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Neuro-Immunity and Gut Dysbiosis
Drive Parkinson’s Disease-Induced
Pain
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Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
affecting 1–2% of the population aged 65 and over. Additionally, non-motor symptoms
such as pain and gastrointestinal dysregulation are also common in PD. These
impairments might stem from a dysregulation within the gut-brain axis that alters
immunity and the inflammatory state and subsequently drives neurodegeneration.
There is increasing evidence linking gut dysbiosis to the severity of PD’s motor
symptoms as well as to somatosensory hypersensitivities. Altogether, these
interdependent features highlight the urgency of reviewing the links between the onset
of PD’s non-motor symptoms and gut immunity and whether such interplays drive the
progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in
the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-
induced pain hypersensitivity.
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PAIN

Pain is defined as an unpleasant sensory and emotional experience associated with real or potential
injury (1). Physiologically, pain serves as a protective mechanism, alerting the host to environmental
danger. The sensation results from the integration of complex neurobiological systems that detect,
integrate, and coordinate protective responses to noxious stimuli that threaten the host’s
homeostasis and survival (2).

Nociceptors express various ion-channel receptors that are specialized to respond to threats
posed by pathogens, allergens, and pollutants. Nociception is then initiated upon sensing these
noxious stimuli by first-order neurons which, once activated by their cognate ligands, allow the
influx of cations (Na+, Ca2+) leading to the generation of an action potential. These electrical signals
are then propagated through the length of small, unmyelinated C or myelinated Ad fibers to the
spinal cord, where they synapse with second-order neurons (3). These electrical signals are then
modulated—either amplified or blunted—by local immune cells or descending neurons.

The descending pathways originate from supraspinal structures such as the rostral ventromedial
medulla (RVM), the dorsolateral pontomesencephalic tegmentum, and the periaqueductal gray
matter (PAG). The descending pathways inhibit pain by releasing monoamines, such as dopamine,
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norepinephrine, and serotonin into the dorsal horn.
Additionally, endogenous opioids exert descending inhibition
of nociception (4).

Once modulated in the spinal cord, the nociceptive signal is
processed in the supraspinal region and recognized as pain. The
lateral pain system comprises the spinothalamic tract, which
projects through the lateral thalamus and toward the sensory
cortical areas, and is primarily involved in processing sensory
discrimination, localization, and pain intensity. In contrast, the
medial pain system processes the motivational-affective and
cognitive-evaluative aspects of pain (e.g., unpleasantness,
suffering) and projects through the medial thalamic nuclei
toward the anterior cingulate cortex (5).
CHRONIC PAIN

Chronic pain affects approximately 20% of the general
population and individual of any age. It negatively impacts the
patient’s quality of life and is also associated with mood and sleep
disorders. It is considered the chief debilitating symptom of a
variety of diseases, ranging from cancer to multiple sclerosis (6–
8). While acute pain serves a physiological purpose, chronic pain
is rarely self-resolving and remains resistant to pharmacological
treatment (9). This pain can be either perceived more severely, a
phenomenon known as hyperalgesia, or it can be generated by
non-noxious stimuli, a condition known as allodynia.

Chronic pain results from persistent and repeated stimuli
which can lead to peripheral and/or central sensitization of
nociceptor neurons. Specifically, central sensitization is
characterized by the persistent hyperexcitability of the central
nervous system (CNS) circuitry triggered by excessive neuronal
activity resulting from peripheral tissue inflammation or
neuropathic injury. Central sensitization can result from i)
modifications of glutamatergic receptors; ii) the upregulation
of proteins involved in maintaining synaptic strength; iii) Ab
neuron sprouting; iv) decreased inhibitory control by
GABAergic interneurons; and v) increased expression of
activator ion-channel or neuropeptide receptors (10).

