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Abstract
We identify and describe the distribution of temperature-dependent specific growth rates for

life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the

potential to provide for more robust modeling in thermal ecology since any conclusions

derived from it will be based on observed data rather than using theoretical assumptions. It

may also provide constraints for systems biology model predictions and provide insights in

physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher tem-

peratures up to 60°C there was a gap of attenuated growth rates. We found another peak at

67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regres-

sion to summarise and explore the data we were able to conclude that the gap represented

an actual biological transition between mesophiles and thermophiles that we term the Meso-

phile-Thermophile Gap (MTG). We have not identified any organism that grows above the

maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape,

suggesting that the growth rate limits arise from a trade-off between activity and stability of

proteins. The spectrum provides underpinning principles that will find utility in models con-

cerned with the thermal responses of biological processes.

Introduction
The cell maintains itself in a thermodynamically non-equilibrium state with respect to its envi-
ronment, but its capacity to do so has a limited temperature range [1]. Within that range
organisms can exhibit varying growth rates, with some growing more quickly than others, with
the fastest growth being ultimately limited by cellular mechanisms, including the error-rate of
replication, and accuracy and regulation of synthesis [2]. Previous work by us concerned a
model of temperature-dependent growth rates of microbes that were empirical [3], but this was
followed by a semi-mechanistic model based on thermodynamic properties of protein folding
[4]. In this paper we examine growth rates in a much broader context: growth rates of all life,
those rates that are possible at various temperatures, and how they are distributed. Others have
attempted to relate the metabolic rates of organisms to larger scale ecology processes [5]. That
particular model has been criticised on several grounds including its assumption of a constant
activation energy [6] and the validity of its size scaling coefficient [7]. In this paper we also
infer relationships between temperature-dependent growth with larger scale ecological
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processes and physiological processes at the organism level. We acknowledge a linkage between
metabolic processes and growth rates, but our consideration here is the observed distribution
of the growth rates themselves rather than a theoretical model of how they change with tem-
perature [5]. Since the relationships we identify are based on observed data we consider that
they provide a firmer foundation for further work. We call the distribution of these rates the
‘biokinetic spectrum for temperature’.

The Spectrum
We describe the biokinetic spectrum for temperature, define various terms to describe aspects
of the data, and propose a statistical method for describing the spectrum along with the fitting
procedure and the results. We then explain how we use a thermodynamic model of growth to
model the spectrum.

Spectrum Characteristics
We began by collating the data shown in Fig 1 from the peer-reviewed literature. We collated
the data by conducting intensive and regular searches to locate studies reporting temperature-
dependent growth rates. The data consist of a collation of data sets for organisms grown or
cultured at different temperatures. We use the word strain rather than species or taxa. This is
because some data sets are of a single species grown under different conditions, or the same
species grown by different researchers. The strains are largely unicellular organisms but there
are also some multicellular organisms. There were 1627 strains represented and a total of
10956 observations. Many strains were represented by growth curves consisting of multiple
points, while other strains appeared only as a single data point. We scaled all the growth rates
to the same units, which was growth per minute versus temperature in Celsius. It was not our
intention to obtain a data set that contained a random sample of strains since that was not, in
any case, possible when considering the whole of life. Instead, we aimed to include as wide a
range of strains as possible. This meant that we did not eliminate strains grown in suboptimal
conditions and that we were more likely to include culturable strains of economic, veterinary,
agricultural, or medical importance. Since random data were unavailable we proceeded by
examining the statistical structure of the data.

Most striking was the Δ-shaped distribution manifested by the set of points representing
the highest growth rate at each temperature, below which are strains growing at varying, but
slower, rates. Across a range of temperatures (Fig 1), these maximum growth rates form the
biokinetic spectrum for temperature. We are unaware of data covering the whole temperature
range over which life is known to exist being presented in this manner elsewhere. The distinc-
tiveness of the Δ-shape and the sharpness of its edge suggested that we were not likely missing
very many fast-growing strains. If the data were very incomplete at the upper boundary then
we would have expected a fuzzier edge. We made considerable efforts to locate data for strains
that grew above the upper boundary. Since we found none we speculate that such strains do
not exist.

The upper boundary exhibited a rapid curvilinear rise starting from a lower limit that began
below 0°C and reached a surprisingly sharp peak at about 42°C. We defined a new cardinal
temperature to refer to the maximum observed growth rate called Tsup, where ‘sup’ is short for
supremum. The Tsup represents the temperature at which the fastest known growth rate occurs
and was largely due to a single strain of Clostridium perfringens. At temperatures above Tsup

the boundary declined at a lesser rate to eventually approach zero above 120°C. We term the
boundary for the maximum rates at temperatures below Tsup the ‘ascending curve’, and the
boundary above it the ‘descending curve’. Since the maximum rate of growth of any organism
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Fig 1. The biokinetic spectrum for temperature. The observed rate of growth for all 1627 strains versus temperature consisting of 10956 data points. We
highlight as a visual indication the distribution of the data using dashed lines labeled ascending curve and descending curve. We indicate the location of the
Mesophile-Thermophile Gap (MTG) described in the text and of a possible secondary peak. We also show an examples of growth curves for three strains
(dashed red), and the curve described by Eppley [8] (solid green) and over the same temperature range he used. The inset shows a histogram of Topt of the
strains.

doi:10.1371/journal.pone.0153343.g001
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declines above Tsup, theories that assume that growth rates always increase with rising tempera-
tures must be incorrect or incomplete.

The strains in Fig 1 are represented by one or more points. The figure shows examples of
three strains with growth curves consisting of multiple data points. Also shown is the envelope
identified by Eppley [8] for phytoplankton growth rates, which is discussed later.

We indicate in the figure that at about 50°C there appears to be a gap that interrupts the
descending curve. We refer to this as the Mesophile-Thermophile Gap (MTG) since it lies on
the boundary between these thermal groups. We made considerable efforts without success to
locate data sets within the MTG. It was unclear from examining the figure alone if the gap
might have resulted from (a) sampling insufficiency, (b) attenuation of growth rate, (c) rarity
of suitable environments, or (d) difficulty in culturing strains. In the inset to Fig 1 we calculated
a histogram of strain Topt, which also showed a reduced frequency at about 50°C. In summary,
there was both an under-representation of strains and a reduction in the maximum rates at
about 50°C. If the MTG were to be regarded as real, and not a statistical anomaly, then growth
rates must increase at temperatures above it. This increase would continue then until a second-
ary peak located at about 67°C is reached. At still higher temperatures the maximum rates of
growth decline further, eventually reaching detection limits.

