
 International Journal of 

Molecular Sciences

Review

Regulation of Beclin 1-Mediated Autophagy by
Oncogenic Tyrosine Kinases

Silvia Vega-Rubín-de-Celis 1,*, Lisa Kinch 2 and Samuel Peña-Llopis 3

1 Institute for Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany
2 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;

lkinch@chop.swmed.edu
3 Translational Genomics in Solid Tumors, German Cancer Consortium (DKTK) and German Cancer Research

Center, University Hospital Essen, 45147 Essen, Germany; Samuel.Pena-Llopis@dkfz-heidelberg.de
* Correspondence: silvia.vega.rubindecelis@gmail.com or silvia.vegarubindecelis@uk-essen.de

Received: 30 October 2020; Accepted: 1 December 2020; Published: 3 December 2020
����������
�������

Abstract: Beclin 1 is a major regulator of autophagy, and it is a core component of the class III PI3K
complexes. Beclin 1 is a highly conserved protein and its function is regulated in a number of ways,
including post-translational modifications. Several studies indicate that receptor and non-receptor
tyrosine kinases regulate autophagy activity in cancer, and some suggest the importance of Beclin
1 tyrosine phosphorylation in this process. Here we summarize the current knowledge of the
mechanism whereby some oncogenic tyrosine kinases regulate autophagy through Beclin 1.
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1. Introduction

Macroautophagy, herein referred to as autophagy (self-eating), is an intracellular degradation
pathway whereby cytosolic components are engulfed into double-membrane structures
(autophagosomes) for their degradation into the lysosome. Through this pathway, the cell can
generate energy by recycling cytoplasmic components, but it can as well control cytoplasmic quality
by degradation of damaged proteins and organelles, lipid droplets, or intracellular pathogens.
Autophagy is an essential process involved in both physiological and pathological conditions,
including protection against aging, infections, cancer and neurodegenerative, metabolic, inflammatory,
and muscle diseases [1–6]. Beclin 1 is an essential autophagy protein, that is regulated through
multiple post-translational modifications, including phosphorylation by oncogenic tyrosine kinases.
Thus, the goal of this mini-review is to compile the data available regarding the autophagy regulation
through Beclin 1 tyrosine phosphorylation in cancer.

2. The Role of Beclin 1 in Autophagy and Cancer

Beclin 1, the mammalian ortholog of the yeast Atg6/Vps30 is an evolutionary conserved protein
that is essential for autophagy. Beclin 1 was discovered as a binding partner of Bcl-2 in a yeast-two
hybrid screen [7], and it was shown that Bcl-2 and Bcl-XL inhibit autophagy through their binding
with Beclin 1 [8].

Beclin 1 is part of two distinct mayor class III phosphatidylinositol 3-kinase (PI3KC3) complexes:
PI3KC3-C1 (it is involved in autophagosome nucleation and it contains Beclin 1, VPS34, VPS15 and
ATG14) and PI3KC3-C2 (it is implicated in endolysosomal and autophagolysosome nucleation and
containing Beclin 1, VPS34, VPS15 and UVRAG). A third PI3KC3 has been described, in which Beclin 1
binds to VPS34, VPS15, UVRAG, and RUBICON to inhibit autophagic flux [9–11] (Figure 1).
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Figure 1. Beclin 1 forms several class III phosphatidylinositol 3-kinase (PI3KC3) complexes that 
regulate some steps of autophagy and endocytic trafficking. 

One of the major events regulating autophagy is the formation of the Bcl-2/Bcl-xL—Beclin 1 
complex formation. Bcl-2 and Bcl-xL inhibit autophagy through its binding to the BH3 domain of 
Beclin 1, stabilizing Beclin 1 homodimerization, disrupting Beclin 1 interaction with other 
components of the PI3KC3 complex and inhibiting autophagy [7]. The interaction of Bcl-2/Bcl-xL with 
Beclin 1 is regulated through multiple phosphorylation events that lead to promoting or disrupting 
the complex formation, including: (1) starvation-induced JNK1 (c-Jun amino terminal kinase 1) 
phosphorylation of Bcl-2 at T69, S70, and S97, promoting the dissociation of Bcl-2-Beclin 1 and the 
subsequent autophagy activation [12]; (2) Beclin 1 phosphorylation at T119 within its BH3 domain by 
DAPK (death associated protein kinase) or ROCK1 (Rho kinase 1) [13,14] promoting its dissociation 
from Bcl-2 and autophagy induction; (3) starvation-induced Beclin 1 phosphorylation at S90 by the 
stress responsive kinases MK2 and MK3, disrupting its binding with Bcl-2 and inducing autophagy 
[15]; (4) Mst1 (mammalian Ste20-like kinase 1) phosphorylation of Beclin 1 at T108 (within its BH3 
domain), promoting the interaction of Bcl-2 and Beclin 1 and therefore inhibiting autophagy [16]. 

