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Background. Breast cancer is one of the most common types of cancer diagnosed and the second leading cause of death among women.
Breast cancer susceptibility proteins of type 1 and 2 are human tumor suppressor genes. Genetic variations/mutations in these two genes
lead to overexpression of human breast tumor suppressor genes (e.g., BRCA1, BRCA2), which triggers uncontrolled duplication of cells
in humans. In addition, multidrug resistance protein 1 (MDR1), an important cell membrane protein that pumps many foreign
substances from cells, is also responsible for developing resistance to cancer chemotherapy. Aim of the Study. The aim of this study
was to analyze some natural compounds or their derivatives as part of the development of strong inhibitors for breast cancer.
Methodology. Molecular docking studies were performed using compounds known in the literature to be effective against BRCA1
and BRCA2 and MDR1, with positive control being 5-fluorouracil, an antineoplastic drug as a positive control. Results. The binding
affinity of the compounds was analyzed, and it was observed that they had a better binding affinity for the target proteins than the
standard drug 5-fluorouracil. Among the compounds analyzed, α-hederin, andrographolide, apigenin, asiatic acid, auricular acid,
sinularin, curcumin, citrinin, hispolon, nerol, phytol, retinol palmitate, and sclareol showed the best binding affinity energy to the
BRCA1, BRCA2, and MDR1 proteins, respectively. Conclusions. α-Hederin, andrographolide, apigenin, asiatic acid, auricular acid,
hispolon, sclareol, curcumin, citrinin, and sinularin or their derivatives can be a good source of anticancer agents in breast cancer.

1. Introduction

Breast cancer is one of the common types of diagnosed can-
cers and the second prime cause of death among women in

western countries [1] and develops from breast tissue [2].
Most of the breast cancers are sporadic (90-95%); between
5 and 10% can be attributed to genetic predisposition with
patients having a strong family history of the disease [3, 4].
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These hereditary breast cancers, a large part about 80-90%
cases, are related to germ line mutations within the BRCA1,
BRCA2, and MDR1 gene [5–9]. By DNA repairing, cell cycle
control and transcriptional regulation BRCA1 may contrib-
ute to its tumor suppressor activity [10, 11].

BRCA1 and BRCA2 are also human tumor suppressor
genes [6, 12], designed to chromosome 17q21 which encodes
a nuclear protein of 1863 amino acids [9] that regulate tran-
scriptional activation, DNA repair, apoptosis, cell-cycle
checkpoint control, and chromosomal remodeling [13]. On
the other hand, BRCA2 located to chromosome 13q12-q13
[14] and coding for a protein of 3418 amino acids [15, 16].
Of the breast cancer susceptibility genes which have been
identified nowadays, BRCA1 and BRCA2 are the most fun-
damental “high-risk” genes with several cases of breast and
ovarian cancer accounting for most of the families [17]. If
BRCA1 or BRCA2 is damaged by a BRCA mutation, dam-
aged DNA is not repaired properly, and this increases the
risk for breast cancer [18, 19]. P-glycoprotein 1 (P-gp1),
encoded by multidrug resistance protein 1 (MDR1), is an
important protein of the cell membrane that pumps many
foreign substances out of cells.

Most of the initially responsive breast tumors acquire a
multidrug resistance phenotype [20, 21]. The development
of a multidrug-resistant phenotype in metastatic breast can-
cer is primarily responsible for the failure of current treat-
ment regimens [22, 23]. Resistance to multiple drugs
(MDR) is defined as efflux activity, which may decrease
intracellular chemotherapeutic concentrations, thus explain-
ing the failure of treatment in human cancers [24, 25].
Consequently, P-gp overexpression is one of the main mech-
anisms behind decreased intracellular drug accumulation
and development of MDR cancers [25, 26].

One efficient approach used to screen potential active
compounds against specific target proteins, such as BRCA1

[27], BRCA2 [28] and MDR1 [29], is molecular docking
simulation [30–37]. Therefore, these are important target
for the design of potential anticancer activity.