Motivating the Model
Previously we have shown that based on the assumption that temperature-dependent growth
rates of cells were limited by a single rate-limiting Master Reaction System (MRS) we could
accurately model the relative growth rates of strains in all three Domains (Bacteria, Archaea,
Eukarya) [9]. The MRS maintains that there is a single, rate-limiting, enzyme-catalyzed reac-
tion that limits growth rate. The same model also well described relative growth rates for
multicellular poikilothermic organisms and obtained relationships between thermodynamic
parameters that were consistent with expectations from biochemistry [10]. That work bridged
biochemistry and whole organism biology and provided strong support for a MRS common to
all life.

Although the growth rates of individual strains were modeled well by the thermodynamic
model, the Δ-shape distribution of the data did not appear to be implicit in the model. Neverthe-
less, if there were a single rate-limiting reaction common to all life then its upper rate limit would
also be universal. This suggests that it should be possible to obtain the Δ-shaped boundary from
the thermodynamic model by imposing additional assumptions. We hoped that a mathematical
description of the Δ-shaped limit might result in insight into the nature of the MRS.

However, it would have been a mistake to have derived a mathematical description of the
edge that formed the Δ-shaped limit based simply on the outlying points since this would have
amounted to ‘cherry-picking’ data. Instead, we developed a statistical approach using quantile
regression and a modeling assumption, which was that the quantiles depended on a function of
temperature. A quantile is a quantity below which a specific proportion of data fall. The objec-
tive of the quantile regression model was to summarise the data and explore any structure that
exists with them. Once we obtained the parameters of this function we hoped to relate them to
the parameters of the thermodynamic model. This would allow us to connect the thermody-
namics of cell processes to the distribution of rate of growth as well as the limiting growth rate
of life on Earth. These are the objectives of this paper.

Modeling the Spectrum
To describe the distribution of such rates we used Bayesian quantile regression (see Methods).
A quantile regression obtains a fitted line below which a particular proportion of the data is to
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be found. The quantiles could be thought of as describing the distribution of rates below the
boundary and given sufficient data, could come as close as desired to the upper limit of growth.
Quantile regression has been used elsewhere to describe plankton specific growth rates [11] but
that study made use of a frequentist approach and only described an ‘ascending curve’. We
report here, we believe for the first time, a description of a much wider range of data that also
shows a descending curve and investigates the distribution of rates beneath the ascending and
descending curves.

Eppley [8] calculated a power curve to fit an envelope to the upper limit of temperature-
dependent growth rates of mixed phytoplankton assemblages. We chose to follow this
approach and also fitted a power curve to the ascending curve. From examination of the data
in Fig 1 we considered that another power curve might well describe the descending curve. We
do not maintain that this is the only function that might be used nor that it has any biological
significance, but it has the merits of simplicity and symmetry. The ascending and descending
curves have the same form so their parameters have equivalent interpretations. The function is
given by Eq 1 in which r is the rate of growth (per minute), T is the temperature (°C), a, b, c, d
are parameters to be estimated, and Tsup can be derived from the parameters (see Methods).
The rate of growth, r, is proportional to the reciprocal of the generation time. The parameters b
and d control the rate of ascent and descent, respectively. A larger positive b value corresponds
to a steeper response to temperature change whereas a lower positive value indicates a shal-
lower response. A more negative d corresponds to a steeper decline in growth rate with increas-
ing temperature and a smaller negative d indicates a lesser decline. We refer to this as the
quantile curve model and the fitted curves as quantile curves.

r ¼
exp ðaþ b� TÞ T � Tsup; b > 0

exp ðcþ d � TÞ T > Tsup; d < 0
ð1Þ

(

Results
We proceeded in several steps. First we fitted the quantile curves to the entire data set, then
investigated whether there were subgroups of organisms with different quantiles curves at each
temperature, and whether the curves depended on trophic or metabolic status. Having mod-
eled the spectrum we then attempted to predict the form of the spectrum from our thermody-
namic model.

Quantile curves
We fitted the quantile curves within a Bayesian framework so that the results could be inte-
grated with our previously developed Bayesian thermodynamic model for temperature-depen-
dent growth rates [10]. We fitted curves for quantiles 50, 60, 70, 80, 90, 92.5, 95, 97.5%. We did
not select higher quantiles since these become more subject to error as 100% was approached.
We also did not select lower quantiles since we were interested primarily in growth rates that
defined the shape of the spectrum.

We show in Fig 2 the fitted quantile curves and give the coefficients in Table 1. Examination
of the quantile curves indicated that they conformed to the data on the ascending curve up to
Tsup. The temperatures at which the quantile curves peaked did not deviate greatly from the
Tsup observed from the data. This meant that even if the fastest growing strains such as Clos-
tridium perfringens were deleted the resulting quantiles would still have peaks at about the
same temperature. This agreement of the peaks in successive quantiles suggests that a
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Fig 2. Fitted quantile curves. The observed rate of growth for the 10956 data points strains versus temperature and posterior mean fits for the quantiles.
The percentile values per curve are shown on the left hand side. We show the fitted quantile curves as black lines and the data as points coloured according
to the quantile in which they appeared. The inset shows the observed rate of growth for those strains with Topt� 50°C (left) Topt > 50°C (right) with fitted
quantile curves for each case.

doi:10.1371/journal.pone.0153343.g002
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transition of some nature occurs at about this temperature and which is common to all life, or
perhaps, speculatively, involves an environmental influence, such as the structure of water.
We also noted that the Eppley curve [8] closely corresponded to the 60% quantile curve (not
shown). Although not as visually impressive as the ascending curves, the descending quantile
curves conformed to the data and served to emphasize the MTG. This suggested that if the
MTG was real then there were actually two groups of strains, one predominantly below
approximately 50°C and another above. Therefore, we also fitted another set of quantile curves
for strains with Topt � 50°C and Topt > 50°C. The Topt is the temperature at which an individ-
ual strain grows most rapidly. We show the resulting quantiles in the inset in Fig 2 and the
coefficients in Table 2. The conformation of these curves appeared to be a better visual match
to the observations. However, the quantile curves also appeared to differ radically in shape
between the two groups.

