency and lower receptor expression, the corresponding
A2B3 β2 triple mutant (V109H, F117Q, L119T) was
inconclusive with regard to activation via NS9283.

■ CONCLUSIONS

The present work confirms and expands upon recent studies on
the (−), complementary face of the agonist binding site of
nAChRs. In particular, the long-held belief that agonist binding
sites are formed only at α(+)/β(−) interfaces has been
challenged by increasing evidence for a viable agonist binding
site at α(+)/α(−) interfaces. Here we use several drugs that show
some subtype specificity to probe this issue. The novel agonist
sazetidine-A can only activate α4β2 receptors with an A2B3
stoichiometry. In the alternative A3B2 stoichiometry, an α(+)/
α(−) interface exists. The (−) face of such an interface is
relatively polar, and evidently it is incompatible with the
hydrophobic side chain of sazetidine-A that is expected to
project into this region (recall that the OH group of sazetidine-A
is not necessary for function). By mutating three residues in this
region to be more hydrophobic and thus more like a β2(−) face,

Figure 3. Sazetidine-A EC50 curves. (α4)3(β2)2 cannot be activated by
sazetidine-A. Responses can be obtained by mutating the comple-
mentary side of the α4 subunit to resemble the β2 subunit as seen with
(α4 H114V, Q122F, T124L)3(β2)2 receptor. Also shown is wild type
(α4)3(β2)2 receptor exposed to a combination of sazetidine-A and
NS9283.

Table 2. Sazetidine-A EC50 (nM) Values

receptor EC50 (nM) Hill n Imax (μA)

(α4)2(β2)3 1.9 ± 0.1 2.0 ± 0.2 14 0.059−0.26
(α4)3(β2)2 NR
(α4)2(β2)3 + 10 μM
NS9283

2.0 ± 0.2 1.7 ± 0.2 13 0.067−1.6

(α4)3(β2)2 + 10 μM
NS9283

1.1 ± 0.1 2.0 ± 0.2 14 0.4−7.2

(α4 H114V, Q122F,
T124L)2(β2)3

4.8 ± 0.3 1.8 ± 0.2 13 0.18−1.3

(α4 H114V, Q122F,
T124L)3(β2)2

9 ± 1 2.3 ± 0.6 14 0.71−6.2

Agonist = Sazetidine-A. NR = No Response.

Table 3. Cytisine-A EC50 (μM) Values

receptor EC50 (μM) [1] Hill [1] EC50 (μM) [2] Hill [2] % [1] n Cyt Imax (μA) ACh Imax (μA) efficacy

(α4)2(β2)3 NR 0.15−2.4
(α4)3(β2)2 0.047 ± 0.005 1.8 ± 0.3 6.0 ± 0.3 1.3 ± 0.1 22 16 0.052−2.9 0.94−33 7 ± 0.1%
(α4)2(β2 F117Q)3 0.019 ± 0.001 1.6 ± 0.1 11 0.026−0.10 0.084−2.5 22 ± 0.1%
(α4)3(β2 F117Q)2 0.03 ± 0.01 1.0 ± 0.3 3.3 ± 0.7 1.1 ± 0.2 33 17 0.055−4.0 0.51−20 16 ± 0.3%

Agonist = Cytisine. NR = No Response.
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we can prepare A3B2 receptors that are quite responsive to
sazetidine-A (Table 2).
In a complementary series of experiments, we considered the

drug NS9283, which binds only to α(+)/α(−) interfaces. It is
unable to activate the receptor on its own, and it is thus an
allosteric modulator. We reasoned that a combination of NS9283
and sazetidine-A would activate A3B2 receptors, with the former
binding to the α(+)/α(−) interface and the latter to the α(+)/
β(−) interfaces. Indeed, a mixture of NS9283 and sazetidine-A is
quite potent at A3B2 receptors, while neither compound alone

can activate the receptor. Taking this one step further, by
mutating all interfaces so they resemble α(+)/α(−) interfaces,
NS9283 becomes an agonist, rather than the allosteric modulator
it is for the wild type receptor.
We also applied this interface concept to cytisine, which has

the reverse activation profile of sazetidine-A, in that it cannot
activate the A2B3 receptor. By mutating one residue of the β2
subunit to that of the α4 subunit, we find that cytisine can activate
the A2B3 receptor. In addition, this same mutation increased

