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Kallmann Syndrome: Mutations in the Genes
Encoding Prokineticin-2

and Prokineticin Receptor-2
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Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to
gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL7 and FGFR1 underlie the X
chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes,
however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a
candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-
coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in
PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous,
homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation
was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this
individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal
development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic
transmission of Kallmann syndrome.
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most importantly, the incomplete penetrance of the disease

Introduction
impede linkage analysis, the positional cloning strategies that

Kallmann syndrome (KS) combines hypogonadotropic
hypogonadism and anosmia or hyposmia, i.e., a deficiency
of the sense of smell [1]. Anosmia/hyposmia is related to the
absence or hypoplasia of the olfactory bulbs and tracts [2].
Hypogonadism is due to deficiency in gonadotropin-releasing
hormone [3] and probably results from a failure of embryonic
migration of gonadotropin-releasing hormone-synthesizing
neurons [4]. These cells normally migrate from the olfactory
epithelium to the forebrain along the olfactory nerve path-
way [5]. In some KS patients other developmental anomalies
can be present, which include renal agenesis, cleft lip and/or
palate, selective tooth agenesis, and bimanual synkinesis [6].

This is a genetically heterogeneous disease, which affects
1:8000 males and approximately five times less females. Two
different genes have so far been identified. Loss-of-function
mutations in KALI (NCBI GenelD: 3730) [7-9] and FGFRI
(NCBI GenelD: 2260) [10] account for the X-chromosome
linked form and an autosomal dominant form of the disease,
respectively. KALI encodes anosmin-1, a locally restricted
glycoprotein of embryonic extracellular matrices [11], which
is likely to be involved in fibroblast growth factor-signaling
[6,12]. Nearly 80% of the KS patients, however, do not carry a
mutation in either of these genes [6].

Because the common infertility in affected individuals and,
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have been taken to find causative genes were based on the
analysis of rare KS individuals who carry chromosomal
rearrangements detectable by cytogenetics techniques
[7,8,10]. Here, we used a direct candidate gene approach
and identified two novel genes underlying the disease.

Results/Discussion

We first considered GPR73L1/PROKR2 (NCBI GenelD:
128674), encoding the prokineticin receptor-2 (PROKR2)
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Synopsis

Kallmann syndrome is a developmental disease that affects both the
hormonal reproductive axis and the sense of smell. In addition,
various nonreproductive and nonolfactory anomalies are occasion-
ally observed in a fraction of the patients. There is a developmental
link between the reproductive and olfactory disorders: neuro-
endocrine cells producing the gonadotropin-releasing hormone that
is deficient in the patients normally migrate from the nose to the
forebrain along olfactory nerve fibers during embryonic life, and
they most probably fail to do so in the patients. Affected individuals
usually do not undergo spontaneous puberty. Hormone replace-
ment therapy is the treatment to initiate virilization in males or
breast development in females, and later, to develop fertility in both
sexes. This is a hereditary disease with complex genetic trans-
mission. Mutations in either of two different genes, KAL7 and FGFRT,
have been found in approximately 20% of the affected individuals.
The authors report on the identification (in a further 10% of
patients) of various mutations in the prokineticin receptor-2 or
prokineticin-2 genes, encoding a cell surface receptor and one of its
ligands, respectively. Notably, some of the mutations were also
detected in clinically unaffected individuals. This clearly indicates
that additional, still unknown genetic or non-genetic factors are
involved in disease production.

[13-15], a most relevant candidate because olfactory bulbs do
not develop normally in mutant mice lacking this G protein-
coupled transmembrane receptor, and these mice also have a
severe atrophia of the reproductive system related to the
absence of gonadotropin-releasing hormone-synthesizing
neurons in the hypothalamus [16]. We thus sequenced the
two coding exons of PROKR2 and flanking splice sites in 192
unrelated individuals (144 males and 48 females) affected by
KS, including 38 familial cases. Ten different mutations (one
frameshift and nine missense mutations) were detected in 14
patients (four familial and ten apparently sporadic cases) in
the heterozygous (ten cases), homozygous (two cases), or
compound heterozygous (two cases) state (Figure S1, Table 1,
and Figure 1). Conservation of the mutated amino acid