To quantify the apparent visual difference in shapes for the two groups we compared the
values of the ascending and descending parameters (b and d) for strains with Topt � 50°C to
those strains with Topt > 50°C. The 99% CIs for their differences in Table 3 indicated that the b
parameters generally did not differ between the two temperature groups for lower quantiles
(below 92.5%), but, by contrast, all but one of the d parameters differed between the two tem-
perature groups. This meant that the maximum rate of increase for biological growth had a
fixed value for all quantiles below the 95% quantile limit at all temperatures. The difference in
the d parameters suggests a limiting mechanism that differed between the two groups. Since we
observed a difference in the two groups we suspected that the MTG was not in fact a sampling
insufficiency or where strains were less likely to be found, but actually was a region where
growth was attenuated. We considered it to be a transition region that separated two groups of
organisms, one group with Topt � 50°C and another with Topt > 50°C.

To test if there may have been additional groups present with growth rates that varied on
narrower temperature ranges we calculated the quantiles for a series of overlapping tempera-
ture ranges each of width 30 degrees and each displaced by 1 degree above the previous one,
as shown in Figs 3, 4, 5 and 6. These figures show the consistency of the fitted quantile curves
over small temperature intervals on each side of the MTG. A width of 30 degrees ensured a
range of strains would be included in each. The quantile curves conformed well to the data up
to the lower bound of 37°C. Thereafter the secondary peak intruded which caused the quantiles
to stretch out. From 46°C onwards the quantiles again more naturally fitted the data. Trends in
the quantile curve parameters indicated the effect of the MTG as it was gradually included in
bins and then excluded again, suggesting that the MTG represented an actual biological transi-
tion rather than a statistical anomaly.

Table 1. Quantile curve parameters for the whole data set.

Quantile (%) a sd(a) b sd(b) c sd(c) d sd(d)

50 -8.085 0.012 0.062 0.0005 -5.293 0.046 -0.003 0.001

60 -7.846 0.015 0.076 0.0008 -5.012 0.034 -0.003 0.001

70 -7.484 0.024 0.082 0.0012 -4.331 0.079 -0.007 0.001

80 -7.095 0.027 0.090 0.0012 -3.288 0.054 -0.016 0.001

90 -6.492 0.020 0.086 0.0010 -2.600 0.071 -0.019 0.001

92.5 -6.378 0.022 0.086 0.0010 -2.465 0.071 -0.019 0.001

95 -6.194 0.024 0.085 0.0011 -2.324 0.111 -0.019 0.002

97.5 -6.065 0.011 0.085 0.0006 -1.692 0.121 -0.024 0.002

doi:10.1371/journal.pone.0153343.t001
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We plotted the quantile curve parameters for the same ranges in Fig 7. Although complex,
examination of their trends proved to be of interest. Below, the b parameter can be related to
the how fast the maximum growth rates increased with increase in temperature, while the d
parameter corresponded to how rapidly the maximum growth rates reduced with increasing
temperature. To simplify the interpretation we just discuss here the 97.5% quantile. The 97.5%
quantile for the a parameter remained steady until the upper bound reached 60°C above which
it declined until the lower bound reached 60°C; b remained steady until the upper bound
reached 75°C (lower bound 45°C) above which it declined until the lower bound reaches 60°C;
c declined gradually until the upper bound reached 75°C (lower bound 45°C) above which it
rose, then dipped between 60°C and above; while d rose to a peak at 33°C (lower bound 7.5°C)
then dipped until 42.5°C (lower bound 12.5°C) above which it rose, then remaining steady
after 60°C (lower bound 30°C). These patterns indicated the effect of the MTG as it was gradu-
ally included in bins and then excluded again and suggested that the MTG indeed represented
an actual biological transition. The MTG is a region that separates psychrophile-mesophile and

Table 2. Quantile curve parameters for strains with Topt � 50 or Topt > 50.

Quantile (%) a sd(a) b sd(b) c sd(c) d sd(d)

T � 50: 50 -8.100 0.012 0.064 0.0005 3.394 1.297 -0.181 0.026

T � 50: 60 -7.827 0.013 0.075 0.0006 5.248 1.196 -0.210 0.024

T � 50: 70 -7.517 0.024 0.085 0.0012 5.131 1.614 -0.199 0.031

T � 50: 80 -7.037 0.034 0.088 0.0015 4.925 1.769 -0.183 0.034

T � 50: 90 -6.441 0.017 0.083 0.0007 7.453 2.006 -0.220 0.039

T � 50: 92.5 -6.327 0.027 0.083 0.0011 6.997 1.713 -0.208 0.034

T � 50: 95 -6.153 0.021 0.082 0.0008 6.454 2.428 -0.193 0.048

T � 50: 97.5 -6.057 0.010 0.085 0.0006 5.517 2.857 -0.170 0.056

T > 50: 50 -8.438 0.239 0.064 0.0063 -5.104 0.111 -0.005 0.002

T > 50: 60 -8.316 0.299 0.067 0.0078 -4.899 0.095 -0.004 0.001

T > 50: 70 -8.021 0.283 0.065 0.0073 -4.529 0.116 -0.005 0.002

T > 50: 80 -7.905 0.319 0.070 0.0085 -3.948 0.206 -0.007 0.003

T > 50: 90 -7.446 0.378 0.067 0.0091 -3.059 0.398 -0.013 0.005

T > 50: 92.5 -7.130 0.278 0.061 0.0062 -2.323 0.412 -0.020 0.005

T > 50: 95 -6.947 0.227 0.059 0.0048 -1.954 0.465 -0.022 0.006

T > 50: 97.5 -6.821 0.229 0.059 0.0051 -1.512 0.541 -0.025 0.007

doi:10.1371/journal.pone.0153343.t002

Table 3. CIs for differences of b and d for Topt � 50 and Topt > 50. Table of 99% credible intervals (CIs) for
differences of b and d between strains with Topt � 50 and Topt > 50. A 99%CI that includes zero indicates that
there is a 99% probability that the two parameters do not differ.

Quantile (%) bTopt
� 50 � bTopt

>50 dTopt
� 50 � dTopt

>50

50 -0.02 0.01 -0.24 -0.12

60 -0.02 0.02 -0.26 -0.13

70 -0.00 0.03 -0.27 -0.13

80 -0.01 0.03 -0.26 -0.11

90 -0.01 0.03 -0.32 -0.08

92.5 0.00 0.03 -0.27 -0.08

95 0.00 0.03 -0.29 -0.06

97.5 0.01 0.03 -0.27 0.01

doi:10.1371/journal.pone.0153343.t003
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thermophile-hyperthermophile strains, each of which groups is internally consistent but dif-
fered one from another.