Figure 4. Sample traces of responses to acetylcholine (ACh), sazetidine-A (Saz-A), and NS9283 (NS) to A3B2 receptors. Solid gray bars indicate drug
application and dashed bars indicate a pause where drug remains present but the buffer wash has not started. Gaps between traces indicate buffer washes
(see Methods for duration of drug application and buffer washes). (A) Activation of wild type receptor by ACh at its EC50 value and Saz-A and NS at the
concentrations shown. (B) Activation of (α4 H144 V, Q122F, T124L)3(β2)2. (C) Application of Imax concentrations of acetylcholine and two
concentrations of NS to (α4)3(β2 V109H, F117Q, L119T)2. The * indicates a 1% by volume DMSO drug solution.
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efficacy of cytisine for the A3B2 receptor from 7% to 16% (Table
3).
In sum, this work shows the relevance of the α(+)/α(−)

interface of nAChRs to achieving full receptor activation. This
knowledge could be of great value to efforts to develop selective
agonists for specific nAChR subtypes.

■ METHODS
Molecular Biology. Rat nAChR α4 and β2 subunits were in pAMV

(unnatural mutagenesis) and pGEMhe (natural mutagenesis) vectors.
Site-directed mutagenesis was performed using the QuikChange
protocol (Stratagene). Circular DNA of α4 and β2 in pAMV was
linearized with the NotI restriction enzyme and the plasmids in
pGEMhe were linearized with the SbfI restriction enzyme. After
purification (Qiagen), the T7 mMessage Machine kit (Ambion) was
used to in vitro transcribe mRNA from linearized DNA templates.
QIAGEN’s RNeasy RNA purification kit was used to isolate the
transcribed mRNA product.
For unnatural amino acid incorporation, the amber (UAG) stop

codon was used for all α4 subunit incorporation and the opal (UGA)
stop codon was used for the β2 subunit incorporation. 74-nucleotide
THG73 tRNA (for UAG) and 74-nucleotide TQOpS’ tRNA (for UGA)
were in vitro transcribed using the MEGAshortscript T7 (Ambion) kit
and isolated using Chroma Spin DEPC-H2O columns (Clontech).
Synthesized unnatural amino acids coupled to the dinucleotide dCA
were enzymatically ligated to the appropriate 74-nucleotide tRNA as
previously described.13,28

Oocyte Preparation and Injection. Xenopus laevis stage V and VI
oocytes were harvested via standard protocols.28 For unnatural amino
acid incorporation to the α-subunit, the α4 and β2 mRNAs were mixed
in a 3:1 ratio by mass to obtain the A2B3 receptor, and in a 100:1 ratio to
obtain the A3B2 receptor. Unnatural amino acid incorporation to the β-
subunit used α4 and β2 mRNA ratios of 1:20 and 10:1 to obtain the
A2B3 and A3B2 receptors, respectively. mRNA mixtures and
deprotected (photolysis) tRNA were mixed in a 1:1 volume ratio, and
50 nl were injected into each oocyte. After injection, the oocytes were
incubated at 18 °C inND96+medium for 24 h. For the unnatural amino
acids with reduced cation-π binding ability, a second round of injections
following the same procedure was performed followed by incubation for
an additional 24 h. The reliability of the unnatural amino acid
incorporation was confirmed through read-through/reaminoacylation
tests as previously performed.12

For the natural mutagenesis experiments, the α4 and β2mRNAs were
mixed in 1:2 or 10:1 ratios by mass to obtain the A2B3 and A3B2
receptors, respectively.29 A total of 50 nL were injected to each oocyte,
delivering a mRNAmass total of 25 ng. Oocytes were incubated at 18 °C
in ND96+ medium for 24−72 h.
Chemical Preparation. Acetylcholine chloride was purchased from