Beclin 1 (BECN1) is not frequently mutated in cancer. Only 106 out of 45,151 patients (less than 
0.1%) from all tumor types found at cBioPortal (www.cbioportal.org) show alterations, and around 
0.5% mutations (215 out of 38,262 unique samples) were found in the COSMIC database (Catalog of 
Somatic Mutations; https://cancer.sanger.ac.uk/cosmic). Beclin 1 functions as a haploinsufficient 
tumor suppressor, and allelic loss of Beclin 1 is frequently found in sporadic breast, ovarian, and 
prostate cancers [17–20]. Beclin 1 loss is associated with poor patient survival and more aggressive 
cancers [21] and mouse models harboring a single Beclin 1 copy have elevated incidence of 
spontaneous malignancies, including lung carcinomas, lymphomas, hepatocellular carcinomas and 
breast carcinomas [22–24]. 

3. Oncogenic Tyrosine Kinases 

Tyrosine kinases (TKs) are enzymes that phosphorylate substrates at tyrosine residues and play 
essential roles in signal transduction, cell growth, migration, proliferation, differentiation, and 
survival. TKs are divided into receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases 
(NRTK). 

3.1. Receptor Tyrosine Kinases 

RTKs are transmembrane tyrosine kinases, they are classified in 20 different classes, and all of 
them share a common structure, having a highly glycosylated extracellular ligand binding domain, 
a single transmembrane domain, and an intracellular domain containing a tyrosine kinase domain 
and a carboxy-terminal tail [25]. Aberrant function of RTK lead to different diseases, including cancer. 
Under normal conditions, most RTK are activated by binding to their corresponding ligand through 
the extracellular domain, dimerization, and a conformational change resulting in trans-
phosphorylation of each kinase and release of the cis-autoinhibition [26]. This phosphorylation and 
further activation recruit other molecules that activate downstream signaling pathways. Several 
mechanisms are involved into the aberrant activation of tyrosine kinases found in cancers, including 

Figure 1. Beclin 1 forms several class III phosphatidylinositol 3-kinase (PI3KC3) complexes that regulate
some steps of autophagy and endocytic trafficking.

One of the major events regulating autophagy is the formation of the Bcl-2/Bcl-xL—Beclin 1
complex formation. Bcl-2 and Bcl-xL inhibit autophagy through its binding to the BH3 domain of
Beclin 1, stabilizing Beclin 1 homodimerization, disrupting Beclin 1 interaction with other components
of the PI3KC3 complex and inhibiting autophagy [7]. The interaction of Bcl-2/Bcl-xL with Beclin 1 is
regulated through multiple phosphorylation events that lead to promoting or disrupting the complex
formation, including: (1) starvation-induced JNK1 (c-Jun amino terminal kinase 1) phosphorylation of
Bcl-2 at T69, S70, and S97, promoting the dissociation of Bcl-2-Beclin 1 and the subsequent autophagy
activation [12]; (2) Beclin 1 phosphorylation at T119 within its BH3 domain by DAPK (death associated
protein kinase) or ROCK1 (Rho kinase 1) [13,14] promoting its dissociation from Bcl-2 and autophagy
induction; (3) starvation-induced Beclin 1 phosphorylation at S90 by the stress responsive kinases
MK2 and MK3, disrupting its binding with Bcl-2 and inducing autophagy [15]; (4) Mst1 (mammalian
Ste20-like kinase 1) phosphorylation of Beclin 1 at T108 (within its BH3 domain), promoting the
interaction of Bcl-2 and Beclin 1 and therefore inhibiting autophagy [16].

Beclin 1 (BECN1) is not frequently mutated in cancer. Only 106 out of 45,151 patients (less than
0.1%) from all tumor types found at cBioPortal (www.cbioportal.org) show alterations, and around
0.5% mutations (215 out of 38,262 unique samples) were found in the COSMIC database (Catalog of
Somatic Mutations; https://cancer.sanger.ac.uk/cosmic). Beclin 1 functions as a haploinsufficient
tumor suppressor, and allelic loss of Beclin 1 is frequently found in sporadic breast, ovarian,
and prostate cancers [17–20]. Beclin 1 loss is associated with poor patient survival and more
aggressive cancers [21] and mouse models harboring a single Beclin 1 copy have elevated incidence of
spontaneous malignancies, including lung carcinomas, lymphomas, hepatocellular carcinomas and
breast carcinomas [22–24].