2. Computational Methods

2.1. In Silico Prediction of Activity Spectra for Substances
(PASS). Prediction of anticancer activity of 16 natural com-
pounds was done with the help of computer program, PASS
(prediction of activity spectra for substances). Software
estimates predicted activity spectrum of a compound as
probable activity (Pa) and probable inactivity (Pi) [38].
The prediction of activity is based on structure-activity rela-
tionship analysis of the training set containing more than
200,000 compounds exhibiting more than 3800 kinds of
biological activities. The values of Pa and Pi vary between
0.000 and 1.000. Only activities with Pa > Pi are considered
as possible for a particular compound. If Pa > 0:7, the prob-
ability of experimental pharmacological action is high and if
0:5 < Pa < 0:7, probability of experimental pharmacological
action is less. If the value of Pa < 0:5, the chance of finding
the activity experimentally is less, but it may indicate a
chance of finding a new compound [39–41].

2.2. Ligand Preparation. The main phytochemicals and one
approved drug for breast cancer treatment were downloaded
from PubChem in the SDF file format. PubChem is a data-
base for chemical molecules [42] (Figure 1).

The system is maintained by the National Centre for
Biotechnology Information (NCBI), a component of the
National Library of Medicine. By using Gaussian view 09
and Chem3D Pro12.0 program packages [43], all internal
energies of the ligands were optimized.
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Figure 1: The chemical structure of the screened compounds.
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Figure 2: The three-dimensional structure of (a) BRCA1 (4Y2G), (b) BRCA2 (3EU7), and (c) MDR1 (6C0V).

Table 1: Docking results for some natural compounds against BRCA1, BRCA2, and MDR1 proteins.

Compounds BRCA1 (4Y2G) BRCA2 (3EU7) MDR1 (6C0V)

α-Hederin -6.9 -11.0 -8.3

Andrographolide -6.2 -8.2 -9.2

Apigenin -6.2 -7.7 -9.0

Ascorbic acid -5.1 -5.8 -6.3

Asiatic acid -6.5 -8.9 -8.1

Auricularic acid -6.8 -7.8 -8.5

Citrinin -7.5 -7.6 -7.6

Curcumin -7.2 -6.7 -8.3

Hispolon -7.8 -6.7 -7.4

Nerol -4.8 -5.8 -5.6

Phytol -4.9 -6.4 -6.0

Retinol palmitate -5.8 -6.1 -6.2

Sclareol -9.8 -7.2 -6.8

Sinularin -6.5 -9.0 -8.4

Thymol -5.2 -6.5 -6.7

Thymoquinone -5.2 -6.4 -7.4

5-Fluorouracil -4.6 -5.0 -5.2

Table 2: Docking results for the best binding affinity with BRCA1 (4Y2G) protein for ten compounds.

Drug Binding affinity (kcal/mol) No. of H-bond Residues

Sclareol -9.8 1 Lys1702, Leu1657, Leu1679, Pre1662, Pro1659, Val1654
Hispolon -7.8 2 Arg1758, Arg1762, Ile1760, Ser1755
Citrinin -7.5 2 Val1654, leu1657, Phe1662
Curcumin -7.2 1 leu1657, Phe1662
α-Hederin -6.9 2 VAL1810, GLU1836, PRO1812, ILE1855, PHE1821, HIS1822
Andrographolide -6.2 2 PRO1659, LEU1657, PHE1662
Apigenin -5.8 1 LEU1657, PHE1662, VAL1654, PRO1659
Auricularic acid -6.2 0 PHE1662, VAL1654, PRO1659
Sinularin -6.8 1 LEU1657, PHE1662
Asiatic acid -6.5 2 Leu1657, Lys1702, Phe1662
5-Fluorouracil -4.5 4 Gly1656, Leu1657, Lys1702, Val1654, Phe1662
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Figure 3: The four best docking results for the best screened compounds with BRCA1 (PDB: 4Y2G) protein.
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2.3. Protein Collection. The crystal structures of proteins
including BRCA1 (4Y2G) [27], BRCA2 (3EU7) [28], and
MDR1 (6C0V) [29] (Figure 2) were collected from the
Protein Data Bank (PDB) database [44]. For the purpose
of energy minimization crystal structure, we utilized
Swiss-PDB Viewer software package (version 4.1.0), and
then, all the heteroatoms and water molecules of proteins
are removed by using PyMOL (version 1.7.4.5) before
docking [45]. Both the proteins and drug structures, for
the analysis of docking results, are taken into PDBQT for-
mat finally [46].

