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INTRODUCTION
The Asian scorpion Buthus martensii Karsch 

(BMK), which is widely distributed from northwest-
ern China to Mongolia and Korea, has been used in 
Chinese Traditional Medicine for thousands of years. 
The whole scorpions, scorpion tails and their extrac-
tions are effective in treating severe neurological dis-
ease such as epilepsy, apoplexy and facial paralysis 
apart from their use for soothing nerves and pains[1]. 

BMK venom is a rich source of substances, mainly 
neurotoxin proteins or peptides acting on various ionic 
channels in excitable cell membranes. Over the past 
decade, more than 70 different peptides, toxins or 
homologues have been isolated[2]. However, biological 
functions are still largely unknown.

Nitric oxide (NO), one of the most important va-
soactive substances, is produced by nitric oxide 
synthase (NOS)[3] and can be released from the en-
dothelium in certain vascular disease. Three members 
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Abstract  
Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch,  

has been demonstrated to block large-conductance Ca2+-activated K+ (BKCa) channels; however, its biological 
roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin 
on regulating the production of nitric oxide induced by TNF-α in human umbilical vein endothelial cells (HU-
VECs). We found that, 1, 10 and 100 μmol/L martentoxin decreased nitric oxide production by HUVECs ex-
posed to 10 ng/mL TNF for 6, 12 and 24 hours. We further demonstrated that martentoxin inhibited the activity 
of iNOS and retarded the down-regulation of eNOS mRNA induced by TNF-α. Therefore, martentoxin could be 
a potential therapeutic agent for vascular diseases.
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of NOS have been identified in mammals, including 
neuronal NOS (nNOS), endothelial NOS (eNOS) and 
inducible NOS (iNOS), which have distinct func-
tions and structural features[4]. Activities of nNOS and 
eNOS are regulated by Ca2+-calmodulin and expressed 
constitutively in endothelial cells. iNOS is expressed 
in response to inflammatory and pro-inflammatory 
mediators, independent of intracellular Ca2+ levels[5]. 
In endothelial cells, alteration in membrane potential 
mediated by Ca2+-activated K+ channels is expected to 
affect Ca2+ influx and NO formation[6].

Previous studies suggested that BMK extracts (10 
μg/mL) strongly inhibited TNF-α induced NO pro-
duction and NOS expression, especially for iNOS[7], 
but which ingredient is involved in this process is 
unknown. Martentoxin, a 37-residue peptide puri-
fied from the BMK venom[8], belongs to subfamily 
16 (α-KTx 16.2) toxin[9,10]. Martentoxin blocks BKCa 
and delays rectifying potassium channels in adrenal 
medulla chromaffin cells and hippocampal neurons, 
respectively[11]. The BKCa channels are present in 
mammals, insects and nematodes and participate in 
vascular regulation[12]. In humans, BKCa channels are 
present in the brain, bladder, pancreatic islets, cochlea 
and endothelial cells including human umbilical vein 
endothelial cells (HUVECs)[13]. Accumulating data in-
dicated that Hyperpolarization as a result of the acti-
vation of BKCa channels is associated with NO release 
in endothelium[23]. Therefore, in the present study, we 
investigated the effects of BMK peptide martentoxin 
on NO production, iNOS activation and eNOS ex-
pression in HUVECS .

MATERIALS AND METHODS

Reagents
Scorpion venom collected by an electrical milking 

procedure was a lyophilized product purchased from 
Jiangsu Province, China. The crude venom powder 
was stored at -20°C until required. ÄKTA purifier 10 
chromatography system, SOURCE 15 RPC 4.6/100 
reversed-phase column and HiTrap SP FF (5 mL) ion-
exchange columns were purchased from Amersham 
Biosciences (Uppsala, Sweden). C8 reversed-phase 
column was bought from Kromasil (Bohus, Sweden). 
Trifluoroacetic acid (TFA), sodium acetate and ac-
etonitrile of chromatographic grade were bought from 
Alfa Aesar (Ward Hill, USA) and Nanjing Chemical 
Reagent NO.1 Factory (Nanjing, China) and Merck 
(Schuchardt, Germany), respectively. Medium M199, 
trypsin, fetal bovine serum (FBS), penicillin and 
streptomycin were purchased from Hyclone (Thermo 
scientific, USA). Recombinant human TNF-α was 

obtained from Peprothch (Rocky Hill, USA). Kit for 
the determination of total NO levels, iNOS were ob-
tained from Nanjing Jiancheng Bioengineering Co. 
(Nanjing, China). FITC-conjugated goat anti-rabbit 
and 2-(4-amidinophenyl) -6-indolecarbamidine di-
hydrochloride (DAPI) were purchased from ZSGB-
BIO (Beijing, China) and Sigma (St. Louis, MO, 
USA), respectively. ReverTra Ace qPCR RT Kit and 
THUNDERBIRD SYBR qPCR mix were bought from 
Toyobo (Osaka, Japan).

