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Abstract: The aim of this study was to compare the accuracy of different indexes of adiposity and/or
body composition in identifying the metabolic syndrome (MetS) in a group of 1528 Caucasian women
with obesity: (age ± standard deviation (SD): 50.8 ± 14 years (range 18–83); body mass index (BMI)
43.3 ± 5.9 kg/m2 (30.7–72.9 kg/m2)). The following indexes were assessed in each subject: BMI,
fat-free mass index (FFMI), fat mass index (FMI), tri-ponderal mass index (TMI), waist-to-height ratio
(WtHR), and the body mass fat index (BMFI). Thereafter, a threshold value adjusted for age, which
could identify MetS, was calculated for each index. A significant correlation was found among all
indexes (p < 0.0001 for all). However, when the area under the curve (AUC) was compared, WtHR
performed significantly better in the whole group and in the different age groups, apart from a lack
of statistical difference between WtHR and BMFI in the 45–55 years age group. In conclusion, WtHR
seems to be a fair index useful for identifying MetS in women with obesity. The use of thresholds
appropriate for age can help further improve its accuracy, thus reinforcing the clinical evaluation for
MetS screening.

Keywords: adiposity indexes; metabolic syndrome; obesity

1. Introduction

Following the pandemic rise of obesity, a significant increase has been observed in
the prevalence of metabolic syndrome (MetS), this finding representing a relevant risk
factor for the development of cardiovascular diseases and type 2 diabetes mellitus (T2DM).
However, the risk of developing MetS is not limited to the obese population, as it can be
present in a significant percentage of normal weighted individuals [1]. The frequency of
MetS is generally higher in men than in women in adulthood, this pattern being reversed
after the menopause when females show a progressive increase of MetS over the years [1,2].
As a consequence of this trend, elderly women, both obese and non-obese, are at higher risk
and therefore need to be more closely followed longitudinally. Appropriate interventions
targeted at subjects with MetS may be an important preventive care to improve health and
longevity, particularly in postmenopausal women [3].

As far as the obese population is concerned, one of the main points to be clarified is
which level should trigger the start of the investigations aimed to identify the presence
of primary or secondary metabolic/endocrine changes. In order to address this crucial
problem, on the one hand, it is mandatory to balance high cost and inconvenience to

J. Clin. Med. 2021, 10, 1975. https://doi.org/10.3390/jcm10091975 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-4708-2544
https://orcid.org/0000-0002-2503-5117
https://orcid.org/0000-0003-1795-7848
https://orcid.org/0000-0002-9620-4133
https://www.mdpi.com/article/10.3390/jcm10091975?type=check_update&version=1
https://doi.org/10.3390/jcm10091975
https://doi.org/10.3390/jcm10091975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10091975
https://www.mdpi.com/journal/jcm


J. Clin. Med. 2021, 10, 1975 2 of 12

patients undergoing these investigations, while, on the other hand, there is a need to
promptly detect the level of obesity triggering the development of MetS. In a recent paper,
it was suggested that the body mass index (BMI), which is the most used index in clinical
practice, could be considered a useful clinical threshold to help the decision [4]. However,
BMI does not discriminate fat mass from fat-free mass, or the percentage of fat mass and
its distribution, which in turn are considered the most important predictors of cardio-
metabolic risk [5,6].

Because of these limits, other indexes have been proposed, such as the fat mass index
(FMI) [7], tri-ponderal mass index (TMI) [8] (indexes of adiposity), waist circumference
(WC) [9], visceral adiposity index (VAI) [10], the waist-to-height ratio (WtHR) [11] (indexes
of body fat distribution), and even the fat-free mass index (FFMI) [12], which mostly reflects
the nutritional status in healthy and ill subjects instead of body fat or fat distribution. The
use of these surrogate indexes is mainly based on the need to adopt inexpensive methods,
since the employment of instruments directly measuring fat mass and visceral adiposity,
such as dual energy X-ray absorptiometry (DEXA) and magnetic resonance/computed
tomography, is burdened by very high costs. However, no general agreement has been
reached regarding which of these indexes performs best to date. In this context, we have
recently compared these indexes plus a new one, the Body Mass Fat Index (BMFI), which
also adjusts BMI for body composition and WC, for their ability to identify MetS in 1332
children and adolescents with obesity [13] and in a large group of adult subjects with the
Prader-Willi syndrome (PWS) [14]. The main outcome of the two studies confirmed that
BMI, which considers neither body composition nor fat distribution, performed as well as
the other indexes.

The objective of this paper was to verify whether these results could also be replicated
in a cohort of women with obesity over a large age range. With the background of a
worsening metabolic status over the years, women with obesity are particularly at risk of
developing MetS and therefore would benefit from an early diagnosis and, consequently, a
prompt treatment. Therefore, early recognition of MetS or risk of MetS through easy-to-
use indexes would be suitable to enable the implementation of more intensive primary
prevention strategies. For this purpose, we evaluated for BMI, BMFI, FFMI, FMI, TMI, and
WtHR, the age-adjusted threshold that allows to identify or exclude the presence of MetS,
comparing thereafter their sensitivity and specificity, the positive and negative predicted
value (PPV and NPV, respectively), and the positive and negative likelihood ratio (PLR and
NLR, respectively) in order to establish which index of body composition and/or adiposity
is the most reliable in identifying MetS in a large group of women with obesity.