2.4. Docking Analysis and Determination of Binding Site.
In in silico study, molecular docking is a brilliant instru-
ment which is used for predicting the drugs candidate’s
pharmacodynamics profile by scoring and orienting them
to the receptor binding sites [47]. Docking result deter-
mines the measure of ligand interaction to the active site
of the targeted protein. The docking outcome specifies
the degree of ligand interaction with the desired pro-
tein’s active site. The active binding sites of the target
protein are the locations of the ligand in the initial tar-
get protein grids (40 × 40 × 40), with PyMOL, AutoDock
Vina [48, 49], and the active sites are the coordinates
of the target protein ligand, and these active target pro-
tein binding sites were analyzed using Drug Discovery
Studio version v.20.1.0.19295 and 3D Ligand Site Vir-
tual Tool [50, 51].

3. Results and Discussion

3.1. Binding Energy of the Ligand-Protein Complex. The
docking is essential to predict the stronger binder and
virtually screen a database of compounds. The com-
pounds α-hederin, andrographolide, apigenin, ascorbic
acid, asiatic acid, auricularic acid, citrinin, curcumin, his-
polon, nerol, phytol, retinol palmitate, sclareol, sinularin,
thymol, thymoquinone, and 5-fluorouracil displayed bind-
ing energy including -6.9, -6.2, -6.2, -5.1, -6.5, -6.8, -7.5,
-7.2, -7.8, -4.8, -4.9, -5.8, -9.8, -6.5, -5.2, -5.2, and -4.6

(kcal/mol), respectively, against BRCA1 (4Y2G). Here,
asiatic acid had the highest binding energy compared to
the other compounds.

On the contrary, α-hederin, andrographolide, apigenin,
ascorbic acid, asiatic acid, auricularic acid, citrinin, curcu-
min, hispolon, nerol, phytol, retinol palmitate, sclareol, sinu-
larin, thymol, thymoquinone, and 5-fluorouracil, against
BRCA2 (3EU7), exhibited binding energy including -11.0,
-8.2, -7.7, -5.8, -8.9, -7.8, -7.6, -6.7, -6.7, -5.8, -6.4, -6.1,
-7.2, -9.0, -6.5, -6.4, and -5.0 (kcal/mol). In this case,
α-hederin produced the highest binding energy compared
to the other compounds.

Moreover, α-hederin, andrographolide, apigenin,
ascorbic acid, asiatic acid, auricularic acid, citrinin, cur-
cumin, hispolon, nerol, phytol, retinol palmitate, sclareol,
sinularin, thymol, thymoquinone, and 5-fluorouracil
showed binding energy including -8.3, -9.2, -9.0, -6.3,
-8.1, -8.5, -7.6, -8.3, -7.4, -5.6, -6.0, -6.2, -6.8, -8.4,
-6.7, -7.4, and -5.2, respectively, against MDR1 (6C0V)
(Table 1). The compound andrographolide displayed
the highest binding energy compared to the other
compounds.

3.2. Interaction and Binding Affinity of Compounds
towards BRCA1 (4Y2G) Protein. Here, the ten best
natural compounds such as sclareol, hispolon, citrinin,
curcumin, α-hederin, andrographolide, apigenin, auricu-
laric acid, and sinularin exhibited the binding affinities
-9.8, -7.8, -7.5, -7.2, -6.9, -6.2, -5.8, -6.2, -6.8, and
-6.5 kcal/mol (Table 2), respectively. Sclareol generated
higher binding energy compared to the other deriva-
tives against BRCA1 (4Y2G). The noncovalent interac-
tions were calculated using Discovery Studio Software
demonstrated that all the compounds exhibited both
hydrogen and hydrophobic bonds that not only pro-
moted the binding affinity but also improved binding
specificity.

The compound, sclareol, showed strong hydrogen
bonding with Lys1702 and hydrophobic interactions with
Leu1657, Leu1679, Pre1662, Pro1659, and Val1654

Table 3: The ten best docking results for the best binding affinity with BRCA2 (3EU7) protein.