Ion-exchange and reverse phase chromatog-
raphy

About 2 g BMK venom powder was dissolved in 40 
mL 50 mmol/L sodium acetate (pH 4.9), and centri-
fuged at 12,000 g for 20 minutes. The supernatant was 
then loaded onto the Amicon Ultra-15 Centrifugal Fil-
ter Devices and centrifuged at 4,000 g for 30 minutes. 
The fractions were pooled for further purification. The 
pooled fraction collected in the previous step was ap-
plied on HiTrap SP FF ion-exchange column (5 mL) 
pre-equilibrated with 50 mmol/L CH3COONa buffer 
(PH 4.9). The samples were eluted with a 1-40% 1M 
NaCl gradient at a flow rate of 1 mL/min. The eluted 
fractions were monitored by UV280. For reverse-phase 
chromatography, the fraction from HiTrap SP FF col-
umn was loaded on C8 column (pre-equilibrated with 
0.050% TFA) and the protein was then eluted with a 
0-40% acetonitrile (containing 0.065% TFA) gradient 
at a flow rate of 1 mL/min, monitored by UV280.

Mass spectrometry
Determination of the molecular mass was carried 

out at the Research Centre for Proteome Analysis, 
Key Lab of Proteomics, Institute of Biochemistry 
and Cell Biology, Shanghai Institutes for Biological 
Sciences, Chinese Academy of Sciences, Shanghai, 
China, by AutoFlex MALDI-TOF-TOF-MS (Bruker). 
For N-terminal sequencing, ABI Procise 491 Protein 
Sequencer at the Institute of Biochemistry and Cell 
Biology (Shanghai Institutes for Biological Sciences, 
Chinese Academy of Sciences) was used to determine 
the N-terminal sequence of the purified protein.

Cell culture and identification
HUVECs were obtained from human umbilical 

cord veins (supplied by Nanjing Maternity and Child 
Health Care Hospital) by digestion with 0.1% colla-
genase type II (Sigma) as previously described[14]. The 
cells were cultured in M199 medium containing 10% 
FBS, 100 IU/mL penicillin and 100 μg/mL streptomy-
cin at 37°C in a fully humidified atmosphere contain-
ing 5% CO2. The anti-von Willebrand factor antibody 
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was used to label blood vessels[15]. After one week of 
culture, the HUVECs were identified by immunofluo-
rescence staining with anti-von Willebrand factor  an-
tibody[16,17]. HUVECs were rinsed three times with 0.1 
M phosphate buffered saline (PBS) and then fixed in 
methanol after growing to 90% confluence. Cells were 
permeabilized in PBS containing 0.3% Triton X-100 
(ZSGB-BIO, Beijing, China) for 30 minutes, rinsed in 
PBS and pre-incubated with 10% goat serum in PBS 
for 60 minutes at room temperature. The cells were 
then incubated in rabbit anti-FacVIII antibody over-
night at 4°C. After several washes in PBS, second-
ary FITC-conjugated goat anti-rabbit antibodies were 
applied for 2 hours at room temperature in the dark. 
Nuclei were stained with fluorescent nucleic acid dye 
DAPI in the dark. After several washes, outgrowth 
cells were visualized using fluorescence microscope 
(Olympus IX70, Japan), adapted with Mercury lamp 
(Olympus). 

Determination of NO production and iNOS 
activtiy

To evaluate the effect of martentoxin on NO pro-
duction induced by TNF-α (10 ng/mL) in HUVECs, 
we treated cells with martentoxin (1, 10 and 100 
μmol/L) and/or a non-specific NOS inhibitor, NG-
nitro-L-arginine methyl ester (L-NAME, 100 μmol/L). 
After 6, 12 and 24 hours of incubation, the HUVECs 
were collected for NO synthase activity assays or for 
protein extraction. Nitric oxide was detected accord-
ing to Griess et al.[18], and nitrite concentrations were 
determined at 550 nM by using the standard solutions 
of sodium nitrite. The experiments were repeated at 
least three times. The NOS activity of HUVECs was 
measured as described previously[19]. Briefly, HU-
VECs were homogenized in ice-cold saline and cen-
trifuged (3,000 g, 10 minutes). Supernatant was col-
lected for testing tNOS and iNOS activities by using 
the NOS kits following manufacturer's instructions. 