2. Patients and Methods
2.1. Study Population

Between January 2015 and December 2018, 1528 women with obesity (aged 50.8 ± 14
years (range 18–83), BMI 43.3 ± 5.9 kg/m2 (30.7–72.9 kg/m2)), consecutively hospitalized
at the Division of Metabolic Diseases, Istituto Auxologico Italiano, Piancavallo, Verba-
nia, Italy, were studied. Inclusion criteria were BMI ≥30 kg/m2 and Caucasian origin.
None of them suffered from secondary obesity, including genetic (e.g., monogenic and
syndromic), organic (e.g., kidney or liver diseases, cerebral neoplasms), endocrine, (e.g.,
uncontrolled hypothyroidism, endogenous hypercortisolism, having being excluded by
standard endocrine assessments (not shown)), or iatrogenic forms (e.g., chronic exposure
to glucocorticoids, psychotrophic drugs). At the time of the study, 256 subjects were treated
for T2DM (16.7%), while 833 subjects (54.5%) were undergoing therapy for arterial hyper-
tension. A total of 121 patients (7.9%) were treated for dyslipidemia. A total of 54 women
were previously diagnosed with T2DM, dyslipidemia, and hypertension (3.5%), 159 with
T2DM and hypertension (10.4%), 49 with hypertension and dyslipidemia (3.2%), 7 with
T2DM and dyslipidemia (0.4%), 36 with T2DM alone (2.3%), 571 with hypertension alone
(37.4%), and 18 with dyslipidemia alone (1.2%).
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Subjects were divided according to age in three subgroups: 18–44 years (n = 466),
45–54 years (n = 390), and 55+ years (n = 672).

The Ethical Committee of the Istituto Auxologico Italiano, Italy, approved the study
protocol (Ethical Committee code: 2020_06_16_01; date of approval: 16th June 2020;
acronym: ANTROINDEXOBFEM), and all patients gave their written informed consent.
The study was performed in accordance with the Declaration of Helsinki and the 2005 Ad-
ditional Protocol to the European Convention of Human Rights and Medicine concerning
Biomedical Research.

2.2. Anthropometric Data

Weight and height were measured in fasting conditions after voiding. Physical exam-
ination was carried out by the same investigators, specifically trained. Standing height
was determined by a Harpenden Stadiometer (Holtain Limited, Crymych, Dyfed, UK).
Body weight was measured to the nearest 0.1 kg, with an electronic scale (Ro WU 150,
Wunder Sa.bi., Trezzo sull’Adda, Italy), in minimal underclothes and no shoes. WC was
determined in standing position midway between the lowest rib and the top of the iliac
crest after gentle expiration, with a non-elastic flexible tape measure.

2.3. Blood Pressure Measurements and Instrumental Examinations

Diastolic and systolic blood pressure (BP) were measured to the nearest 2 mmHg in
the supine position after 5 min rest, using a sphygmomanometer with an appropriately
sized cuff. The average of three measurements on different days was used.

Body composition: fat mass (FM), fat mass percentage (FM%), fat-free mass (FFM), and
fat-free mass percentage (FFM%) were assessed by bioelectrical impedance analysis (BIA)
(Human-IM Scan; DS-Medigroup, Milan, Italy). Whole-body impedance was measured at
a frequency of 50 kHz (Z50), following international guidelines [15]. Measurements were
performed according to the method of Lukaski et al. [16], after 20-min rest in a supine
position with relaxed arms and legs. The impedance index (ZI50) was calculated as the
ratio between height (cm)2 and Z50 (Ω). In our laboratory, the within-day CV of Z50, as
determined by 10 repeated BIA measurements of 10 obese adults, was 2% [17].

2.4. Laboratory Analyses

Baseline blood samples were drawn by venipuncture after a 12-h overnight fast. Stan-
dard enzymatic methods were used for measurement of glycemia, high-density lipoprotein
cholesterol (HDL-C), and triglycerides (TG) (Roche Diagnostics, Mannheim, Germany).

2.5. Definitions

Obesity was defined in the presence of a BMI higher than 30 kg/m2 [18]. According to
the International Diabetes Federation (IDF) criteria [19], MetS was defined in the presence of
three abnormal findings out of the following five parameters: central obesity, high systolic
BP and/or diastolic BP, high triglycerides, low HDL-C, and elevated fasting glucose.
Central obesity was defined when WC was ≥80 cm [20]. Hypertension was defined in the
presence of systolic BP values ≥130 mmHg and/or diastolic BP values ≥85 mmHg or in
case of antihypertensive drugs use. Hypertriglyceridemia was defined in the presence of
triglycerides values ≥150 mg/dL or in the case of a specific treatment. A low HDL-C level
was defined with values <50 mg/dL. Elevated fasting glucose was defined as glycemia
≥5.6 mmol/L (or ≥100 mg/dL) or in the case of antidiabetic drugs use.

The following indexes have been calculated according to the respective formulas:

1. BMI [18]: weight (kg)/height in m2

2. BMFI [13]: BMI × FM (%) × WC (m)
3. FFMI [12]: fat-free mass in kg/height in m2

4. FMI [7]: fat mass in kg/height in m2

5. TMI [8]: mass in kg/height in m3

6. WtHR [11]: WC (cm)/height (cm)



J. Clin. Med. 2021, 10, 1975 4 of 12

2.6. Statistical Analysis

The data were first scrutinized for outliers, using a cutoff of 4.5 standard deviation
score. Two patients were excluded on this basis. To explore the data, preliminary analyses
were performed. A lognormality test was conducted on the logarithmic transformations of
the variables used. The Kolmogorov–Smirnov test was used as a reference, with only one
doubtful case for FMI, where the Kolmogorov–Smirnov test showed a p-value of 0.31 but a
graphical analysis and the Cramer–Von–Mises test (p > 0.05) indicated a normal situation.

