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Cega: a single particle segmentation algorithm to 
identify moving particles in a noisy system

ABSTRACT Improvements to particle tracking algorithms are required to effectively analyze 
the motility of biological molecules in complex or noisy systems. A typical single particle 
tracking (SPT) algorithm detects particle coordinates for trajectory assembly. However, par-
ticle detection filters fail for data sets with low signal-to-noise levels. When tracking mole-
cular motors in complex systems, standard techniques often fail to separate the fluorescent 
signatures of moving particles from background signal. We developed an approach to ana-
lyze the motility of kinesin motor proteins moving along the microtubule cytoskeleton of 
extracted neurons using the Kullback-Leibler divergence to identify regions where there are 
significant differences between models of moving particles and background signal. We test-
ed our software on both simulated and experimental data and found a noticeable improve-
ment in SPT capability and a higher identification rate of motors as compared with current 
methods. This algorithm, called Cega, for “find the object,” produces data amenable to 
conventional blob detection techniques that can then be used to obtain coordinates for 
downstream SPT processing. We anticipate that this algorithm will be useful for those inter-
ested in tracking moving particles in complex in vitro or in vivo environments.

INTRODUCTION
Developments in fluorescence imaging methods, such as total inter-
nal reflection fluorescence (TIRF) microscopy, have revolutionized 
live cell microscopy, allowing for monitoring of dynamic events in a 
variety of biological systems. TIRF uses an evanescent wave gener-
ated by reflecting a laser beam at a critical angle to illuminate fluo-
rophores within a very small distance (∼100 nm) from the surface of 
a glass coverslip. The high signal-to-noise achieved by this method 

improves spatiotemporal resolution over conventional imaging 
techniques, allowing the monitoring of fluorescent single molecules, 
molecular complexes, and organelles with nanometer precision on 
subsecond time scales. TIRF microscopy has been widely used to 
investigate the movement of molecular motors such as kinesin, dy-
nein, and myosin on their corresponding cytoskeletal tracks in puri-
fied systems and cells (Vale et al., 1996; Pierce et al., 1997; Belyy 
and Yildiz, 2014).

There have been substantial efforts to automate the tracking and 
analysis of the movement of motors and cargos from movies ac-
quired with TIRF microscopy using single particle tracking (SPT) 
(Meijering et al., 2006; Kalaidzidis, 2007; Jaqaman et al., 2008; 
Chenouard et al., 2009; Tinevez et al., 2017). SPT describes the set 
of techniques that select particles of interest and aggregate tempo-
rally separated particle coordinates into trajectories. The resulting 
trajectories are used to study the dynamics of target particles, in-
cluding processive movements, diffusion, and pausing. Thus, SPT 
algorithms must be able to select and follow a target with high spa-
tial and temporal fidelity.

The performance of many SPT algorithms are limited by prepro-
cessing steps that remove background signals and noise that can 
complicate the generation of particle coordinates that are linked 
into trajectories (Smal and Meijering, 2015). Current tracking 
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software, such as u-track (Jaqaman et al., 2008) and TrackMate 
(Tinevez et al., 2017), have made great strides to assist in the analysis 
of typical in vitro systems that use TIRF microscopy to image move-
ment of purified single motors along separated and immobilized 
tracks in assays where the signal density can be controlled. However, 
analysis of low signal-to-noise data is difficult if not impossible when 
using more complex in vitro systems, including engineered cytoskel-
etal bundles and extracted cytoskeletal systems where bidirectional 
transport occurs. Images and times series acquired from these more 
complex in vitro systems include substantial background fluores-
cence and nuisance particles that complicate application of SPT. The 
available software implementations of SPT include limited solutions 
for particle segmentation (Jaqaman et al., 2008; Tinevez et al., 2017) 
that fail when challenged with data sets that include high levels of 
background fluorescence, and these algorithms do not consider re-
moval of nuisance particles. In addition, these algorithms fail to ac-
curately track particles that change direction over time and cannot 
be used in systems that display bidirectional movement.