We then examined whether the results might vary by metabolic status or trophic status (Fig
8). After grouping the strains by Topt � 50 and Topt > 50 the descending curve showed two
minor peaks with one consisting almost entirely of anaerobes so we also divided the anaerobes
into two further groups. Examination of the b and d parameters (Table 4) showed that, after
disregarding differences between the� 50 and> 50 groups, that b parameter had very few sig-
nificant differences apart from the� 50 group between the aerobes having a slightly lower
maximum rate (mean b = 0.0833) than facultative anaerobes (mean b = 0.0897). For the d
parameter there was only one significant difference. In summary, we could not distinguish
strains on the basis of respiration.

In Fig 9 we show the quantiles for autotrophs and heterotrophs. As shown in Table 5 the b
parameter differs significantly between autotrophs (mean b = 0.0669) and heterotrophs (mean

Fig 3. Quantile curves for temperature bins�30, . . ., 19–49°. Shown are the observed rates for all strains plotted as separate overlapping bins based on
the observed strain Topt. The figure also shows the fitted quantile curves for temperature bins�30, . . ., 19–49°.

doi:10.1371/journal.pone.0153343.g003
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b = 0.0812) for the lower temperature group. This means that the upper maximal response is
slightly greater in heterotrophs than autotrophs, but since the d parameter does not differ they
share the same upper limit in the declining phase. Therefore we could distinguish strains on
the basis of trophic status, which implied that the limiting mechanism for the descending curve
might differ between the trophic groups.

We show in Fig 10 the prevalence of microbial strains within phyla at each temperature
along with the approximate location of the MTG. There were no obvious association of micro-
bial phyla with the MTG (Fig 10). The spans of several phlya terminated within the MTG but
only one was confined to it (Deferribacteres). The most populous within the MTG are Firmi-
cutes and Euryarchaeota.

From the above we concluded that we could describe the biokinetic spectrum using quantile
curves, that the MTG was an actual biological transition that separated two groups, and that
the two groups differed according to trophic status. However, in order to recover the Δ-shape

Fig 4. Quantile curves for temperature bins 20–50, . . ., 39–69°. Shown are the observed rates for all strains plotted as separate overlapping bins based on
the observed strain Topt. The figure also shows the fitted quantile curves for temperature bins 20–50, . . ., 39–69°.

doi:10.1371/journal.pone.0153343.g004
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from the thermodynamical MRS model we chose to treat the spectrum as a whole rather than
in two parts. We describe this in the next section.

Relation to Thermodynamic Properties
The MRS assumption, that growth rates are limited by a single reaction system common to
all life, made in our earlier studies [9, 10], might appear to be excessively strong. However,
Occam’s razor requires us to choose a simpler model over a complex alternative where each is
equally effective. Our thermodynamic model only contains eight distinct parameters of which
four are global and four parameters are assigned to each strain, one of which is a scaling param-
eter. With these we have previously well described growth curves for 230 strains [10]. Despite
the obvious complexity of cellular processes our relatively simple model could successfully
describe growth rates. This might have been because: (a) the MRS assumption is correct; (b)
some coordination occurs within metabolic systems, such as an adaptation for similar

Fig 5. Quantile curves for temperature bins 40–70, . . ., 59–89°. Shown are the observed rates for all strains plotted as separate overlapping bins based on
the observed strain Topt. The figure also shows the fitted quantile curves for temperature bins 40–70, . . ., 59–89°.

doi:10.1371/journal.pone.0153343.g005
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temperature dependencies of constituent enzymes [12–14]; (c) a metabolic-controlling mecha-
nism acts to regulate steps in metabolic systems [15]; or (d) a sequence of reactions fails one
by one at increasing temperatures, the collective result of which appears as a single reaction. If
we could obtain the overall Δ-shape from the thermodynamic model we might throw light on
such alternatives.

To see if we could obtain the overall Δ-shape from the thermodynamic model we began by
using it to fit growth curves for all suitable strains. Of the eight distinct thermodynamic param-

eters four are the main focus of this communication: c, a scaling constant; DHz
A, the enthalpy of

activation (J/mol) of the ‘master reaction’; ΔCP, the heat capacity change on denaturation (J/K
mol-amino acid residue) of the rate-controlling enzyme; and n, the number of amino acid resi-
dues. Another parameter that canbecalculated from the model is Tmes, the temperature of max-
imum enzyme stability, at which the putative enzyme in the MRS is least likely to be denatured.
We simultaneously fitted growth curves for all suitable strains (Figures 1–44 in S1 File) and

Fig 6. Quantile curves for temperature bins 60–90, . . ., >75°. Shown are the observed rates for all strains plotted as separate overlapping bins based on
the observed strain Topt. The figure also shows the fitted quantile curves for temperature bins 60–90, . . ., >75°.

doi:10.1371/journal.pone.0153343.g006
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Fig 7. Thermodynamic parameter trends. The parameter values for quantile curves versus the midpoint of the temperature bin. The posterior mean values
are shown according to their respective quantiles. The numbers at the top and bottom of each plot are the temperature bins for the plots shown in Figs 3–6.
For simplicity we concentrate on the 97.5% quantile. The 97.5% quantile for the a parameter remains steady until the upper bound reaches 60°C above
which it declines until the lower bound reached 60°C; b remains steady until the upper bound reaches 75°C (lower bound 45°C) above which it declines until
the lower bound reaches 60°C; c declines gradually until the upper bound reaches 75°C (lower bound 45°C) above which it rose, then dips between 60°C
and above; while d rises to a peak at 33°C (lower bound 7.5°C) then dips until 42.5°C (lower bound 12.5°C) above which it rises, then remains steady after
60°C (lower bound 30°C).

doi:10.1371/journal.pone.0153343.g007
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calculated their thermodynamic parameters (S1 Table). We show the over-plotted growth
curves in Fig 11.