Continuous data were presented as mean ± standard deviation (SD) or with 95%
confidence intervals (CIs). Mean values were tested for statistical significance using 2-
tailed t-tests. Pearson correlation coefficients were calculated to assess the relationship
between body-composition indexes. ANOVA and the Bonferroni test were used to analyze
differences in clinical characteristics among the three age groups. Correlation analyses were
used to assess the associations between each body-composition index and each metabolic
risk factor component. Fisher’s transformation, changing r to a Z-score, was used to
compare correlated correlations.

In order to calculate the growth pattern of body-composition indexes, a quantile
regression was used [21] as an alternative for the LMS Method [22]. The logarithm of
each body composition index was used as a response, fitted with a parametric model,
which involved ageˆ3 and ageˆ4. The standardized residuals were retained to represent
age-adjusted values.

Receiver operating characteristic (ROC) curves were then generated to obtain the
values of area under the curve (AUC), with sensitivity, specificity, and 95% CI, for each
age-adjusted standardized body composition index as a predictor of MetS [23]. In addition,
PLR, NLR-, PPV, and NPV were examined. Adjusted ROC analysis using clinical cut points
for metabolic risks was performed to identify the best predictor for each adiposity index
among metabolic risk factors.

To identify the optimal cutoff, the Youden index [24] was calculated.
The significance threshold was set at p < 0.05. The data were analyzed using SAS

Enterprise Guide 4.3 (SAS Institute Inc., Cary, NC, USA).

3. Results

According to the IDF criteria for MetS, all 1528 women fulfilled the criteria for ab-
dominal obesity. High BP was detected in 1105 subjects (72.3%). Raised triglycerides
values were present in 510 patients (33.4%), while 825 had reduced HDL-C levels (54.0%).
Hyperglycemia was found in 505 women (33.0%). Overall, the presence of MetS was
detectable in 917 patients (60.0%).

The clinical characteristics, biochemical data, and values of the different indexes of the
whole population, as well as the two subgroups without (MetS−) and with MetS (MetS+),
are reported in Table 1.

As expected, all parameters were significantly worse in the MetS+ group than in
MetS− (p < 0.0001 for all but p < 0.01 for FMI), with the exception of FM% and FFM%
(p = 0.88 for both). Moreover, MetS+ women were significantly older than the MetS−
subjects (p < 0.0001).

The thresholds that identify the risk of MetS for each index, according to age, are
shown in Figure 1. The mean cut-off values for each index were BMI: 47.9, BMFI: 29.9, FMI:
26.9, FFMI: 21.9, WtHR: 0.75, and TMI: 28.2.
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Figure 1. The threshold values of each index, beyond which the risk of METS is identified according to age. Abbreviations:
BMI: body mass index; BMFI: body mass fat index; FMI: fat mass index; FFMI: fat-free mass index; WHtR: waist-to-height
ratio; TMI: tri-ponderal mass index.
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Table 1. Descriptive statistics for all subjects, MetS−, and MetS+. Data are presented as mean ± SD.
p is the difference between MetS− and Met+.

All MetS− MetS+ p

Number of subjects 1528 611 917

Age (years) 50.78 ± 14.04 46.05 ± 15.12 53.93 ± 12.31 <0.0001

SBP (mm/Hg) 128.12 ± 13.52 124.88 ± 13.1 130.28 ± 13.37 <0.0001

DBP (mm/Hg) 76.84 ± 7.57 75.91 ± 7.63 77.45 ± 7.47 <0.0001

TG (mg/dL) 132.07 ± 60.38 98.32 ± 31.17 154.55 ± 64.53 <0.0001

HDL-C (mg/dL) 50.86 ± 12.7 56.92 ± 12.17 46.81 ± 11.36 <0.0001

glycemia (mmol/L) 98.06 ± 31.72 83.59 ± 12.01 107.71 ± 36.72 <0.0001

BMI (kg/m2) 43.35 ± 5.93 42.55 ± 5.1 43.88 ± 6.37 <0.0001

WtHR 0.7 ± 60.08 0.74 ± 0.07 0.78 ± 0.08 <0.0001

FMI (kg/m2) 22.27 ± 5.16 21.82 ± 4.7 22.56 ± 5.43 <0.005

FFMI (kg/m2) 21.08 ± 1.82 20.73 ± 1.64 21.32 ± 1.9 <0.0001

TMI (kg/m3) 27.58 ± 4.08 26.98 ± 3.47 27.99 ± 4.4 <0.0001

BMFI (kg/m) 27.15 ± 8.77 25.66 ± 7.53 28.14 ± 9. 38 <0.0001

WC (cm) 119.94 ± 12.26 116.05 ± 11.34 122.54 ± 12.16 <0.0001

FM% 50.82 ± 5.35 50.8 ± 5.43 50.84 ± 5.29 0.88

FFM% 49.18 ± 5.35 49.2 ± 5.43 49.16 ± 5.29 0.88
Abbreviations: MetS− and MetS+: patients with and without metabolic syndrome; SBP: systolic blood pressure;
DBP: diastolic blood pressure; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; BMI: body mass
index; WHtR: waist-to-height ratio; FMI: fat mass index; FFMI: fat-free mass index; TMI: tri-ponderal mass index;
BMFI: body mass fat index; WC: waist circumference; FM%: fat mass percentage; FFM%; fat-free mass percentage.

Considering the subgroup MetS+ systolic BP, glycemia and WC were significantly
higher in the older age groups (Table S1, Supplementary Materials), which, on the other
hand, showed higher HDL-C values.