Secondary to the actions of pro-inflammatory cytokines
released by microglia and astrocytes, these modifications
increase the synaptic activity between first- and second-order
neurons by altering the biophysical properties of danger-
detecting ion-channel receptors and promoting the trafficking
of these receptors to the synaptic membrane. Functionally, the
sensitization is reflected by a long-term potentiation of the
synaptic transmission between primary and second-order
sensory neurons, rendering the CNS hypersensitive to normal
(or previously innocuous) inputs. Clinically, this higher level of
excitability maintains chronic pain (10–12).
IMMUNITY DRIVES PAIN

Along with detecting adverse temperature, pressure, and
chemicals, nociceptor neurons express specific receptors for
Frontiers in Immunology | www.frontiersin.org 2
numerous immunoglobulins, cytokines, and chemokines. The
nociceptor neurons are tuned to detect and respond to mediators
derived from immunocytes (13–16). Typically, the binding of
these sensitizing molecules generates intracellular signaling via
tyrosine kinase or G-protein-coupled receptors (15, 17, 18). The
second messengers downstream of these receptors trigger i) the
phosphorylation and membrane expression of ion-channel
receptors and voltage-gated sodium channels; and ii) the
overproduction of neuropeptides and neurotransmitters (19–21).

A few well-known examples of immunocyte-releasing pain-
sensitizing mediators include the action of interleukin 1 beta (IL-
1b) (22–24), tumor necrosis factor (TNF-a) (25, 26),
prostaglandin E2 (PGE2) (27), and nerve growth factor (NGF)
(24). For example, PGE2 stimulates nociceptor-expressed DP2,
which leads to an increase in protein kinase A (PKA) and protein
kinase C (PKC) activity, which, in turn, phosphorylates transient
receptor potential vanilloid 1 (TRPV1). Consequently, PGE2
increases capsaicin-induced currents, as found in cultured rat
dorsal root ganglion (DRG) neurons (28, 29). In the case of NGF,
when binding to its cognate receptor TrkA, it triggers PI3K/Src
kinase activation which also leads to the phosphorylation of
TRPV1 (18, 30).

These mechanisms stem from work done on models of
rodents with nerve injury or auto-immune diseases. While no
particular neuro-immune cascade appears to be the primary
driver of the pain sensation, data show the involvement of central
and peripheral innate (i.e. macrophages) and adaptive (i.e. T
cells) immune cells. While typically studied in isolation,
peripheral and central mechanisms should be studied
concurrently. This is exemplified by the data showing that
monocytes and microglia synergize in driving neuropathic pain
in mice with nerve injuries. Thus, both types of cells need to be
eliminated to alleviate pain. However, when used separately,
monocyte depletion using clodronate liposomes or CX3CR1+

microglia ablation failed to impact the course of the disease (31).
In a model of chronic constriction injury (CCI), T cells are

recruited to the sciatic nerve and induce mechanical allodynia
and thermal hyperalgesia via the production of IL-17A and IFN-
g (32). Athymic nude male rats, which have no T cells, were
protected. Upon nerve injury, T cells infiltrate the DRG and
release leukocyte elastase (LE) which promotes mechanical
allodynia (33–35) while spinal nerve transection-induced
neuropathic pain was found to be mediated by TH1 cells
released IFN-g, TNF-a, and GM-CSF (36). Interestingly, when
comparing the spinal dorsal horn gene profile of spared nerve
injury (SNI) animals, T cells and glia seem predominately
impacted in adult mice rather than younger animals. These
data may indicate age-dependent neuromodulation by immune
cells, which could explain why hypersensitivity seems to increase
with age.

Neuro-immune crosstalks are not limited to the site of injury,
as shown in models of chemotherapy and sciatic nerve ligation.
Immunocytes (i.e., macrophages, monocytes, neutrophils, and T
cells) infiltrate the DRG in a TLR2- or CCL-2-mediated fashion
(37, 38). Once in the tissue, they release IL-1b and TNF-a, which
can cause thermal hyperalgesia (39–44). In contrast, the targeted
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depletion of IL-10-producing monocytes and macrophages
delayed pain resolution (45).

Aside from these traditional mechanisms, antibodies
produced in auto-immune diseases can initiate pain. For
instance, the injection of autoantibodies against citrullinated
proteins (ACPA) purified from animals with rheumatoid
arthritis promotes pain-like behavior without inflammation.
This is achieved by acting on osteoclasts and inducing CXCL1,
a human analog of IL-8 (46). In addition, IgG from patients with
complex regional pain syndrome (CRPS) prolonged postsurgical
hypersensitivity to mechanical, cold, and heat stimuli. Finally,
skin-saphenous nerve preparations from tCRPS mice show
increase sensitivity to auto-antibodies (47), which impairs the
function of the potassium channel Kv1.2 and promotes
mechanical hypersensitivity (48).