Here we present a filtering method, Cega, or more appropriately 
ce:ga (Tohono O’odham for find the object; Mathiot, 1973), for find-
ing and tracking moving fluorescent objects acquired from experi-
ments performed under conditions that include high noise (Figure 
1). This method can be substituted into the initial candidate-finding 
phase of current SPT software and modified for specific data set 
needs for more accurate particle detection. Our method was devel-
oped to analyze data acquired from an EMCCD camera with a back 
projected pixel size that slightly undersamples the Nyquist rate for 
the point spread function of a diffraction limited single molecule. 
First, we calibrated the camera to properly parameterize the noise 
statistics. Then, we focused on removing nuisance background sig-
nal using Cega. We used multiplicative noise statistics to generate 
two contrasting models that can then be used to augment the signal 
of moving motors while suppressing the signal from background 
and nuisance particles. We tested this model with both simulated 
and experimental data and found that it performed better than cur-
rent algorithms in tracking molecular motors moving through com-
plex cytoskeletal arrays that contribute high noise levels. The results 
suggest that this method provides a substantial improvement for 
low signal-to-noise tracking applications.

RESULTS
Computational strategy and optimization
We developed and used Cega to analyze fluorescently labeled kine-
sin motors moving along native cellular microtubule networks pre-
served after extracting membranes and soluble cytosolic compo-
nents (Figure 1A; see Materials and Methods). These data have 
substantial background fluorescence along with a high proportion 
of stationary fluorescent particles due to nonspecific binding that 
together represent experimentally structured noise. Movies of a 
truncated GFP-kinesin-1 construct (GFP-K560) moving along micro-
tubule arrays in axonal and dendritic compartments of extracted rat 
hippocampal neurons were acquired with an EMCCD camera. In 
axons, kinesin-1 motors move unidirectionally outward from the cell 
body due to the unipolar arrangement of the microtubule cytoskel-
etal tracks. However, in dendrites, kinesin-1 motors move in both 
outward (anterograde) and inward (retrograde) directions due to the 
mixed polarity of the microtubule cytoskeleton in this part of the 
neuron. Our goal was to better understand the characteristics of the 
motile behaviors of kinesin in these environments. However, manual 
analysis and current SPT software could not reliably distinguish mov-
ing motors from nuisance particles in the foreground. Thus, we de-
veloped and optimized Cega to analyze these types of data sets.

Here we outline our computational approach to detect and track 
single fluorescent particles that move bidirectionally from data sets 
with low signal-to-noise. We first provide an overview, then discuss 
implementation and optimization of this strategy to analyze single 
molecule data sets of kinesin motors moving within complex arrays, 
and conclude with a comparison of Cega to other computational 
approaches currently available. The normalization procedures and 
algorithms we developed are described in more detail in Materials 
and Methods, and the corresponding computer code is available 
online at https://github.com/prelich/Cega.

Camera calibration
Before application of any algorithm, such as Cega, to detect and 
identify particles of interest in a time sequence, the detector being 
used to collect the primary data must be calibrated to ensure pixel 
intensities are appropriately accounted for when analyzed (Figure 
1B). Individual frames of time sequences obtained from cameras 
and optical sensors typically have noise statistics that are poorly de-
scribed by a Poisson distribution, as a result of damaged detectors 
as well as additive and multiplicative noise that accompanies the 
conversions of photons to digital signals. These factors complicate 
the use of algorithms to eliminate noise since the data cannot be 
assumed to have Poisson statistics, and postprocessing data cannot 
be thresholded reliably (Mortensen and Flyvbjerg, 2016; Mortensen 
et al., 2010). Thus, camera calibration is required before using Cega 
to linearly transform the measured pixel intensities of a series of 
time frames to generate Poisson-like statistics.