3. Oncogenic Tyrosine Kinases

Tyrosine kinases (TKs) are enzymes that phosphorylate substrates at tyrosine residues and play
essential roles in signal transduction, cell growth, migration, proliferation, differentiation, and survival.
TKs are divided into receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTK).

3.1. Receptor Tyrosine Kinases

RTKs are transmembrane tyrosine kinases, they are classified in 20 different classes, and all of
them share a common structure, having a highly glycosylated extracellular ligand binding domain,
a single transmembrane domain, and an intracellular domain containing a tyrosine kinase domain
and a carboxy-terminal tail [25]. Aberrant function of RTK lead to different diseases, including cancer.
Under normal conditions, most RTK are activated by binding to their corresponding ligand through the
extracellular domain, dimerization, and a conformational change resulting in trans-phosphorylation
of each kinase and release of the cis-autoinhibition [26]. This phosphorylation and further activation
recruit other molecules that activate downstream signaling pathways. Several mechanisms are
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involved into the aberrant activation of tyrosine kinases found in cancers, including gain-of-function
mutations, increased RTK levels by overexpression or amplification, chromosomal rearrangements,
kinase domain duplication, or autocrine activation [26,27]. Upon activation, RTK initiate a cascade
of downstream signaling pathways, including the PI3K/Akt/mTOR pathway, MAPK, AMPK or the
Ras/MEK/ERK pathway, and most of them are also implicated in autophagy regulation through
different mechanisms [26].

3.2. Non-Receptor Tyrosine Kinases

NRTKs are cytosolic kinases with a quite variable structure subunit composition but that usually
harbor a protein kinase domain and some protein–protein interaction domains, like Src Homology 2
(SH2), SH3 or PH (Pleckstrin homolog) domains, and are organized into 9 subfamilies [28]. NRTKs
are involved in regulation of proliferation, cell growth, adhesion, migration, and apoptosis, and they
also regulate signal transduction in the immune system [29]. Multiple oncogenic alterations have
been described in NRTKs, including chromosomal rearrangements leading to fusion genes, typically
associated with hematological malignancies [29].

4. Beclin 1 Regulation by Tyrosine Phosphorylation

Mammalian Beclin 1 function is regulated at different levels to modulate autophagy and other
intracellular processes where Beclin 1 is involved, including vacuolar protein sorting or LC3-associated
phagocytosis through the class III PI3Kinase complex. These multiple regulation levels include
post-translational modifications (phosphorylation, ubiquitination, acetylation), changes in Beclin 1
subcellular localization (sequestration at the Golgi or at the cytoskeleton, or endosomal localization),
or variations at the interactome.

Multiple Beclin 1 phosphorylation events have been reported that eventually modulate autophagy
activity in mammals, either by induction or inhibition (reviewed in [30,31]), and multiple oncogenic
kinases have also been involved in autophagy modulation through Beclin 1 phosphorylation [32].
Phosphorylation at Ser90 has been shown to activate autophagy through several kinases, including
MK2/3 [15], DAPK3, [33], calcium-calmodulin-dependent protein kinase type II (CAMKII, [34]),
AMP-activated protein kinase (AMPK, [35]), and also by the phosphatase PP2A [33]. Other activating
phosphorylated residues in Beclin 1 include Ser93 and Thr388 (phosphorylated by AMPK, [36]),
Ser30 (PGK1, [37]), and Thr119 (phosphorylated by DAPK [14] and ROCK1 [13]). Additional
phosphorylation events in Beclin 1 were reported to inhibit autophagy in different ways, including
(1) cytoskeletal sequestration of Beclin 1 through 14-3-3 binding upon AKT1 phosphorylation at
residues Ser234 and Ser295 [38]; (2) Beclin 1 dimerization and modification of its binding partners
upon phosphorylation at Tyr229, Tyr233 and Tyr352 by EGFR [39] or at Tyr233 by HER2 mutants [40]
and FAK [41]; (3) Increased binding of Beclin 1 with Bcl-2 and decreased binding with Vps34 through
Beclin 1 phosphorylation at Thr108 by Mst-1 [16].