Correlations

Unadjusted correlations among the different indexes were all significantly correlated
with each other in the whole group (p < 0.001 for all), in the MetS+ group (p < 0.001 for
all), and in the MetS- group (p < 0.001 for all), apart from the absent correlation between
FMI and FFMI (p = 0.08) (Table S2, Supplementary Materials). The values of correlation
between the different indexes ranged from 0.98 (BMFI-FMI) and 0.41 (BMFI-FFMI) in the
MetS+ and 0.96 (BMFI-FMI) and 0.12 (BMFI-FFMI) in the MetS−.

Table 2 shows the Pearson partial (age) correlation analysis between the different
indexes and the components of MetS. The Fisher’s z transformation coefficients (95% CI)
are reported.

Age-adjusted ROC analysis for the whole group, using clinical cut points for metabolic
risks, shows that anthropometric measures are consistent predictors for hypertension and
hyperglycemia (Table S3, Supplementary Materials).

In Table 3, the sensitivity, specificity, and PPV and NPV for identifying the MetS,
together with the PLR and NLR for each index, are reported. WtHR was the most sensitive
compared to all other indexes, while FMI and BMI showed the lowest sensitivity. The
percentages of subjects that would have been diagnosed with MetS by using each of the
indexes are the following: BMI: 18.2%, BMFI: 28.9%, FMI: 15.2%, FFMI: 29.1%, WtHR:
55.7%, and TMI: 37.4%.
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Table 2. Beta estimates and R2 values relating each anthropometric measure to cardiovascular risk outcome. All models
adjust for age. The values reported for each parameter are standardized coefficient of the regression of the cardiovascular
risk measures on anthropometric measures, the confidence interval of the coefficient (in brackets), and the correlation
coefficient.

SBP (mm/Hg) DBP (mm/Hg) HDL-C (mg/dL) Glycemia (mg/dL) TG (mg/dL)

BMI (kg/m2) 0.19 (0.14–0.23); 0.03 0.19 (0.14–0.23); 0.03 −0.08 (−0.13/−0.03);
0.01 0.09 (0.04–0.14); 0.01 −0.04 (−0.09–0.01); 0.00

WtHR 0.19 (0.14–0.24); 0.04 0.18 (0.13–0.23); 0.03 −0.09 (−0.14/−0.04);
0.01 0.1 (0.05–0.15); 0.01 −0.01 (−0.06–0.04); 0.00

FMI (kg/m2) 0.19 (0.14–0.24); 0.04 0.19 (0.14–0.24); 0.05 −0.05 (−0.1–0.0); 0.01 0.07 (0.02–0.12); 0.01 −0.06 (−0.11/−0.01);
0.01

FFMI (kg/m2) 0.08 (0.03–0.13); 0.08 0.07 (0.02–0.12); 0.07 −0.13 (−0.18/−0.08);
0.09 0.11 (0.06–0.16); 0.08 0.03 (−0.02–0.08); 0.07

TMI (kg/m3) 0.16 (0.11–0.21); 0.12 0.13 (0.08–0.18); 0.11 −0.15 (−0.2/−0.1); 0.12 0.16 (0.11–0.21); 0.12 0.07 (0.02–0.12); 0.1

BMFI (kg/m) 0.17 (0.12–0.22); 0.04 0.17 (0.13–0.22); 0.04 −0.07 (−0.12/−0.02);
0.01 0.1 (0.05–0.15); 0.02 −0.05 (−0.1–0.0); 0.01

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL-C: high-density lipoprotein cholesterol; TG: triglycerides;
BMI: body mass index; WHtR: waist-to-height ratio; FMI: fat mass index; FFMI: fat-free mass index; TMI: tri-ponderal mass index; BMFI:
body mass fat index.

Table 3. Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Positive Likelihood Ratio, and Negative
Likelihood Ratio for each anthropometric measure in identifying MetS.

Sensitivity Specificity PPV NPV PLR NLR

BMI (kg/m2) 22.4% 88.2% 74.0% 43.1% 1.90 0.88

BMFI (kg/m) 33.2% 77.6% 68.9% 43.6% 1.48 0.86

FMI (kg/m2) 18.3% 89.0% 71.5% 42.1% 1.67 0.92

FFMI (kg/m2) 35.1% 80.0% 72.5% 45.1% 1.76 0.81

WtHR 63.0% 60.4% 70.5% 52.1% 1.59 0.61

TMI (kg/m3) 41.5% 68.9% 66.7% 44.0% 1.34 0.85

Abbreviations: BMI: body mass index; BMFI: body mass fat index; FMI: fat mass index; FFMI: fat-free mass index; WHtR: waist-to-height
ratio; TMI: tri-ponderal mass index; PPV: Positive Predictive Value; NPV: Negative Predictive Value; PLR: Positive Likelihood Ratio; NLR:
Negative Likelihood Ratio.

BMI and FMI showed the highest specificity and WtHR the lowest. All indexes
showed the same PPV, with only BMI superior to TMI. Considering the negative predictive
value, WtHR was significantly higher than the others.

The evaluation of the PLR and NLR showed that the post-test probability was not
different from the pre-test probability. The (LR+) post-test probability of MetS changed
from 7% for TMI to 14% for BMI, and the (LR−) post-test probability of MetS changed from
12% for WtHR to 2% for FMI. Only with BMI and WtHR was there a small improvement in
the post-test probabilities.