Sigma-Aldrich and dissolved to 1 M stock solutions in ND96 Ca2+ free
buffer (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES at pH
7.5). Sazetidine-A dihydrochloride and (−)-cytisine were purchased
from Tocris Bioscience and dissolved to 10 mM stock solutions in
ND96 Ca2+ free buffer.
NS9283 was synthesized following a patented protocol.30 3-

Pyridylamidoxime and 3-cyanobenzoyl chloride were purchase from
Sigma-Aldrich. 3-Pyridylamidoxime (0.5 g) was dissolved in 5.4 mL of
pyridine. Then, 0.6 g of 3-cyanobenzoyl chloride was added while
stirring. The mixture was heated at reflux for 90 min and then cooled to
RT. 200 mL of water was added and the white powder was filtered with
two subsequent washes with water. The resulting powder was
lyophilized overnight to remove the excess water. The reaction resulted
in 60% yield, and the product was pure by LC-MS and NMR. 1H NMR
(300MHz, DMSO-d6) δ 9.26 (dd, J = 2.2, 0.9 Hz, 1H), 8.82 (dd, J = 4.8,
1.6 Hz, 1H), 8.64 (td, J = 1.7, 0.7 Hz, 1H), 8.50 (ddd, J = 8.0, 1.9, 1.1 Hz,
1H), 8.47 (dt, J = 6.0, 2.1 Hz, 1H), 8.22 (dt, J = 7.9, 1.4 Hz, 1H), 7.88 (td,
J = 7.9, 0.7 Hz, 1H), 7.65 (ddd, J = 7.9, 4.8, 0.9 Hz, 1H); MS (+ES-API)
m/z 249 (M+H)+.
The purified compound, NS9283, was then dissolved to a 10 mM

stock solution in DMSO. All drug solutions containing NS9283 were

0.1% DMSO (v/v) with the exception of the 100 μM dose, which had
1% DMSO (v/v). Appropriate controls of 1% DMSO (v/v) in ND96
Ca2+ free buffer only were applied to expressing cells to show no
receptor response to the higher DMSO concentration.

Electrophysiology.TheOpusXpress 6000A (Axon Instruments) in
two-electrode voltage clamp mode was used for all electrophysiological
recordings. The holding potential was set to −60 mV, and the running
buffer used was ND96 Ca2+ free solution for all experiments. All
acetylcholine drug applications used 1 mL of drug solution applied over
15 s followed by a 2.5 min buffer wash at a rate of 3 mL min−1. All
sazetidine-A, cytisine, NS9283, and coapplications used 1 mL of drug
solution applied over 8 s with a 30 s pause before a 5 min buffer wash at a
rate of 3 mL min−1. Dose−response measurements utilized a series of
∼3-fold concentration steps, spanning several orders of magnitude, for a
total of 8 to 18 doses. Data were sampled at 50 Hz and then low-passed
filtered at 5 Hz. Experiments testing activity of compounds involved two
to three acetylcholine doses of either EC50 or Imax values, followed by the
test doses of compounds being probed, followed by one to two doses of
the previous acetylcholine concentrations.

Averaged and normalized data were fit to one or two Hill terms to
generate EC50 and Hill coefficient (nH) values. All currents for the
activity testing were normalized to the highest acetylcholine dose
applied precompound testing. The efficacy of compounds was measured
as the ratio of the Imax of the compound divided by the Imax of
acetylcholine. All acetylcholine EC50 values for the conventional
mutations made in pGEMhe are reported in (SI Table 4). Error bars
represent standard error of the mean (SEM) values.

Hypersensitive Mutation (L9′A). In the case of unnatural amino
acid incorporation and mutagenesis scanning, EC50 values were
obtained using a hypersensitive mutation in the α4 subunit (L9′A).
This mutation serves two purposes in the experimental setup: (1) the
gain of function mutation gives a larger concentration window to probe
effects of introduced mutations and (2) the pore mutation causes
differences in rectification between the two stoichiometries, which can
be probed via voltage jump experiments to confirm which stoichiometry
is being observed.13,31 Since the EC50 is shifted from true wild type, a
correction factor was applied according to the procedure ofMoroni et al.
to obtain the wild type EC50 value.

32
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