Another novel mechanism of pain modulation was described
by Chen et al., who found that by binding to peripheral sensory
neuron-expressed PD-1, the immune checkpoint ligand PD-L1
triggers the phosphorylation of SHP-1 and the downstream
modulation of sodium and potassium channels. Consequently,
PD-L1 suppressed excitatory synaptic transmission (sEPSC) in
lamina II neurons of the spinal cord which trigger analgesia (49).

Beyond the commonly known Pattern recognition receptor
(PRR) typically expressed by immune cells, Stimulator of
interferon genes protein (STING1) was recently found to be
abundant in TRPV1+ neurons (50, 51). Its activation by IFN-I
ligands led to long-lasting analgesia by suppressing the
excitability of nociceptors through the modulation of sodium
and calcium channel function (51).
MICROBES INDUCE PAIN

The Gastrointestinal (GI) tract is innervated by intrinsic neurons
from the enteric nervous system (ENS) and by the axons of
extrinsic sympathetic, parasympathetic, and visceral afferent
neurons (52, 53). The ENS is organized into two major
neuronal networks—the myenteric plexus, and the submucosal
plexus—and also comprises connective interneurons and various
types of supporting glial cells. The ENS sympathetic
(noradrenergic) neurons control blood vessel vasocontraction,
while the parasympathetic (cholinergic) neurons control gut
contraction (54).

The gut’s extrinsic innervation is made up of neurons
originating from lumbar (DRG) and nodose (ND) ganglia.
These neurons work to monitor GI volume and intestinal
contents, while the gut hormones regulate the digestive
physiology (55). The DRG neurons project along the
mesenteric arteries, while the ND ganglion neurons project
from the vagus nerve.

The vagus, which consists of ~2,300 sensory neurons, projects
to half of the large intestine. The GI tract innervation accounts
for ~20% of its terminals (56). Most of these extrinsic fibers
(DRG and ND) express sensory neuron markers such as TRP
channels (TRPV1) (57), voltage-gated sodium channels
(NaV1.8) (58), and mechanosensitive channels (Piezo2) (59).
Frontiers in Immunology | www.frontiersin.org 3
These sensory neurons are designed to limit tissue damage by
detecting and initiating protective reflexes (60, 61).

Under homeostatic conditions, the lumen of the intestine is
not directly innervated, meaning that there is no direct neuron
sensing of the luminal content (50, 62). The signals are sent by
intestinal enteroendocrine cells which expressed glutamate
receptors and can release a few neuropeptides (i.e.,
cholecystokinin, peptide YY (PYY)), consequently enabling the
perception of the luminal content by vagal neurons (63). Upon
penetrating the epithelial barrier, as in the case of a lesion or an
infection, the proteases, reactive oxygen species, or cytokines
produced by mucosa-resident immune cells may stimulate the
ENS neurons (64, 65).

Different making in gut pathogens, as found in dysbiosis, is
associated with headaches, chemotherapy-induced neuropathic
pain, and abdominal pain. Staphylococcus aureus heightens
sensory hypersensitivity via membrane-bound N-formylated
peptides or by releasing various pore-forming toxins (i.e.,
alpha-hemolysin, phenol-soluble modulins, leukocidin).
Conversely, gut nociceptor-released Calcitonin gene-related
peptide (CGRP) regulates M cell density, limiting pathogen
entry into the GI tract (66). TRPV1+ neurons also appear to be
associated with mucosal resistance against Candida albicans.
They do so by increasing CD301b+ dDCs release of IL-23 and
subsequent production of IL-17A from gd T cells (67). Finally,
the recognition of soluble bacterial products by ENS axonal
termini, as found in the microfluidic gut model, drive RORl+

Treg induction and immunosuppression (68).
PD-INDUCED PAIN

Pain is a non-motor symptom present in 60–85% of PD patients
(6, 69, 70). PD-induced pain negatively impacts a patient’s
quality of life (8) and may exacerbate other non-motor PD
symptoms such as depression and sleep disorders (7). In
approximately one-third of PD sufferers, pain precedes the
onset of PD motor symptoms by several years (71, 72).
Peripheral neuropathic pain is also twice as frequent in PD
patients (73, 74). Conversely, patients experiencing chronic pain
are at increased risk of developing PD (75).