The quantile curves were calculated from the complete data set while the individual growth
curves were calculated for strains with at least 5 data points and which had distinct peaks. It

Fig 8. Fitted quantile curves for strains by respiration status. Fitted quantile curves for strains by respiration status. Shown are the observed data and
95% quantile curves for each group.

doi:10.1371/journal.pone.0153343.g008
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was clear that the fitted curves for some strains exceeded some quantile curves while others did
not. In order to simplify the results below we define two terms. We refer to strains that exceed
the quantile curves as ‘exceedance strains’ and the others as ‘non-exceedance strains’. The
exceedance strains could be thought as exhibiting relatively faster growth compared to non-
exceedance strains. We calculated the mean thermodynamic parameters of the exceedance and
non-exceedance strains for each quantile for a series of narrow temperature bins. We show the

posterior means of DHz
A, ΔCP and n for exceedance and non-exceedance strains in Fig 12. We

omit the C parameter in the figure since it is simply a scaling parameter. We do not consider
those parameters to be independent, either in a biological or a statistical sense. Since there were
only a few growth curves that exceeded the upper quantiles we smoothed the trends to high-
light the posterior trends with temperature. The plots show the mean trends and not their vari-
abilities, which, in any case, are considerable, as is visually evident from the sensitivity of the
curves to smoothing.

Since the trends shown in Fig 12 have been previously reported by us [10] we do not
describe them in detail here. Our purpose was not to compare the thermodynamic model to
experimental data on isolated proteins, but rather, to show the observed trends of the model
parameters that were obtained from growth curves fitted using the thermodynamic model.
Notwithstanding the above point, a comment on n is warranted. There is no doubt that there
was a trend when n was plotted against temperature and that n decreased with increasing ther-
mophilicity. The declining trends of n are consistent with negative correlations of protein
length with temperature observed by others [16–20]. However, there was great deal of variabil-
ity of n at lower temperatures. This was partly a result of attempting estimation of model

Table 4. Probabilities that b or d are equal by respiration status. Shown is a symmetric matrix of the probabilities that b or d are equal for respiration sta-
tuses for the 95% quantile. Those probabilities less than 0.01 are bolded.

Respiration group

Aerobes Anaerobes Facultative Aerobes

Topt � 50 Topt > 50 Topt � 50 50 < Topt � 70 Topt > 70 Topt � 50 Topt > 50

Parameter b:

ATopt
� 50 1 0.004 0 0 0.196 0.076 0.016

ATopt
> 50 0.004 1 0.016 0.602 0.524 0.008 0.184

AnTopt
� 50 0 0.016 1 0.002 0.748 0.084 0.150

An50 < Topt � 70 0 0.602 0.002 1 0.431 0 0.102

AnTopt
> 70 0.196 0.524 0.748 0.431 1.000 0.283 0.664

FATopt
� 50 0.076 0.008 0.084 0 0.283 1 0.102

FATopt
> 50 0.016 0.184 0.15 0.102 0.664 0.102 1.000

Parameter d:

ATopt
� 50 1 0.096 0.006 0.116 0.618 0.427 0.395

ATopt
> 50 0.096 1.000 0.407 0.698 0.162 0.502 0.471

AnTopt
� 50 0.006 0.407 1 0.293 0.028 0.283 0.194

An50 < Topt � 70 0.116 0.698 0.293 1.000 0.220 0.602 0.572

AnTopt
> 70 0.618 0.162 0.028 0.220 1.000 0.590 0.389

FATopt
� 50 0.427 0.502 0.283 0.602 0.590 1.000 0.751

FATopt
> 50 0.395 0.471 0.194 0.572 0.389 0.751 1.000

doi:10.1371/journal.pone.0153343.t004
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strains from the highest quantiles for which there were the least amount of data available, but
was also evident in previous estimates using all the data [10]. There were surprisingly low val-
ues at high temperatures. There is no reason why these particular values for n should match
the mean lengths for proteins in cells. Our results refer to a particular putative protein in the

Fig 9. Fitted quantile curves for strains by trophic status. Shown are the observed data and the 95% quantile curves.

doi:10.1371/journal.pone.0153343.g009
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MRS rather than the average length of a protein in a cell. Protein lengths in cells are typically
right-skewed [21], which will result in their mean being located somewhat to right of the
median. Therefore, one would expect the average protein length to be higher than that of a ran-
domly chosen protein. Since we observe this parameter through its putative effect on cell divi-
sion rate, it is possible that n represents something more complicated then the number of
amino acids in a protein within the MRS. It may be sensitive to other characteristics, such as
the number of local or global entropic configurations, the number of amino acids involved in
the reaction centre, or the number of nonpolar amino acids.

The posterior mean DHz
A for exceedance and non-exceedance strains generally rose with

temperature (Fig 12), but, with the exception of the 97.5 and 99% curves, at about 40°C the

mean DHz
A for exceedance strains rose above the non-exceedance strains. It should be noted

that 40°C corresponded to the approximate location of Tsup. The ΔCP increased smoothly with
temperature and there was no differentiation between quantiles or between exceedance strains
and non-exceedance strains. However, n displayed the opposite pattern of quantiles to that of

DHz
A, although the ordering was more confused. We used the smoothed posterior exceedance

group parameters and the thermodynamic model to predict growth curves for the temperature
bins. We then calculated the envelopes that would enclose the ensemble of these fitted growth
curves (Fig 13). The envelopes produced an obvious Δ-shaped appearance, and in the less
smoothed case the MTG also appeared in the lower quantiles.

Without knowledge of the trends in the parameters we could not use the thermodynamic
model, which describes the growth rate of single organisms, to reproduce the Δ-shape of the
biokinetic spectrum that represents a very great number of organisms. However, we could
achieve this extrapolation when provided with additional information. This we did by using
smoothed trends of the thermodynamic parameters. The binning and smoothing are simply
means of coping with the variability introduced when dealing with the necessarily small num-
bers of fast-growing organisms. In short, while the thermodynamic model could not of itself
predict the maximum rate, by using the MRS and the smoothed thermodynamic parameter
trends, we could recover the biokinetic spectrum.

Table 5. Probabilities that b or d are equal by trophic status. Probabilities that b or d are equal by trophic
status for the 95% quantile. Those probabilities less than 0.01 are bolded.