Specifically, a stationary object with a constant rate of photon 
emissions acquired over several frames will register pixel intensities 
that satisfy the following relation:

K var Ki i( )=  (1)

where, given a constant emission of photons at a pixel i, the time-
averaged intensity of the calibrated pixel, <Ki>, is equal to the tem-
poral variance of that calibrated pixel, var(Ki). A Poisson-like distri-
bution is a noninteger analog of the Poisson distribution with units 
of ‘effective photons’. For our Poisson-like model, the probability of 
observing some positive real number K given an expected value μ is 
defined as:

P K exp K|| [ ] 1K 1( )( ) ( )µ = µ −µ Γ + −
 (2)

The digital signal recovered from a scientific camera will be re-
ported in arbitrary digital units (ADUs) because pixel statistics are 
dependent on the camera’s configuration. ADUs are sufficient quan-
tities for relative comparisons or when the follow up analysis treats 
signal noise as irrelevant or predominantly additive. For algorithms 
that factor in multiplicative noise, the conversion factors that relate 
a set of ADUs to effective photons are required quantities. Extensive 
work on CCD (Young et al., 1998) and sCMOS (Huang et al., 2013; 
Babcock et al., 2019) sensors has demonstrated that statistical re-
gression with a simplified model can effectively recover Poisson-like 
statistics for estimators that use multiplicative noise models. Given 
that a scientific camera produces an output signal Si at pixel i the 
signal components are defined as:

S G K O Ri i i i i= + +  (3)

where Ki is the effective photon count, Gi is the multiplicative gain 
factor on the Poisson-like signal, Oi is the constant mean offset, and 
Ri is an unbiased random electronic signal generated from the cam-
era read noise. The purpose of camera calibration is to recover Gi, 
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Oi, and var(Ri) and to use these quantities to estimate the effective 
photons in movies acquired from the calibrated camera. Although 
the model used to recover Ki is independent of sensor type, calibra-
tion techniques will vary among cameras. For EMCCD cameras, pix-
els are read out in serial so it’s typically assumed that Ri = R, Oi = O, 
and Gi = G (see Materials and Methods for estimation). The esti-
mated values for the EMCCD camera used to acquire movies of 
moving kinesin motors were R < 1 effective photon, G = 70 ADU/
effective photon, and O = 2293 ADU. The calibrated model we cal-
culated was similar to the initial uncalibrated data after brightness 
and contrast enhancement and maintained the signal from both 
moving and stationary particles as well as the background (Table 1; 
Figure 1C, Calibrated; and Supplemental Videos S1–S4). While we 
focus here on data obtained from EMCCD cameras, it is possible to 
adapt this algorithm for data acquired by other camera types includ-

ing sCMOS cameras. For example, Huang et al. (2013) describe how 
to adapt filtering algorithms for sCMOS cameras through the use of 
a Poisson approximation for convolving a Poisson and Gaussian 
distribution.

Estimating the motion model 〈P〉
It is typical in fluorescence microscopy to perform a background 
subtraction (Lindeberg, 1998; Murphy and Davidson, 2012) when 
dealing with images where signal detail does not blend with the 
background. However, this approach is insufficient for data sets that 
include moving fluorescent particles that are occasionally obscured 
by locally high background levels or stationary fluorescent particles 
(see below). Thus, we designed an algorithm that relies on differ-
ences in the noise statistics between models of moving particles 
and stationary noise to better identify particles of interest. We 

FIGURE 1: Cega workflow. (A) Example time sequence taken from image sequence of kinesin motors moving within an 
axonal compartment, as well as corresponding tracks calculated after Cega detection. (B) Diagram of Cega steps 
leading to spot detection. Font between each step indicates values used to process axonal and dendritic data. 
(C) Image sequence of time points in A after processing with each of Cega’s steps. Image stills represent how data are 
manipulated at each step. Green arrows indicate moving spots, while red arrows indicate positions of stationary spots. 
Dim-colored spots in the KL divergence images represent locations of spot detection. Spots in the LoG images 
represent detected spots, colored by appearance over time. Spots corresponding to the same track are connected with 
the same colored lines.
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engineered a solution that utilizes the properties of Poisson-like sta-
tistics in K to identify particles from regions where the noise statistics 
suggest evidence of a moving particle.