Drug Binding affinity (kcal/mol) H-bond Residues

α-Hederin -11.0 6 Val925, Val928, His1061, Pro926, Gly1166, Ala874, Leu970, Lys1062, Pro924

Andrographolide -8.2 4 Gln1020, Gly1021, Leu1143, Leu1142, Phe1071, Leu1092, Tyr1064

Asiatic acid -8.9 2 Gly1166, Val1123, Pro924, Pro926

Sinularin -9.0 0 Leu1143, Val1073, Leu1092, Leu1142, Tyr1064, Phe1071

Auricularic acid -7.8 0 Leu1092, Leu1143, His1126, Phe1071, Tyr1064

Apigenin -7.7 3 Asp927, Val928, Trp1164,Lys1124, Pro824, Pro926

Citrinin -7.6 2 Gln1020, Glu1066, Leu1092, Leu1142, leu1143, Phe1071, Tyr1064

Sclareol -7.2 1 Leu1142, Leu1092, leu1143, Phe1071, Tyr1064

Curcumin -6.7 1 Glu1066, leu1143, Phe1071, Tyr1064

Hispolon -6.7 3 Gly1166, Val925, Val928, Met875

5-Fluorouracil -5.0 3 Val925, Val928, Asp927
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Figure 4: Docking results for the four best screened compounds with BRCA2 (3EU7) protein.
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residues but hispolon and citrinin exhibited only one
strong H-bond with Arg1758, Arg1762, Val1654, and
leu1657, respectively, as well as hydrophobic interactions
with Ile1760 and Ser1755 for hispolon and with Phe1662
for citrinin. Curcumin exhibited one hydrogen bond with
leu1657 and one hydrophobic bond with Phe1662,
whereas 5FU exerted four H-bonds (Gly1656, Leu1657,
Lys1702, and Val1654) and other hydrophobic interactions
(Phe1662) with BRCA1. The other compounds have
several hydrophobic interactions with BRCA1 protein res-
idues (Table 2). The 2D and 3D structures of nonbond
interactions are given in Figure 3.

3.3. Interaction and Binding Affinity of Compounds
towards BRCA2 (3EU7) Protein. The binding affinities of
α-hederin, andrographolide, asiatic acid, sinularin, auricu-
laric acid, apigenin, citrinin, sclareol, curcumin, and his-
polon are -11.0, -8.2, -8.9, -9.0, -7.8, -7.7, -7.6, -7.2,
-6.7, and -6.7 kcal/mol (Table 3), respectively. In compar-
ison to α-hederin, the other compounds showed lower
binding results and α-hederin exhibited -11.0 kcal/mol
against BRCA2 (3EU7). The nonbond interactions using
the Discovery Studio Software suggested that these com-
pounds with BRCA2 have both hydrogen and hydropho-
bic interactions (Figure 4) that successfully augmented the
binding interactions. We found six strong hydrogen
bonds (Table 3) including carbon and conventional H-
bonds with amino residues including Val925, Val928,
His1061, Pro926, Gly1166, and Ala874 in the α-hederin
compound; four hydrogen bonds with Gln1020,
Gly1021, Leu1143, and Leu1142 in andrographolide; and
two hydrogen bonds with GLY1166 and VAL1123 in asi-
atic acid. In α-hederin, several hydrophobic interactions
such as alkyl bonds were observed with Leu970,
Lys1062, and Pro924.

On the other hand, andrographolide exhibited one
pi-sigma bond with Phe1071 as well as alkyl and pi-
alkyl with Leu1092 and Tyr1064 residues. Besides,

asiatic acid generated two alkyl bonds with Pro924
and Pro926. Sinularin had several hydrophobic interac-
tions with Leu1143, Val1073, Leu1092, Leu1142,
Tyr1064, and Phe1071 residues (Figure 4). The 2D and
3D structures of nonbond interactions are given in
Figure 4.