Trophic group

Autotrophs Heterotrophs

Topt � 50 Topt > 50 Topt � 50 Topt > 50

Parameter b:

ATopt
� 50 1 0.267 0 0.068

ATopt
> 50 0.267 1.000 0.487 0.076

HTopt
� 50 0 0.487 1 0.006

HTopt
> 50 0.068 0.076 0.006 1

Parameter d:

ATopt
� 50 1.000 0.088 0.443 0.014

ATopt
> 50 0.088 1.000 0.050 0.710

HTopt
� 50 0.443 0.050 1.000 0.024

HTopt
> 50 0.014 0.710 0.024 1.000

doi:10.1371/journal.pone.0153343.t005
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Discussion and Summary
We need to distinguish between rate limits and temperature limits. Discussions on limits of
growth usually concern temperature extremes. The nature of the upper temperature limit for

Fig 10. Shown are the occurrences of microbial phyla by Topt. The horizontal lines indicate the temperature span of each phylum. The circles indicate the
occurrence of strains at each temperature and their diameters are proportional to the square root of their prevalence. The vertical block indicates the
approximate position of the MTG.

doi:10.1371/journal.pone.0153343.g010
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Fig 11. Over-plotted fitted growth curves.Over-plotted fitted growth curves from the thermodynamic model for the 694 strains that had at least 5 data
points and well defined peaks and with quantile curves for all the 10956 data points. The quantiles are the same as in Fig 2 and are calculated from the
observed data. The inset shows the same fitted thermodynamic curves coloured differently for those strains with Topt� 50 or Topt > 50 along with the
corresponding quantile curves for each group.

doi:10.1371/journal.pone.0153343.g011
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growth may be related to protein denaturation and thermophilic protein adaptations, mem-
brane structure, or hydrolysis [22]. Growth rate may be limited by reduced availability of sub-
strate but if the substrate is not limiting then growth rate may still be moderated by the
capacity for substrate affinity [23]. These are separate considerations: a mechanism that deter-
mines the upper and lower temperature limits might not necessarily be a determinant of the
upper rate limit. Clearly, temperature limits is a topic that could be informed by our data, but
this study concerned the upper growth rates possible for any strain and without limitation, and
the Δ-shape that revealed it. Importantly, we were able to reproduce the Δ-shape of the spec-
trum using a thermodynamic model based on the MRS.

In the thermodynamic model the parameters are characteristics of the putative rate-limiting

enzyme assumed in the MRS. Considering the model parameters, the DHz
A can be viewed as the

energy barrier that limits reaction rates, ΔCP positively correlates with thermostability, and n
negatively correlates with the size of the enzyme. As we have shown previously [9, 10] the pro-
tein thermostability temperature range of the MRS increases with temperature, which is consis-
tent with observations by others [24]. While we report a positive trend of heat capacity change
in the current manuscript we also show a decreasing trend with n. The joint effect of these

Fig 12. Thermodynamic parameters trends. Trends in the mean thermodynamic parameters (DHz
A, ΔCP and n) for strains above (solid lines) and below

(dashed lines) quantile curves versus temperature. Curves are cubic-spline smoothed with df = 5 on the top row and df = 10 on the bottom row.

doi:10.1371/journal.pone.0153343.g012
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Fig 13. Predicted spectra and observed data. Shaded areas are the predicted limits for the quantiles 50, 60, 70, 80, 90, 92.5, 95, 97.5 generated by the
thermodynamic model and assuming smooth trends in the thermodynamic parameters. The observed data are indicated by black dots. The upper plot (a) is
for smoothed parameters with df = 5 and the lower plot (b) is for df = 10.

doi:10.1371/journal.pone.0153343.g013
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parameters is to broaden the thermostability of the MRS. However, there are numerous possi-
ble mechanisms to promote protein thermostability [24]. The smoothed trends of these param-
eters are interpretable as an evolutionary trade-off between stability at higher temperatures and
activity at lower temperatures, but interestingly, we can now see that the switchover of priority
between protein activity and stability occurs at about Tsup. We do not imply that proteins that
are optimally active at high temperatures are necessarily more thermostable and active than
proteins that are optimally active at lower temperatures, but that evolutionary pressure has
resulted in a trade-off between thermostability and activity: while it is possible for a protein to
be engineered to be active and stable, organisms need to have proteins that they are able to
degrade [24]. In short, the form of the biokinetic spectrum, identified and defined herein,
appears to be consistent with an evolutionary trade-off between activity and stability with
changing temperature. However, we are still left with the MTG, which appears to require finely
tuned variations in thermodynamic trends and these remain unexplained.

We do not claim that the biokinetic spectrum necessarily arises from the thermodynamic
model, but that the form of the spectrum is not inconsistent with it. This means that the bioki-
netic spectrum is potentially understandable on the basis of cell physiology relating to protein
denaturation, such as would occur within the putative MRS. Whether this particular hypothesis
is valid is a matter still to be determined.

Falsity of the Δ-shape of the spectrum could be established by detecting a strain with a
growth rate in excess of its upper bound. Some workers have speculated that life began on
Earth more than once [25]. If still extant, detection of such life would be confounded by rarity
and lack of knowledge of its metabolism unless they utilised resources conventional organisms
cannot use. Since we lack knowledge of those resources we would have difficulty in detecting
such life. A strain that exceeded the spectrum limits would have to possess a very unusual
metabolism or adaptations. Our results here suggest a speculative possibility, which is that if an
organism is found in exceedance of the biokinetic spectrum it may be a candidate for an alter-
native biogenesis. In a more traditional vein, we expect that this work will be of aid to systems
biologists [26]. To be realistic their models must predict feasible growth rates, not just for single
organisms, but for all life. The biokinetic spectrum provides a limiting constraint on the possi-
ble range of model predictions of growth at any temperature and may perhaps allay some rea-
sonable doubts that have been expressed on the subject [27].

Since we show that the upper growth rate possible for all life has a distinct limit we suggest
that this observation may have particular implications to ecology, physiology and climate
change studies. For example, biological processes are often assumed to have an exponential
relationship with temperature that continues without moderation [28]. The form of the spec-
trum suggests that biodiversity, physiology, and other temperature-dependent biological
phenomena may be more complex than such models assume, or at least that the existence of
an upper limit may moderate prediction of such relationships. We expect that the spectrum
will provide underpinning principles for many models looking at the thermal responses of
biota.

The similarity of temperatures at which the quantile curves peaked was remarkable, suggest-
ing some underlying phenomenon common to all life occurs in the vicinity of Tsup. Such a phe-
nomenon would be expected to have impact on the temperature sensitivity of many biological
systems. We might expect that, as an example for further investigation, there may be an asym-
metry in the robustness of ecosystems immediately above and below Tsup.