Human Beclin 1 protein contains a total of 11 tyrosines: Y162 (flexible helix domain, FHD), Y229,
Y233, Y256 (CCD domain) and Y328, 333, 338, 352, 394, 413, and 448 located within the C-terminal
ECD-BARA domain (Figure 2). Some of them are highly conserved across species, from human to
yeast, including Y162 (located at the FHD domain) and Y394 and Y448 (located within the BARA
domain). In the structure of the yeast VPS34 complex II [42], the FHD helix interacts with a helix
from the VPS38 (UVRAG) and a helix from the scaffolding ARM repeat of VPS15 (PI3R4) (Figure 3).
The Y162 sidechain points towards the intersection of these two helices, suggesting it may play a role
in positioning the complex. The Y394 sidechain is exposed to solvent in the complex structure model,
suggesting that phosphorylation would be allowed in the complex (Figure 3). So far, only a handful of
these residues have been shown to be phosphorylated by tyrosine kinases, and they all have an effect
on regulating autophagy.
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Figure 2. Beclin 1 protein sequence alignment. Tyrosine residues are highlighted in yellow. Color-
coded bar at the top indicated conservation degree. Alignment was generated using Multiple 
Sequence Comparison by Log-Expectation (MUSCLE) algorithm in SnapGene (GSL Biotech). 

A crystal structure of the yeast VPS34 complex II [42] includes VPS34 (PIK3C3), VPS15 (PIK3R4), 
VPS30 (BECN1), and VPS38 (ATG14 or UVRAG). This structure provides a model for Beclin 1 
interaction with the human complex components and its activation of phosphatidylinositol-3-kinase 
(PI3K) that leads to autophagy. The central coiled coils (CCD) of Beclin 1 and ATG14 (or the 
structurally related UVRAG of complex II) form a parallel heterodimer, which positions the Beclin 1 
ECD/BARA domain at the tip of one arm of a Y-shaped complex structure (Figure 3). 

The Beclin 1/ATG14 heterodimeric CCD forms an elongated platform for its interaction with an 
intertwined VPS15/VPS34 kinase heterodimer. The interaction positions the active site of the VPS34 
kinase at the tip of the other arm of the Y. The presence of the Beclin 1 CCD heterodimer increases 
PI3K activity on vesicles. Deletion of a BARA domain “aromatic finger”, which is thought to mediate 
interaction with the membrane, lowers this activity [42,43]. Thus, activation of PI3K by the Beclin 1 
CCD heterodimer is thought to increase VPS34 PI3K activity by interacting directly with the 
membrane where substrate resides. 

In the absence of ATG14, the Beclin 1 CCD alone forms metastable antiparallel homodimers that 
transition to heterodimeric CCD upon addition of ATG14 [44,45]. The Beclin 1 homodimeric state is 
mimicked by the full-length protein, with the BARA domain contributing to the strength of the CCD 
interaction [46], suggesting that the CCD equilibrium is influenced by other Beclin 1 domains. Thus, 
phosphorylation of Beclin 1 could modulate the equilibrium between its inactive homodimeric CCD 
state and the active heterodimeric CCD that allows complex formation (Figure 3). 

Figure 2. Beclin 1 protein sequence alignment. Tyrosine residues are highlighted in yellow. Color-coded
bar at the top indicated conservation degree. Alignment was generated using Multiple Sequence
Comparison by Log-Expectation (MUSCLE) algorithm in SnapGene (GSL Biotech).

A crystal structure of the yeast VPS34 complex II [42] includes VPS34 (PIK3C3), VPS15 (PIK3R4),
VPS30 (BECN1), and VPS38 (ATG14 or UVRAG). This structure provides a model for Beclin 1
interaction with the human complex components and its activation of phosphatidylinositol-3-kinase
(PI3K) that leads to autophagy. The central coiled coils (CCD) of Beclin 1 and ATG14 (or the structurally
related UVRAG of complex II) form a parallel heterodimer, which positions the Beclin 1 ECD/BARA
domain at the tip of one arm of a Y-shaped complex structure (Figure 3).

The Beclin 1/ATG14 heterodimeric CCD forms an elongated platform for its interaction with an
intertwined VPS15/VPS34 kinase heterodimer. The interaction positions the active site of the VPS34
kinase at the tip of the other arm of the Y. The presence of the Beclin 1 CCD heterodimer increases
PI3K activity on vesicles. Deletion of a BARA domain “aromatic finger”, which is thought to mediate
interaction with the membrane, lowers this activity [42,43]. Thus, activation of PI3K by the Beclin 1
CCD heterodimer is thought to increase VPS34 PI3K activity by interacting directly with the membrane
where substrate resides.