Pain often manifests as a musculoskeletal hypersensitivity
affecting the neck, arms, or paravertebral muscles. It is believed
to be a consequence of PD motor symptoms. PD can also trigger
visceral pain, which affects the internal organs and results from
the activation of nociceptors localized in the thoracic and pelvic
organs. Visceral pain is associated with gastrointestinal
dysfunction, as seen in PD patients (76). Finally, neuropathic
pain is observed in 4%–10% of PD patients (77–79) and is
typically associated with lesions in the central or peripheral
nervous system (80). Clinically, it presents as burning,
cramping, aching, numbness, tingling, vibrating, or lancinating
sensations. This type of pain may be associated with autonomic
manifestations, and it often stems from the face, head, pharynx,
epigastrium, abdomen, pelvis, rectum, and genitalia. This type of
pain does not correlate with the severity of motor impairments
and often precedes their onset (79, 81–84).
November 2021 | Volume 12 | Article 759679
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Despite its clinical relevance and predictive value, pain is
often neglected or misdiagnosed in PD patients and remains
poorly managed (85). The contribution of maladaptive
peripheral (Peripheral Mechanisms of PD-Induced Pain) and
central (Central Mechanisms of PD-Induced Pain) neuro-
immune interplays as well as gut-brain axis dysregulation
(sections GI Dysfunction in PD-Induced Pain and Dysbiosis in
PD-Induced Pain) (86) to the induction of PD-induced pain will
now be discussed.
IMMUNITY IN PD

Based on the overall role that neuro-immunity plays in
sustaining sensory hypersensitivity (Immunity Drives Pain), we
posit that neuronal loss or damage leads to the local recruitment
of immune cells. It is well established that inflammation drives
PD progression (87), involves innate and adaptive immune cells,
and can occur in the peripheral or CNS. An indication that the
immune system is responding to tissue damage stems from
increased TNF-a, IL-1b, IL-2, IL-6, IFN-g, and CCL2 levels
observed in the blood and cerebrospinal fluid (CSF) of PD
patients (88–91). These increases correlate with disease
progression. For example, higher serum levels of TNF-a were
linked to motor dysfunction, while raised levels of IL-1b and IL-2
were associated with cognitive decline (92).

This increase in circulating cytokines was secondary to a rise
in the number of immunocytes in a patient’s bloodstream. As
expected, the severity of the disease correlates with lower levels of
naïve CD4+ T cells (93–95) but increased levels of blood-
circulating Treg, activated CD4+ T cells, IL-17-producing TH17
cells, and IL-6-producing monocytes (Figure 1) (96–101). While
this may sound counterintuitive, a study reported a decreased
capability of PD-isolated Treg to suppress the activity of effector T
cells in vitro (96, 97). In fact, the levels of blood cytokines found
Frontiers in Immunology | www.frontiersin.org 4
in PD patients correlate with an increase in sensory
hypersensitivity. Thus, CD4+ T cells in patients experiencing
pain have a lower IL-6/IL-10 ratio, while CD8+ T cells display a
higher TNF-a/IL-10 ratio (102).
PERIPHERAL MECHANISMS OF
PD-INDUCED PAIN

Compared with ~5% of the general population, 20%–60% of PD
patients show large- and small-fiber PN (73, 103). Interestingly,
the severity of large-fiber neuropathy is also a marker of PD
severity (104). Skin biopsies of PD patients with sensory
hypersensitivity revealed that a-synuclein aggregates in
cutaneous sensory nerves and leads to their degeneration (105–
109). In a study of 72 PD patients, damage found in Ad sensory
fibers correlated with the level of sensory hypersensitivity they
experienced. As a functional indication for abnormal pain fiber
inputs, hypersensitive PD patients have a lower pain threshold to
electrical stimuli as well as a higher current perception threshold
than their normosensitive counterparts (110).

By contrast, Nolano et al. found that PD patients (n=18
subjects) were generally hyposensitive. They explained these
findings as the loss of epidermal nerve fibers and Meissner
corpuscles, which translated into an increase in tactile and
thermal thresholds (105). A more recent study by the same
authors analyzed skin innervation in 85 PD patients and found a
significant reduction in intraepidermal nerve fiber density. This
phenotype was correlated with a decrease in the perception of
mechanical pain (107). However, further clinical studies are
needed to clarify any putative correlation between PD pain
thresholds, peripheral nerve degeneration, levels of dermal a-
syn, and immunocyte infiltration.