This paper has generated a number of novel results. We:

1. define a Δ-shaped biokinetic spectrum for temperature;

2. describe and identify the MTG;
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3. provide evidence that the MTG represents an actual biological transition between meso-
philes and thermophiles;

4. use Bayesian quantile regression to describe the biokinetic spectrum;

5. explore variation of the quantile curve parameters with temperature and within subgroups;

6. replicate the Δ-shape of the biokinetic spectrum using smoothed parameter values for the
thermodynamic model.

Having described the existence and nature of the biokinetic spectrum, we expect further
work will concentrate on evolutionary implications, the origin of endothermy, application of
the spectrum to biological models, elucidation of causative mechanisms, transition phenomena
at Tsup, and, of course, the nature and existence of the MTG. These are matters of wide interest,
especially to physiologists, microbiologists, system biologists, and astrobiologists.

Methods

Data
Some of the data used in the analyses were generated by ourselves or by colleagues. These have
been previously reported in an earlier publication [10]. The remaining data were obtained by
searching the scholarly literature. We attempted to broaden the search as far as possible rather
than limit it to particular taxa. We use the word strain rather than species or taxa to refer to
organisms grown under different conditions or by different researchers. The overall aim was to
locate the fastest observed rates possible as well as the spread of rates below them. For this rea-
son we included multicellular organisms, such as insects and mites, as well as a single endo-
therm data set consisting of cultured mammalian cells. We included growth rates for strains
grown under multiple conditions but regarded them as separate strains. The overall aim was to
locate the fastest observed rates possible as well as the spread of rates below them. We did not
exclude any data based on the growth rate or by publication date. Our strategy to locate poten-
tially useful data consisted of searching for combinations of the search strings: “growth rate”,
“generation time”, “doubling time”, “intrinsic growth”, “specific growth”, “nov gen”, “nov sp”,
“isolate”, and “novel” using Google Scholar. Searches were conducted between 17 June 2014
and 18 September 2015. Some papers were also provided by colleagues. The reference lists of
the publications we located were searched for further potential publications. Publications that
described measurements of growth rates or generation times of cellular organisms at specific
temperatures were retained. Publications that only contained relative rates from which absolute
rates were not calculable, only reported growth-no growth status, or dealt with non-cellular
organisms such as viruses, were discarded. Most sources identified were peer-reviewed jour-
nals, but a small number were textbooks, conference proceedings, technical notes, and aca-
demic theses. All retained publications, or relevant chapters, were saved in PDF format.
Tabular listings of growth rates or generation times in publications were transcribed manually
into text files. Legible figures displaying growth rates or generation times were digitized using
the open source program g3data, available from https://github.com/pn2200/g3data. Both
tabular and digitised data were saved in the original units used within the publication. An R
program was written to process the data, which consisted of converting generation times to
rates (r = ln(2)/g), expressing the data as rate per minute, and generating plots of the data for
visual comparison with the original figures. Codes were assigned manually that uniquely iden-
tified strains within publications. The data were then collated into a single file for analysis. The
sources for the collated data, summarized in S2 Table, included 1627 strains and comprised
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10956 records of growth rates (or rates of metabolism in some cases). They covered a tempera-
ture range of -10–122°C. The raw data used in the analyses are to be found in S1 Data.

We noted above that the data were not randomly selected, since this was not possible. This
means that quantiles calculated herein depended on occurrences of slower-growing strains
within the data. Life on Earth contains many very slow-growing species that are largely multi-
cellular. However, only a small proportion of unicellular organisms are likely to have been
described [29]. Of greater concern is the number of non-culturable strains, since these may
also be slow-growing, but at least their prevalence may be assessable by nucleic acid probes
[30]. Their inclusion here would be to shift the quantiles upwards. However, this can be accom-
modated quite simply by examining higher quantiles, such as the 99% or higher.

The complete set of growth rates was used to calculate quantile curves. To fit the thermody-
namic model we restricted the analysis to the 694 strains that had growth curves consisting of
at least 5 data points and had a distinct peak.

Quantile Bayesian model
We used quantile regression to obtain fitted curves below which a specified proportion of the
observation fell. We chose to work within a Bayesian framework so that the approach was com-
patible with a previously developed Bayesian thermodynamic model. As noted in the text we
simultaneously fitted an ascending quantile curve and a descending quantile curve. These are
defined as:

r ¼
exp aþ b� Tð Þ T � Tsup

exp cþ d � Tð Þ T > Tsup

(

where T is temperature (°C), r is the predicted quantile, Tsup = (c − a)/(d − b) and a, b, c, d are
parameters to be estimated.

After exploratory work we choose the following priors for the parameters: a*N(−6.5, 0.01),
b*N(0.1, 0.01), c*N(1.0, 0.01), and d*N(−0.1, 0.01). Inference was obtained in the form
of posterior means and variances using Markov Chain Monte Carlo (MCMC) simulation [31].
The details of the fitting procedure are given elsewhere [32]. We also found it necessary to
restrict the proposals for a, b, c, d so as to maintain Tsup within the range of the observed data
and which resulted in b> 0 and d< 0. The above procedure was separately implemented for
various subsets of the data, such as trophic status groups. This was done simultaneously in a sin-
gle run for all quantiles.

To obtain trends of thermodynamic parameters with the temperature we first fitted the
quantile Bayesian model to overlapping subsets of data. The subsets consisted of growth data
of strains with Topt in the temperature ranges� 30, (1, 31], (2, 32], . . .,> 75. Then we com-
pared the fitted curves from the thermodynamic model for those strains with Topt that fell
within each interval to the quantile curves. In each interval, we tabulated the strains whose
thermodynamic growth curves rose above the quantile curve within the strain’s observed tem-
perature range (exceedance strains). Since there were only a few growth curves that exceeded
the upper quantiles we smoothed the trends to highlight the posterior trends with temperature
using cubic-spline smoothing with either df = 5 or df = 10. We averaged the thermodynamic

parameters (c, DHz
A, n, ΔCP) of the exceedance strains across the MCMC iterations. Finally, we

calculated predicted limits of growth rates using the thermodynamic parameters of the exceed-
ance strains using Eq 2.
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Thermodynamic model
Below, we refer to the observed growth rate as r and the modeled growth rate as F. The model
shown in Eq 2 below assumes that the growth rate is governed by a single, enzyme-catalyzed
reaction system that is limiting under all conditions. In the equation the quantity F is the
predicted rate given the temperature and the values of the parameters. The numerator

ðT expðc� DHz
A=RTÞÞ is essentially an Arrhenius model that describes the rate of the puta-

tive enzyme-catalyzed rate-controlling reaction as a function of temperature while the
denominator models the change in expected rate due to the effects of temperature on the con-
formation and, hence, catalytic activity of the putative enzyme catalyzing that reaction. The
model assumes that hydrophobic interactions are the larger contributers to denaturation
[33].