In the absence of ATG14, the Beclin 1 CCD alone forms metastable antiparallel homodimers that
transition to heterodimeric CCD upon addition of ATG14 [44,45]. The Beclin 1 homodimeric state
is mimicked by the full-length protein, with the BARA domain contributing to the strength of the
CCD interaction [46], suggesting that the CCD equilibrium is influenced by other Beclin 1 domains.
Thus, phosphorylation of Beclin 1 could modulate the equilibrium between its inactive homodimeric
CCD state and the active heterodimeric CCD that allows complex formation (Figure 3).
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yellow, ATG14 in green and Beclin 1 in blue, with Beclin 1 Tyr sidechains in magenta sphere. The 
heterodimeric Beclin 1-ATG14 CCD cradles the VPS15/VPS34 heterodimer in the complex, with the 
Y233 sidechain pointing towards the VPS15 beta-propeller, suggesting the phosphorylation state 
would influence complex formation. Alternately, the interaction of the Beclin 1 CCD homodimer 
below (PDB: 5hhe) competes with complex formation. Tyrosine phosphorylation shift the equilibrium 
to the homodimeric state and inhibit autophagy. 

5. Beclin 1 Phosphorylation by Receptor Tyrosine Kinases 
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factor-alpha), heparin-binding EGF-like growth factor (HBEGF) and betacellulin (BTC), although 
EGF is the most studied of all. Upon binding to its ligand, EGFR homo or heterodimerize with other 
family members (including HER2, HER3, HER4), leading to autophosphorylation and further 
recruitment of other partner proteins for intracellular signal transduction, activating the Ras/MAPK 
pathway, PI3K/Akt pathway, and STAT pathway. EGFR signaling is aberrantly activated in a number 
of cancers, including lung, head and neck, colon, brain, and pancreas, due to activating mutations, 
amplifications, or increased protein levels [47–50]. 
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Figure 3. Model of tyrosine phosphorylation modulating the equilibrium between Beclin 1 active CCD
heterodimer and inactive CCD homodimer. Human VPS34 complex model above is based on the yeast
structure (PDB:5dfz). Complex subunits are colored: VPS15 (PIK3R4) in red, VPS34 (PIK3C3) in yellow,
ATG14 in green and Beclin 1 in blue, with Beclin 1 Tyr sidechains in magenta sphere. The heterodimeric
Beclin 1-ATG14 CCD cradles the VPS15/VPS34 heterodimer in the complex, with the Y233 sidechain
pointing towards the VPS15 beta-propeller, suggesting the phosphorylation state would influence
complex formation. Alternately, the interaction of the Beclin 1 CCD homodimer below (PDB: 5hhe)
competes with complex formation. Tyrosine phosphorylation shift the equilibrium to the homodimeric
state and inhibit autophagy.

5. Beclin 1 Phosphorylation by Receptor Tyrosine Kinases

5.1. EGFR

Epidermal growth factor receptor (EGFR) belongs to the class I of the ERBB receptor tyrosine
kinases. Several ligands have been shown to bind EGFR, including TGFA (transforming growth
factor-alpha), heparin-binding EGF-like growth factor (HBEGF) and betacellulin (BTC), although EGF
is the most studied of all. Upon binding to its ligand, EGFR homo or heterodimerize with other family
members (including HER2, HER3, HER4), leading to autophosphorylation and further recruitment
of other partner proteins for intracellular signal transduction, activating the Ras/MAPK pathway,
PI3K/Akt pathway, and STAT pathway. EGFR signaling is aberrantly activated in a number of cancers,
including lung, head and neck, colon, brain, and pancreas, due to activating mutations, amplifications,
or increased protein levels [47–50].