Circulating a-syn-reactive CD4+ T cells are expanded in PD
patients’ blood (Figure 1) (111). When injected into the
FIGURE 1 | Peripheral inflammation in Parkinson’s disease. Indicators that the immune system is responding to tissue damage stems from increased blood-
circulating Treg, activated CD4+ T cells, IL-17-producing TH17 cells and IL-6-producing monocytes in PD patients’ blood. In addition, circulating a-syn-reactive CD4 T
cells are expanded in PD patients’ blood and blood purified CD4+ and CD8+ T cells from PD patients recognize and respond to a-syn which increase the production
of IL-5 or IFN-g. IFN-g, interferon g; IL-5, interleukin 5; IL-6, interleukin 6; IL-17, interleukin 17; TH17, T helper 17 cells; TCR, T cell receptor; TNF-a, tumor necrosis
factor; Treg, regulatory T cells; a-syn, a-synuclein.
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gastrocnemius muscle of PD mice (M83 model), a-Syn preformed
fibrils (PFF) aggregate in the dorsal nerve roots and lumbar DRG
sensory neurons, as well as the lumbar spinal cord, the midbrain
PAG matter, and the thalamus. When a-Syn aggregates in sensory
neurons, it decreases nerve conduction velocity, drives small- and
medium-sized myelinated fiber pathology, and induces mechanical
allodynia (112). Importantly, these alterations were observed in the
absence of motor dysfunction.

Injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP;
i.p. 11 mg/kg, daily for five days), a pro-neurotoxin used to model
PD, led to an increase in sensory neuron expression of NaV1.1,
NaV1.7, NaV1.9. These alterations occurred 12 days after the first
MPTP challenge and were accompanied by thermal hypersensitivity
(confirmed by the hot plate and tail-flick tests) and extensive loss of
striatal dopamine (113). In reserpine-injected rats presenting with
mechanical hyperalgesia, neuron-profiling data showed increased
expression of the acid-sensing ion channel ASIC3. Its specific
blockade reversed reserpine-induced pain. This effect was
accompanied by sustained spinal dorsal horn microglial
activation, whose inhibition with minocycline reversed mechanical
hyperalgesia (114).

Using aPDanimalmodel, these studies demonstrate the presence
of functional and transcription alterations in the somatosensory
nervous system. They also provide a mechanistic link between the
expression of prototypical pain-associated ion channels receptors
and the onset of PD non-motor symptoms. Further research is
necessary to test whether targeting these changes would, along with
stopping PD-induced pain, alleviate CNS alteration by delaying or
preventing the onset of PD motor symptoms.
CENTRAL MECHANISMS OF
PD-INDUCED PAIN

In PD patients suffering from chronic pain, positron emission
tomography (PET) studies showed increased neuronal activity in
theprefrontal cortex, theprimarysomatosensorycortex, theposterior
insula, and the anterior cingulate cortex (84, 115). At resting-state,
magnetic resonance imaging (MRI) analysis of the connectivity
between the right nucleus accumbens and the left hippocampus
showed that it was reduced in PD patients experiencing pain
compared with pain-free PD patients (116, 117). Before there is any
noticeabledegeneration in the substantianigraandtheonsetofmotor
symptoms, early signs of PD neuropathology are first found in the
locus coeruleus and raphe nuclei. Notably, these two supraspinal
regions are typically associated with pain processing (118).

a-syn aggregates are present in the regions associated with
pain processing including the lamina I of the spinal cord, the
preganglionic neurons of the vagal nerve, and the sympathetic
preganglionic neurons as well as in the coeliac ganglion (119).
Blood-purified CD4+ and CD8+ T cells from PD patients
recognize and respond to a-syn, which leads to the production
of IL-5 or IFN-g (Figure 1) (120). Brain circulating a-syn-
specific CD4+ and CD8+ T cells can recognize specific peptides
bound to MHC-II on microglia and MHC-I on dopaminergic
neurons (111). In addition, effector CD8 T cells expressing the
immune checkpoint receptors lymphocyte activation gene-3
Frontiers in Immunology | www.frontiersin.org 5
(LAG3) bind with pathogenic a-syn, which favors its
endocytosis and central dissemination (Figure 2) (121).