Figure 2 (and Figure S1 in Supplementary Materials) shows the ROC curves of the
different indexes in the whole population and in the three subgroups (18–44, 45–54, and
55+ years), respectively.
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Figure 2. The ROC curves of the different indices in the whole population. Area under the curve for
the single index is reported in brackets. Abbreviations: BMI: body mass index; WtHR: waist-to-height
ratio; FMI: fat mass index; FFMI: fat-free mass index; TMI: tri-ponderal mass index; BMFI: body mass
fat index.

Table 4 shows the comparison of the different ROC curves, indicating that, in the
whole group, WtHR performed significantly better than the other indexes.

Table 4. Adjusted ROC area, relating anthropometric measure (95% CI) in all 1528 subjects and in the different age groups.

All Subjects Age 18–44 Years Age 45–54 Years Age 55+ Years

BMI (kg/m2) 0.55 (0.52–0.58) ◦ 0.51 (0.45–0.56) 0.59 (0.53–0.65) ◦ 0.55 (0.51–0.6)

BMFI (kg/m) 0.57 (0.54–0.6) & 0.54 (0.48–0.59) & 0.62 (0.56–0.67) & 0.57 (0.53–0.62) &

FMI (kg/m2) 0.52 (0.5–0.55) 0.5 (0.45–0.56) 0.59 (0.53–0.64) 0.54 (0.5–0.59)

FFMI (kg/m2) 0.59 (0.56–0.62) + 0.54 (0.48–0.59) 0.57 (0.51–0.63) 0.56 (0.51–0.61)

WtHR 0.66 (0.63–0.68) * 0.61 (0.55–0.66) * 0.64 (0.58–0.7) * 0.62 (0.58–0.67) *

TMI (kg/m3) 0.56 (0.53–0.59) ˆ 0.51 (0.45–0.56) 0.57 (0.51–0.63) 0.55 (0.5–0.6)

The values reported for each parameter are area under the curve (AUC) and 95% CI in brackets. For significance: All subjects: * p < 0.0001
vs. all other indexes; ◦ p < 0.0001 vs. FMI; + p < 0.001 vs. BMI and FMI; ˆ p < 0.001 vs. FMI; and p < 0.0001 vs. FMI and p < 0.001 vs. BMI.
Age 18–44 years: * p < 0.0001 vs. BMI, FMI, TMI, BMFI and p < 0.05 vs. FFMI; and p < 0.0001 vs. FMI and p < 0.05 vs. BMI. Age group 45–54
years: * p < 0.001 vs. TMI and p < 0.05 vs. BMI, FMI and FFMI; and p < 0.0001 vs. FMI, p < 0.01 vs. TMI and p < 0.05 vs. BMI; ◦ p < 0.05
vs. TMI. Age 55+ years: * p < 0.001 vs. BMI, FMI, TMI, p < 0.01 vs. BMFI and p < 0.05 vs. FFMI; and p < 0.0001 vs. FMI. Abbreviations:
BMI: body mass index; BMFI: body mass fat index; FMI: fat mass index; FFMI: fat-free mass index; WtHR: waist-to-height ratio; TMI:
tri-ponderal mass index.

Furthermore, BMI performed better than FMI, FFMI better than BMI and FMI, TMI
better than FMI, and, finally, BMFI better than FMI and BMI. Analyzing the single sub-
groups, it is evident that, in the age range of 18–44 years, WtHR performed better than
BMI, FMI, TMI, BMFI, and FFMI and BMFI performed better than FMI and BMI.

In the subgroup 45–54 years, WtHR performed better than TMI, BMI, FMI, and FFMI,
while BMFI performed better than FMI, TMI, and BMI and BMI performed better than
TMI.

In the subgroup 55+ years, WtHR performed better than the other indexes and BMFI
performed better than FMI.
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4. Discussion

In the present study, the accuracy of different indexes of adiposity and body compo-
sition in recognizing MetS was evaluated in a large group of women with obesity aged
18–83 years. Altogether, although a good correlation among indexes was found in the
whole group, the WtHR was associated with the best performance. Furthermore, the large
age span of the subjects examined allowed to demonstrate that the threshold values of
different indexes, beyond which MetS was identified, varied over the years, implying
that, for each age group, an appropriate cut-off should be used. This trend should be
considered in the clinical praxis in order to identify the patients at risk more precisely.
The age-dependent variation of the threshold values may presumably be explained by the
physiological changes in body composition that usually occur in women over the years,
particularly after the menopause [25], which is also characterized by a higher frequency of
MetS [1]. In fact, our subgroup of women with obesity and MetS+ was older and showed
more abdominal fat distribution, a condition strongly associated with the development
of MetS compared to the subgroup without MetS. Furthermore, when the subgroup of
MetS+ were subdivided according to age, the oldest subjects showed worsening of car-
diometabolic risk factors compared to the other subgroups, with the exception of HDL-C.
This last finding, fairly surprising, might be explained, at least in part, by the higher num-
ber of elderly females treated for dyslipidemia (89% of the total). In this context, although
lowering cholesterol medications are known to mainly affect total and LDL cholesterol
rather than HDL-C, a significant increase of HDL-C during statins therapy was recently
reported [26].

In all age subgroups of women with obesity (18–44 years, 45–54 years, 55+ years), the
higher performance in identifying MetS was found with the indexes, which also consider
fat distribution, such as WtHR and BMFI. The analysis of correlation between the different
indexes and the component of MetS confirmed that WtHR was the better predictor of the
metabolic risk factors. In addition, WtHR was the more sensitive index, while BMI and
FMI showed the highest specificity.