EGFR was shown to be an autophagy modulator through regulation of Beclin 1 tyrosine
phosphorylation. Previous studies had shown that EGFR inhibitors treatment induced autophagy in
multiple cancer cell lines [51,52], but the specific mechanism underlying this process was unknown.
Wei and colleagues [39] showed that activated EGFR upon ligand binding promote Beclin 1-EGFR
interaction at the endosomes and further Beclin 1 phosphorylation at tyrosine residues 229, 233, and Y352.
These phosphorylation events promote the formation of Beclin 1 homodimers, since phosphorylated
Y229/Y233 stabilize the Beclin 1 CCD homodimer, losing the ATG14 or UVRAG CCD interaction
and therefore blocking the binding of the VPS34 kinase (Figure 3). Thus, tyrosine phosphorylation
by EGFR releases Beclin 1 interaction with ‘activating’ binding partners such as UVRAG, VPS34,



Int. J. Mol. Sci. 2020, 21, 9210 6 of 15

ATG14, or VPS15 and promotes Beclin 1 homodimerization and binding to inhibitory proteins such
as Bcl-2 and Rubicon, leading to autophagy inhibition. Interestingly, this effect is independent of the
mTORC1 (mammalian target of rapamycin complex 1) activity, a well-known regulator of autophagy
activity and a downstream target of EGFR. The importance of EGFR-phosphorylated Beclin 1 in
tumorigenesis is highlighted by xenograft experiments, where NSCLC (non-small cell lung cancer)
cells expressing a constitutively phosphorylated Beclin 1 mutant inhibit autophagy and enhance tumor
growth and proliferation [39]. Interestingly, treatment with the receptor tyrosine kinase inhibitor
Erlotinib abolished EGFR and Beclin 1 phosphorylation, disrupted EGFR/Beclin 1 binding and induced
autophagy (Figure 4).
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Figure 4. Models on RTK-Beclin 1 complex effects and autophagy induction upon receptor tyrosine
kinase inhibitor or Tat-Beclin 1 autophagy-inducing peptide treatment.

A role of inactive EGFR on regulating autophagy to promote cell survival under serum starvation
or stress conditions was also described. Inactive EGFR binds to LAPTM4B (lysosomal protein
transmembrane 4b) and Sec5 (EXOC2, exocyst complex component 2) and competes with Beclin 1 for
its binding with Rubicon, activating autophagy [53].

5.2. HER2

HER2 (ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homologue 2) is an oncogenic
receptor tyrosine kinase of the EGFR family. It is amplified in around 20–25% of breast cancers and
other cancer entities—such as esophagus, bladder, and cervical cancer [54,55]—and such amplification
correlates with poorer prognosis. HER2 somatic mutations are also found in several cancers—such
as breast, small bowel, lung, cervical, bladder, and non-melanoma tumors—mostly in tumors with
no HER2 gene amplification. Such mutations are mostly missense mutations found either within
the tyrosine kinase and the extracellular domains or insertions in exon 20 [54]. HER2 is an orphan
receptor, and amplifications lead to increased protein production and activation through homo-
and hetero-dimerization with other family members, and preferentially with HER3 and HER4 [56,57].
Upon activation, it initiates multiple intracellular cascade pathways, like the mitogenic-activated protein
kinase (MAPK), RAS/MEK/ERK, PI3K and STAT, promoting cell proliferation and survival. Current
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treatments for HER2+ breast cancer include receptor tyrosine kinase inhibitors (Lapatinib and Afatinib,
that target both EGFR and HER2; Neratinib, that only binds to HER2), which block intracellular kinase
activity, antibodies targeting the extracellular domain and inhibiting HER2 dimerization (Trastuzumab,
Pertuzumab) or antibodies combined with a microtubule de-polymerization agent (Trastuzumab
Emtansine; T-DM1). An antibody against p95HER2, an active C-terminal fragment of HER2, found
in 40% of HER2 positive tumors have also been investigated as a potential therapy for this subset of
patients [58].

Some studies suggested an association between Beclin 1 and HER2 in breast cancer, and a
correlation between HER2 amplification in breast cancer with BECN1 DNA copy loss was found [59].
Furthermore, low BECN1 mRNA expression was associated with HER2 amplification [60] and a
much poorer disease-specific survival in HER2+ breast cancer [21]. In vitro analysis of breast cancer
cells overexpressing HER2 compared to other HER2- cell lines also suggested an inhibitory effect
of HER2 on autophagy [60,61]. These data indicate a potential role of autophagy in HER2+ breast
tumorigenesis, although the specific relationship between autophagy, and particularly Beclin 1 and
HER2 was not addressed. Later on, it was discovered that HER2 binds to Beclin 1 in HER2+