Additionally, HUVECs were treated with TNF-α (10 
ng/mL), martentoxin (100 μmol/L), and martentoxin 
(100 μmol/L) + TNF-α (10 ng/mL), respectively. Af-
ter 24 hours of incubation, the medium was collected 
for NO detection. 

Real time RT-PCR
Total RNA was extracted from HUVECS by us-

ing TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
and 1 μg was reverse transcribed in a 20 μL reaction. 
The 20 μL of RT-reaction mixture and each primer set 
(Table 1) were prepared to detect eNOS mRNA ex-
pression by real time RT-PCR (ABI PRISM 7,300 se-
quence of detection system) with Thunderbird SYBR 
qPCR mix. The temperature profile was as follows: 
94°C for 4 minutes, followed by 40 cycles of 94°C for 
30 seconds, 59°C for 45 seconds and 72°C for 45 sec-
onds. Each real-time RT-PCR reaction was performed 
in quadruplet. Fold changes in mRNA levels were 
calculated by using the △ △ CT method and GAPDH 
was used as the reference gene. Specificity of PCR 
reaction was double-confirmed by electrophoresis and 
melting curve analysis.

Statistical analysis
Data are expressed as mean±S.D. for all experi-

ments. Statistically significant differences between 
treatments and control were determined by one-way 
or two-way ANOVA and LSD multiple comparison 
procedure. All tests of statistical significance were 
two-sided and *P < 0.05 was considered statistically 
significant.

RESULTS

Crude venom isolation and purification
As shown in Fig. 1A, a total of 8 peaks were eluted 

from the initial HiTrap SP FF column separation of 
venom and peak 3 was collected. Upon reverse-phase 

Table 1 The primer sequence used for real-time RT-PCR

Gene name Forward primer Reverse primer Accession Number
eNOS CACATGTTTGTCTG CGG GAGGGGCCTTCCAGATTAAG NM_00603
GAPDH GGGAAGCTCACTGGCATGGCCTTCC CATGTGGGCCATGAGGTCCACCAC NM_002046

Name                                             Sequence Sequence Identity
Martentoxin FGLIDVKCFASSECWTACKKVTGSGQGKCQNNQCRCY 100%
KTX1 FGLIDVKCFASSECWIACKKVTGSVQGKCQNNQCRCY   94%
TmTX LIDVKCFASSECWTACKKVTGSGQGKCQNNQCRCY   77%
BmKTX2 QFTNVSCSASSQCWPVCKKLFGTYRGKCMNSKCRCYS   57%
BmTX1 QFTDVKCTGSKQCWPVCKQMFGKPNGKCMNGKCRCYS   54%

Table 2 Amino acid sequence comparison of martentoxin from Buthus martensii Karch with other mammalian 
toxins 
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chromatography, pooled peak 3 fraction from the first 
step was further separated into 12 peaks, and we col-
lected peak 4 as shown in Fig. 1B. Peptide was applied 
on a C8 reversed-phase column and a single peak was 
eluted (Fig. 1C). Through 2 steps combined with Hi-
Trap SP FF ion-exchange chromatography and Source 
15 RPC reverse-phase chromatography, about 0.015 
g martentoxin were purified to homogeneity from 2 
g crude venom. The yield of martentoxin was about 
0.75%, higher than the previous report[8]. The mo-
lecular mass of martentoxin estimated by AutoFlex 
MALDI -TOF -TOF -MS was 4,059 Da. No other 
peptide was found during automated Edman degrada-
tion process. The 37 amino acid of martentoxin was 
obtained and sent for homology searching by Blast. 
By comparison with other toxins purified from Buthus 
martensii Karch venom, the results showed 100% se-
quence identity with martentoxin (Table 2).

Martentoxin markedly decreased TNF-α-
induced NO release

 Cultured HUVECs exhibited cobblestone-like ap-
pearance and contact-inhibition between cells under 
phase-contrast microscopy. Immunocytochemistry 
with anti-von Willebrand factor (vWF)[20] showed 
that more than 95% of cells were positive vascular 
endothelial cells (Fig. 2). To examine the effects of 
martentoxin on NO production, we treated cells with 
TNF-α for 2 hours. Fig. 3 showed that TNF-α signifi-
cantly increased the production of NO at 6, 12 and 
24 hours while martentoxin (1, 10 and 100 μmol/L) 
markedly inhibited NO production induced by TNF-α. 
We also explored whether martentoxin exerted its ef-
fect on NO production. The data indicated that 100 
μmol/L martentoxin, treated for 24 hours, obviously 
increased NO production, but when co-incubated with 
10 ng/mL TNF-α, it markedly decreased NO produc-
tion compared with the TNF-α treated group (Fig. 3D). 