The PPV was similar for all indexes, while WtHR was slightly superior to the other
indexes when NPV was considered. Altogether, according to the prevalence of MetS in the
study population, the PPV was found to be higher than NPV. PLR and NLR, on the other
hand, suggested that these indexes were of little help in predicting the likelihood of a true
positive or negative result, with only BMI and WtHR performing slightly better.

The accuracy of the indexes was evaluated in the whole group, as well as in the
different age subgroups, by comparing the ROC curves. WtHR resulted in the best one,
with the exception of a lack of statistical difference between WtHR and BMFI in the 45–54
years age group.

These results were consistent with previous studies, demonstrating that WtHR was a
valuable screening tool for adult cardiometabolic risk factors [27] and the most sensitive
marker for predicting MetS [28,29].

In two previous papers by our group, the accuracy of the same indexes evaluated in
this study was analyzed in a large group of obese children and adolescents [13] and in
an adult population with PWS [14]. The conclusions of these studies were that no index
performed significantly better than the others, and, therefore, BMI, which is the oldest
and easiest to be calculated, should be used, even if it does not consider more sophisticate
parameters, such as body composition or body fat distribution.

On the contrary, in the present study, WtHR performed slightly better than the other
indexes. Several possible causes can be taken into consideration in order to explain
the different results, such as the large differences in chronological age and therefore the
differences in body composition and fat distribution of the present study group. As
a matter of fact, associations between anthropometric indexes and regional fat depots
varied between children, adolescents, and young and older adults [30]. Furthermore, PWS
adults with obesity have a particular fat distribution, mostly subcutaneous, which is more
advantageous from the metabolic point of view, but that does not prevent many subjects
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from developing MetS over the years [31]. However, this peculiar distribution of adipose
tissue may be responsible for the different ability of the various anthropometric indexes to
identify MetS in adults with PWS, compared to non-syndromic obesity. However, with the
data in our hands, we are actually unable to give definitive answers to this discrepancy
to date. In this context, we have also considered the ability of both BMI and WtHR in
identifying MetS. By using our cut-offs, the combined use of BMI plus WtHR showed a
sensitivity of 60% and a specificity of 52.7%, while BMI alone had a sensitivity of 22.4% and
a specificity of 88.2% and WtHR alone had a sensitivity of 63% and a specificity of 60.4%.
Taking these results into account, the comparable sensitivity between BMI, plus WtHR and
WtHR alone, is in favour of the use of the latter. On the other hand, the high specificity of
BMI alone vs BMI plus WtHR allows to exclude rather than identify MetS.

There are some weak points in our study. First of all, the main problem is that our data
are derived from a cross-sectional study. It is undoubted that a longitudinal evaluation
would have provided more information on the evolution over time of the ability of the
different indexes taken into consideration when recognizing MetS. Another limitation is
the lack of evaluation of body fat by DEXA, which would actually have been impractical
and too expensive to be performed in such a large number of subjects. Moreover, the
lack of analysis of our indexes in the different BMI classes (e.g., 30–40 kg/m2, >40–50
kg/m2, >50 kg/m2) might represent another critical issue. However, the choice to exclude
this analysis was based on the markedly different numerousness of the three BMI-related
subgroups (n = 469, n = 878, n = 181, respectively). Further additional studies with
numerically homogeneous subgroups are mandatory to clarify this relevant aspect. The
categorization based on age alone without actually knowing whether women were in their
menopause or post-menopause might represent another limitation of the study. Although
we are perfectly aware that the measurement of waist circumference may be problematic
in severely obese patients, thus representing a possible bias of the present study, the
examination of patients was performed by a well-trained and experienced team of a single
third level center for severe obesity, thus reducing the risk of significant misinterpretations.
Lastly, the present study performed on Caucasian women with obesity cannot allow to
extend our conclusions to other ethnic groups.

On the other hand, the strength of this study is the huge number and large age
span of the subjects, which allowed us to observe the changes of the threshold of the
different indexes over the years and therefore the possibility to use them for better clinical
management. In addition, the recruitment of women with obesity was made in a single
center, and their examination was carried out by the same operators.

In conclusion, although most of the adiposity/body composition indexes performed
adequately, the WtHR, a simple index to be calculated, performed slightly better than the
others. It is of note that, similar to BMI, WtHR does not require the evaluation of body
composition and therefore leads to a reduction of the costs. An important finding from
this study is that, in Caucasian women with obesity, the evaluation of body composition
throughout BIA does not add any additional value to simple anthropometric measures,
such as BMI or WtHR, in identifying MetS. However, it should be recognized that BIA (not
being as accurate as DEXA) might have influenced the present results. Finally, our results
suggest that changes of the different indexes over the years should also be considered
in order to ensure effective and age-appropriated rehabilitative approaches, aimed to
counteract the complex comorbidities associated with obesity.

As a final remark, it must be underlined that all the indexes taken into consideration
in the present study should be considered as a support for the clinicians in order to identify
the presence of MetS and thus avoid unnecessary investigations. Although both WtHR
and BMI represent useful, cheap, practical, and easy-to-use tools, facilitating the work of
clinicians and speeding up diagnostics, it must underlined that they cannot replace the
clinical judgement at all.
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brackets. Table S1: ANOVA and Bonferroni-test for all subjects MetS+, subdivided for age group.
Data are presented as mean ± SD. Table S2: Pearson partial (age) correlation analysis between the
different indices in all subjects, MetS− and MetS+ subjects. For significance: * p < 0.0001, & p < 0.01,
$ p = 0.056. Table S3: Area under ROC curves relating each anthropometric measure to clinical cut
point after adjusting for age.