tumor cells [40,62] and inhibits autophagy. Although such binding and the corresponding effects on
autophagy inhibition are dependent on HER2 kinase activity (a kinase dead mutant D845A does not
bind to Beclin 1 and fails to inhibit autophagy), despite its binding, wild-type overexpressed HER2
does not appear to phosphorylate Beclin 1 at least at levels detectable by conventional techniques.
The mechanism underlying this effect is unclear, but treatment of HER2+ breast cancer cell lines with the
tyrosine kinase inhibitor Lapatinib disrupts the HER2-Beclin 1 complex and induces autophagy [40,62].
Overexpression of an activated HER2 mutant (A775_G776insYVMA), however, phosphorylate Beclin
1 at Y233, also leading to autophagy inhibition. Thus, even though several HER2 forms bind to
Beclin 1, wild-type HER2 does not modulate autophagy through direct Beclin 1 phosphorylation,
but rather through a different, currently unclear, mechanism. Studies related to Alzheimer’s disease
suggest that in this setting HER2 binding to Beclin 1 might compete with the recruitment of other
proteins, including VPS34 and VPS15, therefore inhibiting autophagy [63]. However, the full details
underlying this mechanism remain elusive. Thus, HER2 inhibits autophagy at least through two
different mechanisms: (1) Overexpressed wild-type HER2 binds to Beclin 1 and inhibits autophagy in
an mTORC1-dependent and Beclin 1-tyrosine phosphorylation independent manner; (2) Activating
HER2 mutants phosphorylate Beclin 1 at Y233, promoting Beclin 1 homodimerization and inhibition of
autophagy in an mTORC1-independent manner (Figure 3).

HER2+ breast cancer cells as well as xenografts derived from them are able to induce autophagy
upon Lapatinib treatment, and this correlates with inhibition of HER2 phosphorylation, disruption
of the HER/Beclin 1 complex and induction of autophagy. These effects might be due, at least in
part, to the inhibition of other HER2/EGFR downstream pathways, and more targeted and specific
treatments with an autophagy inducing peptide were tested. Tat-Beclin 1 peptide promotes autophagy
through releasing Beclin 1 from its inhibitory partner GAPRA1 [64] and therefore requires Beclin
1 and downstream autophagy machinery to induce autophagy. It contains 11 amino acids from
the evolutionarily conserved region of Beclin 1 [65] and it induces autophagy in vitro in multiple
cell lines. It is well tolerated and also induces autophagy in vivo where has been shown to protect
from infection [64,66], cardiac disease [67,68], bone disease [69], and axonal injury [70]. Tat-Beclin 1
treatment compromised the growth of xenografts derived from HER2+ breast cell lines at a similar
extent as Lapatinib treatment [40]. Furthermore, it disrupted the Beclin 1/HER2 complex, activated
autophagy without changes in the HER2 phosphorylation status and induced a transcriptional signature
different from the one in Lapatinib-treated tumors (Figure 4). Taken together, these data indicate that
autophagy plays a major role in regulating HER2+ tumor growth. HER2 overexpression found in other
cancers, like esophageal adenocarcinoma, was shown to also have an inhibitory effect on autophagy,
and treatment with the dual EGFR/HER2 inhibitor Lapatinib also induced autophagic flux in vitro [71].
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It was demonstrated that autophagy is also essential for tumor development in HER2+ breast
cancer. Transgenic mice overexpressing HER2 under the control of an MMTV mammary-specific
promoter (FVB/N-Tg MMTVneu) were crossed with mice harboring a whole-body knock-in mutation
(Becn 1F121A/F121A) that releases the Bcl-2 inhibitory effect on Beclin 1 [72] and therefore show
increased basal autophagy activity in multiple tissues, including the mammary gland. None of the
Becn 1F121A/F121A mice developed tumors by 450 days of life, whereas around 25% of the Becn 1WT/WT or
the Becn 1WT/F121A developed mammary tumors [40]. These data demonstrate that bypassing the HER2
effects on Beclin 1 and autophagy by increasing basal autophagy blocks HER2-mediated tumorigenesis
in vivo. Although Becn1+/− mice show an increased susceptibility to tumor formation and an elevated
incidence of multiple malignancies [23,24] crossings of Becn1+/− mice with mouse models of Erbb2- or
PyMT-driven mammary tumorigenesis had no effect on tumor development ([60]; Vega-Rubín-de-Celis,
unpublished data).