PROK2 and PROKR2 in Kallmann Syndrome

residues in bovine, murine, and rat orthologous sequences
(Figure S2) argues in favor of a deleterious effect for all the
missense mutations. However, two of these mutations,
p-R268C and p.V331M, as well as a mutation (c.253C>T,
p-R85C) affecting the same residue as the p.R85H mutation
found in two KS cases and another missense mutation
(c.1004C>G, p.T335M) not found in the cohort of KS
patients, were detected, once each, in 500 alleles from
ethnically matched (Caucasian) control individuals. No other
nonsynonymous variant was found in the controls. In the
absence of functional testing, one cannot be sure that each
missense mutation found in KS individuals is causative of the
disease. Nevertheless, together with the KS-like phenotype of
Prokr2 knockout mice, the fact that the overall proportion of
PROKR?2 alleles carrying nonsynonymous mutations is sig-
nificantly higher in KS patients (18 out of 384 alleles) than in
controls (four out of 500 alleles; chi-square value = 13.5, p <
0.001) strongly argues in favor of the involvement of the gene
in KS.

Prokineticin-2 (PROK2) [17] is the main ligand of PROKR2.
We considered the possibility that mutations in PROK2
(NCBI GenelD: 60675), account for some KS cases, especially
since mutant mice defective in Prok2 have a marked
reduction in the size of olfactory bulbs and a loss of their
normal architecture [18]. We sequenced the four PROK2
coding exons (including the alternative exon 3 [19]) and
flanking splice sites in the same cohort of patients and found
four different point mutations (two missense mutations, one
frameshift mutation, and one single nucleotide substitution
in the translation initiation sequence [20]), all in the
heterozygous state, in two familial and two apparently
sporadic cases (Figure S1, Table 1, and Figure 1). These
mutations were not detected, or any other sequence variant,
in 500 alleles from ethnically matched (Caucasian) control
individuals. The p.G32R mutation affects the glycine residue
of the N-terminal hexapeptide AVITGA (see Figure S2). This
motif, which is conserved among prokineticins from mam-
malian and non-mammalian species, is critical for the

Table 1. PROKR2 and PROK2 Mutations in Kallmann Syndrome

Gene Nucleotide Exon Amino Acid Protein Domain Patients’ Status
PROKR2  c.58delC 1 p.20fsX43 N-terminal Heterozygote or compound heterozygote p.[20fsX43] + [M323I] (family B)
c.254G>A 1 p.R85H i Heterozygote (family C), homozygote (sporadic case)
c431G>A 2 p.R164Q i2 Heterozygote (sporadic case)
c.518T>G 2 p.L173R T4 Heterozygote (family D + three sporadic cases), homozygote (sporadic case),
compound heterozygote p.[L173R] + [Q210R] (family A)
¢.533G>C 2 p.W178S T4 Heterozygote (sporadic case)
C.629A>G 2 p.Q210R e2 Heterozygote or compound heterozygote p.[L173R] + [Q210R] (family A)
c.802C>T 2 p.R268C i3 Heterozygote (sporadic case)
c.868C>T 2 p.P290S T6 Heterozygote (sporadic case)
€.969G>A 2 p.M323| T7 Compound heterozygote p.[20fsX43] + [M323I] (family B)
€.990G>A 2 p.V331M T7 Heterozygote (sporadic case)
PROK2 c—4C>A 1 — Translation initiation site Heterozygote (sporadic case)
€.94G >C 1 p.G32R AVITGA motif Heterozygote (family F)
c217C>T 2 p.R73C Cysteine-rich region Heterozygote (sporadic case)
c.234_235insT 4 p.79fsX100 Cysteine-rich region Heterozygote (family E)

All the PROK2 mutations were found in the heterozygous state, whereas the PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In the
two sporadic cases homozygous for the R85H or L173R mutation in PROKR2, the mutation was detected in the heterozygous state in both clinically unaffected parents. None of the
patients carries mutations both in PROKR2 and PROK2. However, one of the patients heterozygous for the p.L173R mutation in PROKR2 is also carrying a missense mutation (p.S396L) in the

KALT gene responsible for the X-linked form of the disease.
DOI: 10.1371/journal.pgen.0020175.t001
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Figure 1. Segregation of Kallmann Syndrome and the PROKR2 or PROK2 Mutations in Affected Families

Filled symbols denote clinically affected individuals with both hypogonadism and anosmia (or hyposmia). Half-filled symbols denote individuals with
either anosmia only (right black part) or hypogonadism only (left black part). Genotypes, if available, are indicated below. The symbol + denotes normal
allele, and fs stands for frameshift mutation. In several pedigrees the mutation is associated with varying phenotypes. Notably, in family A the disease
apparently segregates according to a semi-dominant mode of transmission. The schematic representation of PROKR2 shows the locations of the nine
missense mutations found in familial and non-familial KS cases, with respect to the putative N-terminal (N ter), C-terminal (C ter), extracellular loop (e1-
e3), intracellular loop (i1-i3), and transmembrane (T1-T7) domains [13] of this G protein-coupled receptor.