Alongwith these changes, peripheral inflammation also increases
the permeability of the blood-brain barrier (BBB), which facilitates
the infiltration of pathogenic lymphocytes in the CNS. CD4+ and
CD8+ T cells were found in the brain parenchyma of PD patients as
well as in different PD animalmodels. Although themechanisms are
not clearly understood, there is evidence indicating that infiltrated T
cells drive neurodegeneration through the release and action of
cytokines on their cognate receptors, which are found on CNS
neurons (Figure 2). For instance, CD8 cytotoxic T cells’ TCR
recognize MHCI-expressed mitochondrial antigens expressed by
dopaminergic neurons andwere posited to drive their elimination by
a mechanism that is not fully understood (Figure 2) (122). Another
example of T cell-mediated neurodegeneration stems from IL-17-
derived from CD3+ T cells, which, when co-cultured, eliminate PD
patients’ iPSC-derived midbrain dopaminergic neurons (98).
GI DYSFUNCTION IN PD-INDUCED PAIN

Gastrointestinal (GI) alterations are found in up to 80% of PD
patients (123–125), with symptoms ranging from constipation to
nausea, dyspepsia, and dysphagia (126). Constipation might
precede the onset of PD motor symptoms by several decades
(127, 128) and has been considered a prodromal hallmark of PD
(126). In PD patients, severe GI symptoms are predictive of
impaired cognitive performance.

a-syn, which is typically found in CNS of PD patients, is also
present in the colon, the neurons of the ENS, and the vagus nerve
(129, 130). These findings were phenocopy in animal models of PD,
in which aggregates of a-syn were found in the GI tract (Figure 3A)
(131–134).As such, a growingnumber of investigators argue that PD
might start in the gut and spread to theCNS through the vagus nerve
(Figure 3A). This hypothesis is supported by animal studies showing
that exogenousa-syn injected into the gut wall migrated to the brain
via the vagus nerve at a rate estimated to be 5–10 mm/day in rats
(135), while a patient who underwent a truncal vagotomy showed a
decreased risk of developing PD later in life (136, 137). Although the
cause of these disruptions and their role in PD pathogenesis remains
unclear, the presence of a-syn in the ENS is sufficient to induce
colonic dysmotility in the Gl tract, which correlates with the severity
of motor impairment in some animal models (138, 139).

PD patients experiencing constipation showed increased
infiltration of CD4+ T cells into the colonic mucosa as well as
elevated circulating TH17 and Treg cells (140). In addition, PINK1 or
Parkin deficient mice exposed to bacterial intestinal infection
showed an increase in BBB permeability, which facilitates the
influx of cytotoxic CD8 T cells into the CNS. These pro-
inflammatory cytotoxic CD8 T cells target the host’s
mitochondrial antigens. Such auto-immune reactions can lead to
the elimination of dopaminergic neurons in the striatum and
subsequent motor impairments (141). Finally, histologic data
showed increases in the immunoreactivity of the astrocytic
marker GFAP in the colon of PD patients as well as increases in
TNF-a, IFN-g, IL-6, and IL-1b levels (142) (Figure 3A). These
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mediators were elevated in the early stages of the disease and were
negatively correlated with disease duration (142). Given that enteric
and central glial cells respond to IL-6, and IL-1b, and that their
upregulation is associated with inflammatory pain (143), it is
conceivable that the influx of cytotoxic CD8 T cells heightens
pain transmission centrally or within the gut wall.

DYSBIOSIS IN PD-INDUCED PAIN

In conjunction with gastrointestinal dysfunction and
inflammation, gut dysbiosis may contribute to PD progression
by increasing the permeability of the blood-gut barrier and BBB
and facilitating the transport of peripheral a-syn to the brain
(138). Similarly, microbes can directly activate sensory neurons
to trigger pain hypersensitivity (see Immunity in PD). As such,
PD-induced dysbiotic bacteria and their metabolites may activate
vagal or ENS neurons directly, or indirectly via activated
immunocyte-released cytokines (Figure 3B) (21, 144).