Martentoxin reduced iNOS activity mediated 
by TNF-α

Then, we investigated how martentoxin affects 
TNF-α mediated NO production. It is well known that 
TNF-α enhances iNOS activity and thus increases 
NO production[21]. Therefore, iNOS activities should 
be determined. As shown in Fig. 4, activity of iNOS 
modulated by TNF-α was reduced after treatment with 
1, 10, and 100 μmol/L martentoxin for 6, 12 and 24 
hours.

Effects of martentoxin on TNF-α mediated 
eNOS gene expression 

As eNOS is believed to mediate important vasopro-
tective effect[26], we investigated the effects of mar-
tentoxin on eNOS expression. Our results indicated 

Fig. 1 Isolation and purification of martentoxin from 
Buthus martensii Karch. A: Cation exchange chromatog-
raphy. The column (HiTrap SP FF) was equilibrated with 50 
mmol/L CH3COONa, pH 4.9 buffer, and eluted with a linear 
gradient of 1 M NaCl, pH 4.9. B: Reverse-phase chromatog-
raphy. The fraction from (A) was lyophilized and dissolved in 
ddH2O and purified on SOURCE 15 RPC column equilibrated 
with buffer A (0.65% TFA). Elution was done by applying a 
linear gradient of buffer B (0.05%TFA in acetonitrile). C: The 
fraction from (B) was lyophilized and dissolved in ddhH2O and 
loaded on the C8 column. The protein was equilibrated with 
buffer A and eluted with buffer B.
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Fig. 2 Photomicrograhps of 7-day-old cultures of human umbilical vein endothelial cells (HUVECs) immunos-
tained with anti-von willebrand factor and anti-rabbit IgG-FITC (green). Nuclei were stained with DAPI (blue). Scale bar, 
50 μm.

Fig. 3 Inhibitory effect of martentoxin (1, 10, 100 μmol/L) and L-NAME (100 μmol/L) on NO production in HU-
VECs induced by TNF-α (10 ng/mL). A: Martentoxin inhibited NO production induced by TNF-α after 6 hours. B: Marten-
toxin inhibited NO production induced by TNF-α after 12 hours. C: Martentoxin inhibited NO production induced by TNF-α after 24 
hours. D: The effects of martentoxin on NO production. # and * indicate significant differences (P < 0.05) compared with the control 
and condition stimulated by TNF-α. Each value denotes the mean±SD (n = 5). C: control;  T: TNF-α (10 ng/mL);  T+100N: TNF-α (10 
ng/mL)+L-NAME (100 μmol/L); T+1M: TNF-α (10 ng/mL)+ Martentoxin (1 μmol/L);  T+10M: TNF-α (10 ng/mL)+ Martentoxin (10 
μmol/L) ; T+100M: TNF-α (10 ng/mL)+Martentoxin (100 μmol/L). 
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that TNF-α (10 ng/mL) downregulated eNOS mRNA 
expression in HUVECs, while treatment with mar-
tentoxin (100 μM) or co-incubation with both mar-
tentoxin and TNF-α (10 ng/mL) showed no apparent 
changes in eNOS mRNA expression (Fig. 5).  

DISCUSSION
Large-conductance Ca2+ activated K+ (BKCa) chan-

nels play important roles in the regulation of mem-
brane excitability. The importance of BKCa channels 

Fig. 4 Martentoxin (1, 10, 100 μmol/L) down-regu-
lated the activity of iNOS mediated by TNF-α after 
treatment for 6, 12 and 24 hours. # and * indicate sig-
nificant differences compared with the control and condition 
stimulated by TNF-α (P < 0.05); each data represents mean ± 

SD at least three separate experiments. C: control; T: TNF-α 
(10 ng/mL);  T+100N: TNF-α (10 ng/mL)+L-NAME (100 
μmol/L) ;  T+1M: TNF-α (10 ng/mL)+ Martentoxin (1 μmol/
L);  T+10M: TNF-α (10 ng/mL)+ Martentoxin (10 μmol/L) ; 
T+100M: TNF-α (10 ng/mL)+Martentoxin (100 μmol/L). 