DOI: 10.1371/journal.pgen.0020175.g001
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bioactivities of these proteins [21]. The p.R73C mutation
introduces a cysteine residue, which is expected to disrupt the
formation of the disulfide bonds of the protein [19,21].

Considering both the phenotypes of the Prokr2- or Prok2-
deficient mice and the likely deleterious effect of the human
frameshift mutations on protein synthesis, the various
PROKR2 and PROK2 missense mutations underlying KS are
predicted to be loss-of-function mutations too. Since the
same developmental disease, namely KS, apparently results
from insufficient signaling either through FGFR1 or through
PROKR2, the two signaling pathways are expected to
interfere at some level, possibly the activation of the
mitogen-activated protein kinase pathway [13,14,22]. In
addition, the KALI gene product anosmin-1, which has been
reported to enhance fibroblast growth-factor-signaling
through FGFR1 [12], could also play a role in prokineticin-
signaling through PROKR2. Indeed, both anosmin-1 and
PROK2 have binding affinities for heparan sulfate glycosa-
minoglycans, which are also well known co-receptors in
fibroblast growth-factor-signaling [23-25]. Notably, only
homozygous mouse mutants lacking Prokr2, Prok2, or Fgfrl
show abnormal olfactory bulbs [16,18,26], whereas it seems
that heterozygous mutations in any of the orthologous genes
can cause KS in humans ([10] and this study). A unifying
explanation could be that the local amount of anosmin-1
exerts a critical dosage effect both on FGFR1 and PROKR2
receptor activation, hence a higher dose of anosmin-1 in the
mouse (the murine Kall is expected to be pseudoautosomal
[27,28], whereas the human KALI is X chromosome-linked)
could protect heterozygous mouse mutants from the devel-
opmental failure.

It is noteworthy that KS patients who carry mutations in
PROKR2 or PROK2 have variable degrees of olfactory and
reproductive dysfunction (see Figure 1). In addition, they do
not seem to have any of the occasional clinical anomalies that
have been reported in the previously characterized genetic
forms of the disease, namely bimanual synkinesis, renal
agenesis, dental agenesis, and cleft lip or palate. However,
the KS patient carrying the p.R73C mutation in PROK2
suffers from a severe sleep disorder and marked obesity,
which might be related to the known circadian function of
prokineticin-2 and its potential roles in sleep-wake regulation
and ingestive behavior [29-31].

In human monogenic disorders, genuine dominance, where
heterozygotes and homozygotes have the same phenotype, is
unusual. In particular, most dominant developmental dis-
eases are far more severe in the homozygous state. Therefore,
the finding of both heterozygous and homozygous (or
compound heterozygous) KS patients for a given mutation
in PROKR2 (e.g., p.R85H or p.L173R, see Table 1) is quite
remarkable and raises the question of a possible digenic
mode of inheritance in heterozygous patients. In our cohort,
none of the patients carrying a mutation in PROKR2 was
carrying a mutation in PROK2 too. We did not find a
mutation in FGFRI in any of the individuals carrying a
mutation in PROKR2 or PROK2, either. However, one of the
patients heterozygous for the p.L173R mutation in PROKR2
(sporadic case) also carried a previously undescribed missense
mutation, p.S396L, in KALI exon 8 (Figure S3), which was not
detected in 500 alleles from control individuals. According to
the predicted structure of anosmin-1 [32,33], the mutation
modifies the first amino acid residue of the linker between
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the second and third fibronectin-like type III repeats [6], a
residue that is conserved among orthologous proteins from
vertebrates and invertebrates (Figure S3). This mutation thus
can be regarded as causative of the disease. Likewise, the
PROKR2 mutation carried by this patient, L173R, which was
found in six unrelated KS individuals and none of the
controls, is most likely pathogenic too. To date, this is the
only case of possible digenic inheritance reported in KS. It is
quite possible, however, that other patients heterozygous for
mutations in PROKR2 or PROK2 also carry a mutation in
another, still unknown KS gene. Indeed, mutations in KALI,
FGFRI1, PROKR2, and PROK2 together account for approx-
imately 30% of all the KS cases in our large series of patients,
which indicates that still other genes underlying the disease
remain undiscovered.