To resolve the moving particles from background signal, we first 
created two models from the primary data, one representing the 
moving particles (e.g., fluorescently labeled kinesin) and the other 
representing stationary signals. The processively moving kinesin 
motors present in the effective photon count model K can be readily 
followed over background by eye when visualizing the time se-
quence as a movie at 10 frames per second (fps). However, it is dif-
ficult to computationally identify these motile particles using an au-
tomated algorithm that processes frames independently. We sought 
inspiration from the human visual system (Lindeberg, 1998) because 
it correlates pixels in adjacent frames of a movie to augment object 
recognition. We performed a spatiotemporal convolution of the pix-
els in K according to a ballistic diffusion model to supplement the 
signal of dim photon signatures from moving motors. We reasoned 
that a pixel, i, at frame, j, should be temporally correlated to a 
Gaussian blurred pixel, i, at frame, j ± n, where the Gaussian filter 
has a SD (σ) of σ ∝ n. Each pixel i at frame j was averaged with its 
temporal neighbors with weights calculated from a 1-D Gaussian 
kernel with a σ, of 1 frame.

In the interest of computational efficiency, we truncated the 
length of our temporal kernel, T(n), to a size of 5 temporal pixels. We 
generated two Gaussian filter movies, one with a σ of 1 pixel for 
pixels in adjacent frames to pixel i which we denote as G1(K) and 
one with a σ of 2 pixels for pixels 2 frames before and after pixel i 
which we denote as G2(K). We chose a spatiotemporal window blur 
of 5 frames (2 frames before and after) since >95% of the moving 
motor signal in our data are maintained within 2 adjacent pixels. For 
every pixel i at frame j the estimated motion model 〈P〉 mean as:

P T G K T G K T K

T G K T G K

2 1 0

1 2

ij i j i j i j

i j i j

2 , 2 1 , 1 ,

1 , 1 2 , 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − + − +

+ +

− −

+ +  (4)

For this work, all of our convolution operations use reflective 
boundary conditions. Each pixel in each frame of the resulting motion 
movie was temporally and spatially averaged with neighboring pixels; 
the resulting movie was more blurred than the calibrated movie, but 
maintained the signal from moving motors and background (Table 1; 
Figure 1C, Motion; and Supplemental Videos S1–S4).

Estimating stationary model 〈Q〉
The program next generates a stationary model 〈Q〉 to represent the 
background fluorescence. The background within our data is struc-
tured and nonuniform, and Cega is suited for suppressing this fluc-
tuating and structured background. The effectiveness of Cega is 
reliant on how well the stationary model estimates the background 
of the motion model. Since we used a sequence of expanding 
Gaussian filters to estimate 〈P〉, a similar level of blurring is required 
for the estimate of 〈Q〉, or there will be structural artifacts wherever 
the background has sharp features. To ensure 〈Q〉 has the same 
resolution as 〈P〉, we generate an intermediate movie of convolved 
filters without temporal correlations.

B T G K T G K T K

T G K T G K

2 1 0

1 2

i j i j i j i j

i j i j

, 2 , 1 , ,

1 , 2 ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − + − +

+ +  (5)

The temporal median filter was then applied to every pixel in B. 
This step is similar to the implementation of median filters for de-
tecting fluorophore signals in single molecule localization micros-
copy data (Piccardi, 2004; Hoogendoorn et al., 2014), except with 
an added Gaussian filter. Ideally, the median filter needs to suppress 
dynamical fluctuations from moving motors while representing a 
gradually fluctuating background as accurately as possible. There-
fore, the sliding window must exceed the duration of the moving 
motor signal, or else the motor signal will remain within the station-
ary model and will be removed when the Kullback-Leibler (KL) diver-
gence is applied against the motion model. We chose a sliding 

Step
Optimal values estimated for 

experimental data How to estimate values
Additional considerations 

for optimal use

Pixel calibration Offset = 2293 and Gain = 71 Estimated from series of dark 
frames from EMCCD camera 
(see Materials and Methods).