6. Beclin 1 Phosphorylation by Non-Receptor Tyrosine Kinases

BCR-ABL

Fusion kinase BCR-ABL results from a fusion between the Breakpoint cluster region (BCR)
on chromosome 22 and the Abelson murine leukemia viral oncogene homolog 1 (ABL) located
in chromosome 9 [73]. It is found in ~90% of patients with chronic myeloid leukemia (CML)
and ~20–30% of patients of acute lymphoblastic leukemia (ALL) and encodes for the so called
“Philadelphia chromosome” (Ph). BCR-ABL forms homodimers through the BCR coiled-coil domain,
rendering the ABL kinase constitutively active, and further activating several downstream pathways
implicated in cell growth and proliferation, including the MAPK, CRKL, GRB2/GAB2, PI3K/Akt,
and JAK/STAT pathways [74,75]. Over the years, several BCR-ABL inhibitors have reached the clinic
for treatment, including Imatinib and Nilotinib (ATP-binding competitors; [76,77]), Dasatinib and
Bosutinib (dual SRC/ABL1 inhibitors; [78,79]) or Asciminib (ABL1 allosteric inhibitor; [80]).

Some reports implicated autophagy as a potential target in Ph+ leukemias [81–87], and a recent
paper highlighted the role of Beclin 1 phosphorylation in autophagy regulation by BCR-ABL [88].
In vitro experiments of Beclin 1 depletion through miRNA in Ba/F3 cells indicated a role of Beclin 1 in
cell proliferation and apoptosis, and in vivo transplantation analysis showed a prolonged survival on
Beclin 1 knock-down BCR-ABL+ BMDC compared to control samples [88]. Interestingly, these effects
might be autophagy-independent, since similar experiments depleting another autophagy essential
gene, Atg5, had no effect on survival. Further research into the mechanism underlying the role of Beclin
1 in leukemia lead to the finding that BCR-ABL binds to Beclin 1 and phosphorylates it at Y233 and
Y352. These phosphorylation events lead to autophagy inhibition. Nilotinib treatment compromised
the Beclin 1/BCR-ABL binding (Figure 3), and induced autophagy in a way that is dependent on Beclin
1 tyrosine phosphorylation, since Beclin 1 phosphomimetic mutant Y233/352E fail to induce autophagy
upon RTK inhibitor treatment. The specific function of these Beclin 1 tyrosine residues in vivo and
whether the effects on survival are autophagy-dependent remain to be determined.

7. Other Tyrosine Kinases Regulating Autophagy

Other oncogenic tyrosine kinases have been involved in regulating autophagy, especially since
treatments with tyrosine kinase inhibitors in many cases induce autophagy. However, it is still unclear
whether these processes involve Beclin 1 tyrosine phosphorylation or there are other mechanisms
implicated. For instance, Rearranged during transfection (RET), a Class XIV Receptor Tyrosine Kinase
is associated with multiple malignancies through different mechanisms, including activating mutations
and gene fusions [89–95], and it was recently identified in a shRNA screen as an essential gene in
AML that activates mTORC1 and therefore inhibits autophagy [96]. Conversely, RET knockdown
induced autophagy and a correlation between high RET and high p62 levels was found in patients [96].
The role of amplified fibroblast growth factor receptor 1 (FGFR1) in autophagy in NSCLC was also
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explored in a recent study where it was reported that FGFR1 activation by its ligand inhibit autophagy
through the ERK-MAPK pathway and regulation of the total Beclin 1 levels [97]. A recent report [98]
described discoidin domain receptor 1 (DDR1) as an autophagy regulator in glioblastoma resistance
to radiochemotherapy through its binding to the 14-3-3/Akt/Beclin 1 complex [38]. DDR1 inhibition
induces autophagy and sensitizes cells to radiation in a way that is Beclin 1-dependent. Anaplastic
lymphoma kinase (ALK) is a receptor tyrosine kinase of the Class XVI that has been found to be
implicated in multiple cancers through aberrant activation due to point mutations, overexpression,
or a diversity of translocations giving rise to fusion proteins [99]. Studies in ALK+ anaplastic large cell
lymphoma showed that treatment with the tyrosine kinase inhibitor crizotinib induced autophagy and
that combination of ALK inhibition with Bcl-2 depletion induced autophagy and cell death [100,101],
and autophagy induction was also found upon ALK inhibition in glioblastoma [102]. Aberrant RTK
signaling is also involved in hepatocellular carcinoma (HCC), and RTK inhibitor sorafenib is used for
therapy and was shown to induce autophagy in multiple systems [103].

8. Conclusions

Autophagy is regulated by tyrosine kinases directly or indirectly in multiple ways, through
mechanisms largely unexplored. Some of them involve the phosphorylation of Beclin 1 at different
tyrosine residues that ultimately regulate the activity of the PI3KC3 and affect tumor growth. Further
and deeper studies are required to delineate the fine-tuned mechanism in each particular context and
tumor type.
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