Such dysbiosis is characterized by increased levels of
Enterobacteriaceae, Akkermansia spp., Catabacter spp., and
Akkermansiaceae and a decreased level of Roseburia spp.,
Faecalibacterium spp., and Lachnospiraceae (145, 146). While
the function of these bacteria is diverse and is likely to be
context-dependent, some patterns are evident. Roseburia spp.
Frontiers in Immunology | www.frontiersin.org 6
and Faecalibacterium spp. are typically known for their anti-
inflammatory properties. Faecalibacterium spp. would blunt
CD4 differentiation to TH17 cells and promote differentiation
to Treg (147–149). Roseburia spp. and Faecalibacterium spp.
would also downregulate IL-17 expression (150), and promote
the release of the anti-inflammatory cytokines IL-10 and TGF-b
(Figure 3A) (151, 152).

Roseburia spp. was found in increased levels in the blood and
stool samples of fibromyalgia patients (153) and in stool samples
of obese patients with back pain (154). When supplemented,
Roseburia spp. alleviates stress-related visceral pain (155). It is
therefore conceivable that reduced levels of Roseburia spp. and
Faecalibacterium spp. exacerbates TH17 activity and/or limits the
Treg which promotes PD-induced pain.

In the stools of PD patients, Enterobacteriaceae levels
correlate with motor symptoms (146) and are associated with
increased lipopolysaccharide (LPS) levels and a‐syn fibril
formation (Figure 3A) (156). While no direct link exists
between Enterobacteriaceae and PD-induced pain, LPS is
known to activate nociceptor neurons expressed by TLR2, -4
and -7 (157) and, possibly, TRPA1, TRPM3, TRPM8, and
TRPV1 (158, 159). Enterobacteriaceae-mediated increases in
LPS levels may therefore lead to the sensitization of gut-
innervating nociceptor neurons (Figure 3B).
FIGURE 2 | Central inflammation in Parkinson’s disease. Peripheral inflammation increases the blood brain barrier permeability which facilitates the infiltration of
CD4+ and CD8+ T cells. Lag3+ CD8 T cells help disseminate a-syn centrally, while brain circulating a-syn-reactive CD4+ and CD8+ T cells recognize MHC-II bound
peptides on microglia and MHC-I on dopaminergic neurons. Modified a-synuclein acts as a damage-associated molecular pattern, and via its action on receptors
found on microglia and macrophages, induces cytokines release and neurodegeneration. BBB, blood brain barrier; LAG3, lymphocyte activation gene-3; LC, locus
coeruleus; MHC-I, major histocompatibility complex I; MHC-II, major histocompatibility complex II; PFC, prefrontal cortex; PSC, primary somatosensory cortex; RN,
raphe nuclei; a-syn, a-synuclein.
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FIGURE 3 | Gut dysbiosis drives PD-induced pain. (A) The gut dysbiosis in PD is characterized by enhances Enterobacteriaceae content. These bacteria
increase LPS levels which subsequently promote gut permeability. Raises in Enterobacteriaceae metabolites, such as short-chain fatty acids, promote a‐syn
fibril formation, microglia activation and blunt Treg-mediated immunosuppression. Proteolyzed a-syn by neurons and antigen presenting cells is then
presented by the MHC machinery and leads to activation of autoreactive CD8 and CD4 T cells. (B) The dysbiotic bacteria and their metabolites directly
activate vagal or ENS neurons. For instance, LPS activates nociceptor neurons-expressed TLR2/4/7 while SCFAs sensitize GPR41-expressing neurons.
Bacteria-activated or a-syn-autoreactive immunocytes released cytokines can also activate their cognate receptors on sensory neurons. Subsequently,
intracellular mechanisms are triggered in these neurons and culminate in TRP channels phosphorylation, neurons sensitization and sensory hypersensitivity.
CNS, central nervous system; GPR41, G protein-coupled receptor 41; IFN-g, interferon g; IL-1b, interleukin 1 beta; IL-2, interleukin 2; IL-6, interleukin 6; IL-
10, interleukin 10; IL-12, interleukin 12; IL-17, interleukin 17; LPS, lipopolysaccharide; TGFb, transforming growth factor beta; TLR2/4/7, Toll-like receptor
2/4/7; Treg, regulatory T cells TRPA1, transient receptor potential ankyrin-like 1; TRPV1, transient receptor potential cation channel subfamily V; TNF-a,
tumor necrosis factor; SCFAs, short-chain fatty acids; a-syn, a-synuclein.
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Bacteria produce various short-chain fatty acid (SCFA)
metabolites including acetate, propionate, butyrate, and valeric
acid. In the gut of SPF mice that underwent a CCI, these SCFAs
drive hippocampal microglia polarization and IL-1b and TNF-a
release. These cytokines, in turn, mediate mechanical and thermal
hyperalgesia (160). When administered to germ-free a-syn
overexpressing mice, SCFAs increased a-syn aggregation and
microglia activation and contributed to motor dysfunction (161).
SCFAswere also shown tomodulatemicroglia activationduring viral
infections (162) (Figure 3A). Therefore, SFCA-mediated microglial
activation may drive the central sensitization of pain pathways.