Methods

Written informed consent was obtained from all the
individuals who participated in the study. Genomic DNA
was obtained from peripheral blood samples or lymphoblas-
toid cell lines by using a standard phenol chloroform
extraction procedure. The genomic DNA from 250 unrelated
Caucasian individuals was used as a control (control individ-
uals were not examined to look for Kallmann syndrome
features). We used the ENSEMBL (http://www.ensembl.org)
and UCSC (http://www.genome.ucsc.edu) genome databases to
find the exon-intron structure and single nucleotide poly-
morphisms of PROK2 and PROKR2. We designed PCR primer
sets for amplification of exons and exon-intron boundaries
using PRIMER 3 software (http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3__www.cgi). Sequences of the primers used
to amplify and sequence the PROK2 four-coding exons and
PROKR2 two-coding exons in the patients and controls are
listed below. The primers used for the KALI and FGFRI
coding exons have been reported [9,10]. All identified
mutations were confirmed on a second PCR product. The
alleles from control individuals were analyzed either by direct
sequencing of the PCR products (PROKRZ2 exons) or by using a
denaturing high-performance liquid chromatography stand-
ard procedure followed by sequencing of abnormal products
(PROK2 exons, KALI exon 8).

PROK?2 primers:

PROK2__1F: 5'-GGCGGGGCTAGCCTTTAT-3’

PROK2__1R: 5'-CCTCTAGCCTGCCCTTCAG-3'

PROK2__2F: 5'-CCCACTTTCGAAAAATGAGAA-3’

PROK2__2R: 5'-TGTTTGTCGAGCACGTTACC-3'

PROK2__3F: 5'-GGCTTGGCTGTATCTTGCTC-3’

PROK2__3R: 5'-TGGGGCTGAACTGATAGGAC-3’

PROK2__4F: 5'-GGGTAGTTAACGCTCAGTAAACA-3’

PROK2__4R: 5'-GAGCATTTCTTTCTGGCACA-3’

PROKR?2 primers:

PROKR2__1F: 5'-GGCTCACTGACCCTGAAAGA-3'

PROKR2__1R: 5'-TGTCAGCCTGTCAGAGCCTA-3’

PROKR2__2F: 5'-GGATTCACTGTGCCACTGC-3'

PROKR2__2R: 5'-CCATGCAGCCTATGAACTTG-3’

Supporting Information

Figure S1. DNA Sequence Electrophoretograms for the Four PROK2
Mutations and Ten PROKR2 Mutations Found in Kallmann Syn-
drome Patients

Normal sequences are shown on the top, mutated sequences at the
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bottom. Asterisks denote sequences from the non-coding DNA
strand. Mutations are indicated by vertical arrows. All the mutations
were found in the heterozygous or compound heterozygous state in
Kallmann syndrome patients. In addition, two PROKR2 mutations,
namely ¢.254G>A (p.R85H) and c.518T>G (p.L173R), were also
found in the homozygous state in one patient each.

Found at DOI: 10.1371/journal.pgen.0020175.sg001 (2.4 MB TIF).

Figure S2. Alignment of PROKR2 and PROK2 Amino Acid Sequences
in Man, Cow, Mouse, and Rat (CLUSTALW)

The missense mutations found in Kallmann syndrome patients are
indicated by arrowheads. In the PROK2 sequence, the additional
peptide encoded by exon 3 (alternative splicing) is underlined, and
the N-terminal AVITGA motif that is critical for the bioactivity of the
protein is highlighted in yellow.

Found at DOI: 10.1371/journal.pgen.0020175.5g002 (91 KB PDF).

Figure S3. DNA Sequence Electrophoretograms from the Kallmann
Syndrome Patient Carrying Missense Mutations in PROKR2 and
KALI, and Interspecies Comparison of the Amino Acid Sequence of
KAL1 (Anosmin-1) around the Mutated Residue

Control electrophoretograms are shown on the top. The mutations in
PROKR2 and KALI are indicated by vertical arrows on the patient’s
electrophoretograms (bottom).
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