in regulation of vascular tone, determination of action 
potential duration and frequency, and neurotransmit-
ter release has been well documented[24]. Previous 
studies suggested that BKCa channels expressed in 
intact vascular endothelium are associated with NO 
release. In the present study, we isolated a 4.059 kD 
peptide from BMK venom,, a large-conductance Ca2+-
activated K+ channels inhibitor- martentoxin. It is well 
known that TNF-α up-regulates the expression of ar-
ginase which is the mediator of nitric oxide through L-
arginine-NO pathway in endothelial cells[22]. Our data 
suggested that martentoxin decreased the biosynthesis 
of total NO in HUVECs induced by TNF-α, which is 
considered to play a key role in inflammatory and im-
mune response. To test the specific effects of marten-
toxin on TNF-α induced NO production, varied doses 
of martentoxin (1, 10 and 100 μmol/L) were used. 
The results showed that martentoxin inhibited TNF-α 
mediated NO production in a dose-depend manner not 
only in 6 hours, but also in 12 and 24 hours. In addi-
tion, a non-specific inhibitor of nitric oxide synthase, 
L-NAME, was used in the present experiment. As 
we expected, TNF-α stimulated NO production and 
L-NAME substantially reduced the release of NO in-
duced by TNF-α in HUVECs.

NO is a modulator of vascular inflammation. Hama 
et al. indicated that proinflammatory cytokines and 
lipopolysaccharide (LPS) increased iNOS expres-
sion, which impaired vascular integrity in chronic 
inflammation[25]. Similar to Hama's results, our data 
suggested that proinflammatory cytokine TNF-α, sig-
nificantly promoted iNOS activities and facilitated 
NO release. Moreover, we foumd that TNF-α-induced 
iNOS activities and NO release were attenuated by 
martentoxin. It was worth mentioning that 100 μM 
martentoxin elicited a pronounced release of NO from 
the HUVECs. Xu reported[28] that endotoxemic BK 
β1-KO mice had higher plasma TNF-α and iNOS 
expression in the heart. Moreover, Tao[29] indicated 
that accessory β1 subunit exerted important effects on 
martentoxin-mediated BK channel (α+β1) activities 
implying that accessory β subunits may be targets for 
martentoxin in TNF-α-mediated NO activities. How-
ever, the mechanisms deserved further investigations.

Traditionally, eNOS is believed to be the primary 
source of NO in the endothelium and mediates im-
portant vasoprotective and immunomodulatory ef-
fects[26]. Our data showed that TNF-α substantially 
downregulated eNOS mRNA expression. This result 
confirmed and supported the conclusion by Zemse 
that TNF-α decreased eNOS expression in mouse 
endothelium [27]. In the present study, we found that 
martentoxin retarded the downregulation of eNOS 

Fig. 5 Martentoxin significantly retarded TNF-α (10 
ng/ml) down-regulated eNOS mRNA expression. Each 
data point represents mean±SD of mRNA levels from at least 
three separate experiments in which treatments were performed 
in triplicates. # and * indicate significant differences compared 
with the control and condition stimulated by TNF-α (P < 0.05), 
each data represents mean±SD at least three separate experi-
ments. C: control;  T: TNF-α  (10 ng/mL);  100M: Martentoxin 
(100 μmol/L);T+100M: TNF-α (10 ng/mL) + Martentoxin (100 
μmol/L). 
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expression induced by TNF-α. Thereby, martentoxin 
could be a potential therapeutic agent for vascular 
diseases. Firstly, it significantly reduced TNF-α me-
diated NO production and attenuated iNOS activity, 
which has been demonstrated to be highly correlated 
with HUVECs inflammatory response. Secondly, it 
markedly retarded eNOS downregulation mediated 
by TNF-α. Different from eNOS, nNOS is much less 
abundant than eNOS and is predominantly in resting 
endothelial cells [26], so we did not detect nNOS ex-
pression in HUVECs.

In summary, we demonstrated that martentoxin, as 
a peptide purified from the venom of scorpion BKM, 
decreased NO production and retarded iNOS activation 
in HUVECs induced by TNF-α. Furthermore, mar-
tentoxin upregulated eNOS expression. However, the 
exact mechanisms of martentoxin induced endothelial 
response and the contribution of iNOS and eNOS to 
this response are still unknown. Further research will 
focus on the mechanisms of protective effects of mar-
tentoxin in inflammatory vascular diseases.
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