SCFAs blunt Treg-mediated immunosuppression and increase T
cell density (163–165) (Figure 3A). By activating GPR43 and
GPR41, SCFA inhibits the leukocytes’ histone deacetylase
(HDAC) which, in turn, increase the leukocyte chemotaxis,
chemokine production, and the expression of adhesion molecules
(166). Given that sodium butyrate, an HDAC inhibitor diminishes
CCI-induced TNF-a release and pain (167), it can be surmised that
PD-induced gut SCFAs can raise circulating cytokine levels (i.e.,
TNF-a) and promote sensory hypersensitivities by increasing the
immunomodulatory action of HDAC in leukocytes Finally, SCFA
were found to sensitize GPR41-expressing lumbar and vagal
neurons (Figure 3B) (168).

Fecal microbiota transplantation (FMT) was found to rescue gut
dysbiosis, decrease SCFAs levels, alleviate physical impairment, and
increase striatal DA and 5-HT content in PD animal models.
Microglia and astrocyte activation was diminished in the substantia
nigra, and neuroinflammation was suppressed by reducing TLR4/
Frontiers in Immunology | www.frontiersin.org 8
TNF-a signaling (169). In PD patients, FMT reduced constipation
and, albeit transiently, leg tremors (170, 171). A preliminary study
with 15 PD patients reported that colonic FMT administration
alleviates motor and non-motor symptoms, while improving
anxiety, depression, and sleep quality scores (172). In another
prospective study, 11 PD patients who underwent FMT had
reducedconstipationandimprovedpostural instabilityandgait(173).

Modulating pain by rescuing a healthy microbiome has also
been postulated (174). Preclinical and clinical studies indicate that
probiotic consumption alleviates visceral pain (175). Based on these
findings, along with the fact that PD is characterized by dysbiosis,
and that bacteria and their metabolites modulate sensory neuron
function, we hypothesize that FMT may improve PD-induced pain
and delay the onset of motor symptoms.
CONCLUSION

Along with constipation, sensory hypersensitivity precedes the onset
of motor symptoms in PD. These physiological alterations are
accompanied by gut dysbiosis, altered peripheral and central
immunity, and increased local (i.e., gut) and systemic cytokine
content, as well as increased gut-brain barrier and BBB
permeability. We posit that gut dysbiosis leads to systemic
inflammation, which drives sensory hypersensitivity (Figure 4).
Via local pro-inflammatory loops, these hypersensitized nociceptor
neurons are likely to amplify immune responses and speedup central
neurodegeneration.Alleviating constipation, rescuingmicrobiota via
FIGURE 4 | Origins of PD-induced pain. Gut dysbiosis, altered peripheral and central immunity, and increased local (i.e., gut) and systemic cytokine content, as well
as increased gut-brain barrier and BBB permeability are likely drivers of sensory hypersensitivity in PD. Figure created with biorender.com.
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fecal matter transplant, blocking leukocyte activity and cytokine
action on neurons using targeted antibodies, and limiting BBB and
gut hyperpermeability all constitute potential ways of preventing
neuro-immune andmicrobe-neuron interplays and subsequent pain
hypersensitivity. Further studies should investigate how nociceptor
neurons increase activity, would, in turn, modulate dysbiosis and
central neurodegeneration. Should pain constitute an early driver of
PD pathophysiology, monitoring and alleviating this symptom may
constitute a novel biomarker and therapeutic target to slow the
progression of PD.
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