F ¼
T exp C � DHz

A
RT

� �

1þ exp �n
DH?�TDS?þDCP T�T?

H�T log T
T?
S

� �� �
RT

0
@

1
A

ð2Þ

In Eq 2: R is the gas constant (8.314J/K mol); c is a scaling constant that also incorporates

the Boltzmann and Planck constants; DHz
A is the enthalpy of activation (J/mol); T is the tem-

perature in degrees Kelvin; ΔCP is the heat capacity change (J/K mol-amino acid residue) upon
denaturation of the rate-controlling reaction; n is the number of amino acid residues; ΔH�

is the enthalpy change (J/mol amino acid residue) at T�
H the convergence temperature for

enthalpy (K) of protein unfolding; ΔS� is the entropy change (J/K) at T�
S the convergence tem-

perature for entropy (K) of protein unfolding.
The thermodynamic model has been described in previous publications [4, 34, 35]. Our

starred notation follows that of Murphy et al (1990) [36] except that ΔH�, ΔS�, and ΔCP are
expressed per mole of amino acid residue [4] and we introduce the n parameter. The parame-
ters, ΔH� and ΔS�, which are discussed elsewhere with a change in notation (i.e. ΔHu and ΔSu)
[37, 38], arise in the context of enthalpy-entropy compensation [39]. We follow [40] in assum-
ing ΔH� and ΔS� to be constants for hydrocarbons and also follow [39] in assuming T�

H and T�
S

are universal to protein, although they use a different notation.

We allowed four parameters to have values specific to each strain: (c, DHz
A, n, ΔCP). We

assumed these strain parameters to be Gaussian distributed with means specific to their ther-
mal group. Strains were grouped into one of 60 alternative thermal groups selected by exami-
nation of the percentiles of the observed Topt. The temperature at which denaturation is
minimized, Tmes, is calculated by Eq 3 [4].

Tmes ¼ T?
H � DH?=DCP ð3Þ

To control the variance homogeneity we worked on the square root scale. We assumed that
the square root of the observed growth rate had a Gaussian distribution with a mean given by

the square root of the modeled value,
ffiffiffi
F

p
, and with an unknown precision (reciprocal vari-

ance),
ffiffi
r

p � Nð ffiffiffi
F

p
;cÞ.

We used a Bayesian approach to allow for uncertainty in measurement and parameters to

be incorporated in a natural way through the appropriate prior specification. For c, DHz
A and n

we assigned normal priors to the strain parameters in which the means were specific to the
thermal group. In the case of ΔCP we used a simple prior since this parameter was always well
supported by data and did not benefit from ‘borrowing of strength’ between strains. The
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universal and thermal group group parameters were each assigned uniform priors. Prior speci-
fications are given in Table 6. Finally, the observational precision was assigned a gamma distri-
bution, ψ* Γ(0.001, 0.001). This was done simultaneously in a single run for all strains.
Inference was obtained in the form of posterior means and variances using MCMC. We chose
to update the parameters of each strain as a block using Haario updates [41]. We also used
Haario updates for each set of thermal group mean parameters and the strain parameter preci-
sions. For the universal parameters we used adaptive direction sampling [42] combined with a
low probability stepping-stone proposal [43].

Supporting Information
S1 File. Fitted curves for the thermodynamic model.
(PDF)

S1 Table. Posteriors for the thermodynamic model parameters. The strain posterior parame-
ter estimates are shown first, followed by universal posterior parameter estimates. For the

strains are shown the strain code, strain name, c (scaling constant), DHz
A (enthalpy of activa-

tion, J/mol) ΔCP (heat capacity change, J/K mol-amino acid-residue), and n (number of amino
acid residues). At the bottom of the table are shown the universal posterior parameter estimates
consisting of ΔH� (enthalpy change, J/mol amino acid residue), ΔS� (entropy change, J/K), T�

H

(convergence temperature for enthalpy, K), and T�
S (convergence temperature for entropy, K).

Strains are sorted by Topt.
(PDF)

Table 6. Priors for thermodynamicmodel parameters.

Parameter Priors

Scaling constant Cj �NðcdðjÞ; tCdðjÞ Þ
Cd �Unifð�20; 150Þ

tCdðjÞ �Gð10�3; 10�3Þ
Enthalpy of activation DHz

Aj �N DHz
AdðjÞ; tDHz

AdðjÞ
� 10�8

� �
DHz

Ad �Unifð0:01; 500000Þ
tDHz

AdðjÞ
�Gð10�3; 10�3Þ

Heat capacity change ΔCPj * N(65, 0.0001)

Number of amino acid residues nj �NðndðjÞ; tndðjÞ � 10�6Þ
nd �Unifð1; 2000Þ
tNdðjÞ �Gð10�3; 10�3Þ

Enthalpy change at convergence temperature ΔH* * Unif(3000, 7000)

Entropy change at convergence temperature ΔS* * Unif(10, 30)

Convergence temperature for enthalpy T�
H � Unifð320; 420Þ

Convergence temperature for entropy T�
S � Unifð320; 420Þ

Shown are the prior distributions which are either Gaussian, gamma or uniform distributions. The

parameters of the Gaussian distributions are their means and precisions (reciprocal variances). Strain level

parameters are subscripted by j, thermal group parameters by d, and membership of strain j in thermal

group d by d(j).

doi:10.1371/journal.pone.0153343.t006
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S2 Table. Sources of data. Shown are the strain code, strain name, Aero. (aerobic status:
A = aerobe, AN = anerobe, FA = facultative anaerobe, microA = microaerobe, U = unknown),
Troph. (trophic status: A = autotroph, H = heterotroph, M = mixotroph, U = unknown), Smp.
(size of data set), Tmin (minimum temperature for observed growth, C), Topt (temperature of
maximal observed growth, C), Tmax (maximum temperature for observed growth, C), and Lit.
(literature source).
(PDF)

S1 Data. Collated data. The file contains the collated data used in this paper.
(CSV)
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