3.4. Interaction and Binding Affinity of Compounds
towards MDR1 (6C0V) Protein. The binding affinities
of these six compounds including α-hederin, androgra-
pholide, apigenin, asiatic acid, auricularic acid, and
sinularin, curcumin, citrinin, hispolon, thymoquinone
are -8.3, -9.2, -9.0, -8.5, -8.1, -8.4, -8.3, -7.6, -7.4, and
-7.4 kcal/mol, respectively (Table 4). Among those com-
pounds, the andrographolide exhibited significantly
improved binding energy compared to the other com-
pounds binding with MDR1 protein. Herein, the non-
bond interactions were performed by utilizing the
Discovery Studio Software and we found that both
drugs had efficient interactions with amino acid residues
and both drugs showed strong hydrogen bonding
(Table 4) with amino residues (Figure 5) including α-
hederin with Lys48 and Met51; andrographolide with
Ser434, Gln475, and Leu1176; apigenin with Tyr310;
and auricularic acid with Lys234.

These hydrogen bonds promoted the nonbond interac-
tions. Beyond the H-bond interactions, hydrophobic inter-
actions play a crucial function in nonbond interaction and
in this study, we observed several hydrophobic interactions
(Table 4) and the residues including ALA233, ILE352,
ILE190, PHE37, TRP136, PHE193, PHE194, and PHE355
with α- hederin; Thr906, Asn903, and Arg905 with andro-
grapholide; PHE728, PHE732, LEU339, PHE335, PHE759,
and LEU339 with apigenin; Ala233, Ile352, Ile190, Phe37,
Phe193, Phe194; and Phe355 with auricularic acid. The
2D and 3D structures of nonbond interactions are given
in Figure 5.

Table 4: The ten best docking results for the best binding affinity with MDR1 (6C0V) protein.

Drug
Binding affinity

(kcal/mol)
H-bond Residues

α-Hederin -8.3 2
LYS48, MET51, ALA233, ILE352, ILE190, PHE37, TRP136,

PHE193, PHE194, PHE355

Andrographolide -9.2 4 SER434, THR906, GLN475, LEU1176, ASN903, ARG905

Apigenin -9.0 1 TYR310, PHE728, PHE732, LEU339, PHE335, PHE759, LEU339

Auricularic acid -8.5 1 LYS234, ALA233, ILE352, ILE190, PHE37, PHE193, PHE194, PHE355

Asiatic acid -8.1 3 GLU564, SER1071, VAL1052, PHE512

Sinularin -8.4 3 GLN1118, GLU1119, SER1117, ALA529, LYS536

Curcumin -8.3 3 Arg905, Asp1171, Lys1172, Val168

Citrinin -7.6 2 Asp164, Arg905, Asp1124, Val168

Hispolon -7.4 2 His166, Phe904, Phe163, Thr1174

Thymoquinone -7.4 1 Phe904, PHE194, PHE355, Asp1124, Val168

5-Fluorouracil -5.2 4 Arg905, Glu902, Ile901, Phe904, Phe163, Val168
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4. Conclusion

It can be concluded from the overall study that α-hederin,
andrographolide, apigenin, asiatic acid, auricularic acid,
and sinularin have potent inhibitory activity against cancer
proteins (BRCA1, BRCA2, and MDR1) compared to the
other compounds. All the compounds exhibited significant
binding energies and the noncovalent bonds compared to
the other compounds. Nevertheless, α-hederin, androgra-
pholide, apigenin, asiatic acid, auricularic acid, and sinularin
successfully docked with BRCA1, BRCA2, and MDR1 pro-
teins as these compounds have the activity for inhibiting
cancer. The nonbonding interactions can effectively target
the proteins for the inhibition of cancer. We have claimed
from the overall studies that α-hederin, andrographolide,
apigenin, asiatic acid, auricularic acid, and sinularin will be
the best conformer for BRCA1, BRCA2, and MDR1-
conduced cancer for the future researchers. Our findings,
in this way, could be manifested in clinical practice.

Abbreviations

BRCA1: Breast tumor suppressor gene 1
BRCA2: Breast tumor suppressor gene 2
MDR: Multiple drug resistance
MDR1: Multidrug resistance protein 1
PASS: Prediction of activity spectra for substances
P-gp: P-glycoprotein.
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