Author Contributions: Conceptualization, G.R.; validation, A.S.; formal analysis, A.F.; investigation,
G.G., S.T. and S.C.; data curation, F.L.; writing—original draft preparation, G.R. and G.G.; writing—
review and editing, G.R. and G.G.; supervision, A.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of Istituto Auxologico Italiano (Ethical
Committee code: 2020_06_16_01; date of approval: 16th June 2020; acronym: ANTROINDEXOBFEM).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Raw data are available at https://doi.org/10.5281/zenodo.4736682
upon a reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, Q.; Lin, W.; Liu, C.; Zhou, Y.; Chen, T.; Zhang, L.; Zhang, X.; Yu, S.; Wu, Q.; Jin, Z.; et al. Prevalence and epidemiological

determinants of metabolically obese but normal-weight in Chinese population. BMC Public Health 2020, 20, 1–10. [CrossRef]
2. Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and gender-related prevalence, cardiovascular risk and

therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [CrossRef] [PubMed]
3. Christakis, M.K.; Hasan, H.; De Souza, L.R.; Shirreff, L. The effect of menopause on metabolic syndrome: Cross-sectional results

from the Canadian Longitudinal Study on Aging. Menopause 2020, 27, 999–1009. [CrossRef]
4. Pasquali, R.; Casanueva, F.; Haluzik, M.; Van Hulsteijn, L.; LeDoux, S.; Monteiro, M.P.; Salvador, J.; Santini, F.; Toplak, H.; Dekkers,

O.M. European Society of Endocrinology Clinical Practice Guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 2020, 182,
G1–G32. [PubMed]

5. Kim, S.H.; Després, J.P.; Koh, K.K. Obesity and cardiovascular disease: Friend or foe? Eur. Heart J. 2016, 37, 3560–3568. [PubMed]
6. Xu, H.; Jin, C.; Guan, Q. Causal Effects of Overall and Abdominal Obesity on Insulin Resistance and the Risk of Type 2 Diabetes

Mellitus: A Two-Sample Mendelian Randomization Study. Front. Genet. 2020, 11, 603. [PubMed]
7. Allison, D.; Zhu, S.; Plankey, M.; Faith, M.; Heo, M. Differential associations of body mass index and adiposity with all-cause

mortality among men in the first and second National Health and Nutrition Examination Surveys (NHANES I and NHANES II)
follow-up studies. Int. J. Obes. 2002, 26, 410–416. [CrossRef] [PubMed]

8. Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body
Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629–636.

9. Rankinen, T.; Kim, S.-Y.; Pérusse, L.; Després, J.-P.; Bouchard, C. The prediction of abdominal visceral fat level from body
composition and anthropometry: ROC analysis. Int. J. Obes. 1999, 23, 801–809. [CrossRef]

10. Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. For the AlkaMeSy Study Group
Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33,
920–922. [CrossRef]

11. Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of
cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [CrossRef]
[PubMed]

12. VanItallie, T.B.; Yang, M.U.; Heymsfield, S.B.; Funk, R.C.; Boileau, R.A. Height-normalized indexes of the body’s fat-free mass
and fat mass: Potentially useful indicators of nutritional status. Am. J. Clin. Nutr. 1990, 52, 953–959. [CrossRef] [PubMed]

13. Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Sartorio, A. Indexes of adiposity and body composition in the prediction of metabolic
syndrome in obese children and adolescents: Which is the best? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1189–1196. [CrossRef]
[PubMed]

14. Radetti, G.; Fanolla, A.; Lupi, F.; Sartorio, A.; Grugni, G. Accuracy of Different Indexes of Body Composition and Adiposity in
Identifying Metabolic Syndrome in Adult Subjects with Prader-Willi Syndrome. J. Clin. Med. 2020, 9, 1646. [CrossRef]

https://www.mdpi.com/article/10.3390/jcm10091975/s1
https://www.mdpi.com/article/10.3390/jcm10091975/s1
https://doi.org/10.5281/zenodo.4736682
http://doi.org/10.1186/s12889-020-08630-8
http://doi.org/10.1016/j.phrs.2017.03.008
http://www.ncbi.nlm.nih.gov/pubmed/28300617
http://doi.org/10.1097/GME.0000000000001575
http://www.ncbi.nlm.nih.gov/pubmed/31855556
http://www.ncbi.nlm.nih.gov/pubmed/26685971
http://www.ncbi.nlm.nih.gov/pubmed/32714368
http://doi.org/10.1038/sj.ijo.0801925
http://www.ncbi.nlm.nih.gov/pubmed/11896498
http://doi.org/10.1038/sj.ijo.0800929
http://doi.org/10.2337/dc09-1825
http://doi.org/10.1017/S0954422410000144
http://www.ncbi.nlm.nih.gov/pubmed/20819243
http://doi.org/10.1093/ajcn/52.6.953
http://www.ncbi.nlm.nih.gov/pubmed/2239792
http://doi.org/10.1016/j.numecd.2019.06.011
http://www.ncbi.nlm.nih.gov/pubmed/31378631
http://doi.org/10.3390/jcm9061646


J. Clin. Med. 2021, 10, 1975 12 of 12

15. Deurenberg, P. International consensus conference on impedance. Age Nutr. 1994, 5, 142–145.
16. Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human

body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [CrossRef]
17. Bedogni, G.; Agosti, F.; De Col, A.; Marazzi, N.; Tagliaferri, A.; Sartorio, A. Comparison of dual-energy X-ray absorptiometry, air

displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in morbidly obese
women. Eur. J. Clin. Nutr. 2013, 67, 1129–1132. [CrossRef]

18. World Health Organization. Obesity and Overweight. WHO Fact Sheet No. 311. 2014. Available online: http://www.who.int/
mediacentre/factsheets/fs311/en/# (accessed on 8 April 2017).

19. Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.;
Smith, S.C., Jr. Harmonizing the metabolic syndrome. A Joint Interim Statement of the International Diabetes Federation Task
Force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart
Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120,
1640–1645.

20. Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith,
S.C.; et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005, 112, 2735–2752. [CrossRef]

21. Chen, C. Growth Charts of Body Mass Index (BMI) with Quantile Regression. 2005. Available online: https://www.researchgate.
net/profile/Colin-Chen-4/publication/220979218_Growth_Charts_of_Body_Mass_Index_BMI_With_Quantile_Regression/
links/02bfe50ef9479c0a2f000000/Growth-Charts-of-Body-Mass-Index-BMI-With-Quantile-Regression.pdf (accessed on 1 May
2021).

22. Cole, T.J.; Freeman, J.V.; Preece, M.A. British 1990 growth reference centiles for weight, height, body mass index and head
circumference fitted by maximum penalized likelihood. Stat. Med. 1998, 17, 407–429. [CrossRef]

23. Katzmarzyk, P.T.; Srinivasan, S.R.; Chen, W.; Malina, R.M.; Bouchard, C.; Berenson, G.S. Body Mass Index, Waist Circumference,
and Clustering of Cardiovascular Disease Risk Factors in a Biracial Sample of Children and Adolescents. Pediatrics 2004, 114,
e198–e205. [CrossRef]

24. Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [CrossRef]
25. Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat mass changes during menopause: A metaanalysis. Am. J.

Obstet. Gynecol. 2019, 221, 393–409.e50. [CrossRef]
26. Werida, R.; Khairat, I.; Khedr, N.F. Effect of atorvastatin versus rosuvastatin on inflammatory biomarkers and LV function in type

2 diabetic patients with dyslipidemia. Biomed. Pharmacother. 2021, 135, 111179. [CrossRef]
27. Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult

cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2011, 13, 275–286. [CrossRef]
28. Park, H.J.; Hong, Y.H.; Cho, Y.J.; Lee, J.E.; Yun, J.M.; Kwon, H.; Kim, S.H. Trends and Cut-Point Changes in Obesity Parameters by

Age Groups Considering Metabolic Syndrome. J. Korean Med. Sci. 2018, 33, e47. [CrossRef]
29. Kerkadi, A.; Suleman, D.; Abu Salah, L.; Lotfy, C.; Attieh, G.; Bawadi, H.; Shi, Z. Adiposity Indicators as Cardio-Metabolic Risk

Predictors in Adults from Country with High Burden of Obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, ume 13, 175–183.
[CrossRef]

30. Hübers, M.; Pourhassan, M.; Braun, W.; Geisler, C.; Müller, M. Definition of new cut-offs of BMI and waist circumference based
on body composition and insulin resistance: Differences between children, adolescents and adults. Obes. Sci. Pract. 2017, 3,
272–281. [CrossRef]

31. Grugni, G.; Crinò, A.; Bedogni, G.; Cappa, M.; Sartorio, A.; Corrias, A.; Di Candia, S.; Gargantini, L.; Iughetti, L.; Pagano, C.; et al.
Metabolic syndrome in adult patients with Prader–Willi syndrome. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1134–1140. [CrossRef]

http://doi.org/10.1152/jappl.1986.60.4.1327
http://doi.org/10.1038/ejcn.2013.159
http://www.who.int/mediacentre/factsheets/fs311/en/#
http://www.who.int/mediacentre/factsheets/fs311/en/#
http://doi.org/10.1161/CIRCULATIONAHA.105.169404
https://www.researchgate.net/profile/Colin-Chen-4/publication/220979218_Growth_Charts_of_Body_Mass_Index_BMI_With_Quantile_Regression/links/02bfe50ef9479c0a2f000000/Growth-Charts-of-Body-Mass-Index-BMI-With-Quantile-Regression.pdf
https://www.researchgate.net/profile/Colin-Chen-4/publication/220979218_Growth_Charts_of_Body_Mass_Index_BMI_With_Quantile_Regression/links/02bfe50ef9479c0a2f000000/Growth-Charts-of-Body-Mass-Index-BMI-With-Quantile-Regression.pdf
https://www.researchgate.net/profile/Colin-Chen-4/publication/220979218_Growth_Charts_of_Body_Mass_Index_BMI_With_Quantile_Regression/links/02bfe50ef9479c0a2f000000/Growth-Charts-of-Body-Mass-Index-BMI-With-Quantile-Regression.pdf
http://doi.org/10.1002/(SICI)1097-0258(19980228)17:4&lt;407::AID-SIM742&gt;3.0.CO;2-L
http://doi.org/10.1542/peds.114.2.e198
http://doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106&gt;3.0.CO;2-3
http://doi.org/10.1016/j.ajog.2019.04.023
http://doi.org/10.1016/j.biopha.2020.111179
http://doi.org/10.1111/j.1467-789X.2011.00952.x
http://doi.org/10.3346/jkms.2018.33.e47
http://doi.org/10.2147/DMSO.S238748
http://doi.org/10.1002/osp4.121
http://doi.org/10.1016/j.numecd.2012.11.006

	Introduction 
	Patients and Methods 
	Study Population 
	Anthropometric Data 
	Blood Pressure Measurements and Instrumental Examinations 
	Laboratory Analyses 
	Definitions 
	Statistical Analysis 

	Results 
	Discussion 
	References