Data must be calibrated before Cega. 
Calibration is specific to the camera used.

Stationary model 
estimation

Sliding temporal window me-
dian filter = 31 frames.

Duration of >95% of moving 
motors of interest.

If tracking particles that move for long pe-
riods of time or periodically pause, choose 
a window size encompassing the duration 
of >95% of the particles of interest.

Motion model 
estimation

Spatiotemporal gaussian blur = 
5 frames

Duration that >95% of moving 
motors remain within 2 adjacent 
pixels.

Smaller temporal kernel provides better 
computational efficiency.

KL divergence No user defined parameters are 
required.

No user defined parameters are 
required.

Stationary and motion models are used as 
input.

Connectivity filter 3 connected pixels >0.1 nats Threshold set to 95th percentile 
of connectivity model.

Additive salt noise results in many false 
positives. This noise is removed before 
candidate finding by applying a threshold.

LoG filter 3 × 3 neighborhood pixel sum 
from connectivity filter >5 nats.

Threshold set to 95th percentile 
of LoG model.

The LoG image sequence is used to find 
initial local minima. Then, connectivity 
image sequence values for these posi-
tions are used to threshold local minima 
appropriately.

TABLE 1: Cega thresholding values used for experimental data.
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window of 31 frames, 15 frames before and after the pixel of interest 
to sample our median pixel as it appeared to provide the best com-
promise between dynamics suppression and background estima-
tion accuracy (Supplemental Figures S1 and S2). For our data, >95% 
of moving motors moved within this 31 frame range. The stationary 
model (Table 1; Figure 1C, Motion and Stationary; and Supplemen-
tal Videos S1–S4) used more frames than the motion model, and the 
resulting stationary movie is even more blurred than the motion 
movie. 〈Q〉 is defined as the movie generated after applying a non-
temporal averaging of the Gaussian filters used on 〈P〉, followed by 
a temporal median filter with a sliding window of 31 frames.

KL divergence: segmenting moving particles 
from noisy data
Next, the differences between moving 〈P〉 and stationary 〈Q〉 mod-
els are used to resolve moving particles from stationary noise. To do 
so, we used the KL divergence (Kullback and Leibler, 1951) to esti-
mate the dissimilarity between the stationary and the motion mod-
els. The general approach is to estimate two separate model hy-
potheses from the movie K and apply the KL divergence on a 
per-pixel basis that calculated the dissimilarity between groups.

The KL divergence for some random quantity x given hypothesis 
P and tested against null hypothesis Q is defined as:

D P Q P x
P x

Q x
dx|| lnKL ( ) ( ) ( )

( )= ∫






 (6)

In our application, we posited two hypotheses with Poisson sta-
tistics, the motion 〈P〉 and stationary 〈Q〉 models, where the quantity 
x represents the effective photon counts that could be measured in 
an image pixel. We hypothesized that the movie K is a single in-
stance of x, a Poisson-like realization of the per pixel distribution P. 
We wanted to see how poorly a per pixel distribution Q would pre-
dict K if P more accurately modeled the input data and Q only mod-
eled stationary objects. In other words, the pixels in either 〈P〉 or 〈Q〉 
can be used to represent the expectation value of the pixels in K, 
but since they are different models they will lead to different prob-
ability densities per pixel. Since K is Poisson-like, this means that the 
KL divergence of the i-th pixel in Q from the i-th pixel in P is the KL 
divergence between two Poisson distributions:

( ) = − +






D P Q Q P P
P

Q
|| lnKL i i i i i

i

i
 (7)

Given estimators for 〈P〉 and 〈Q〉, the KL divergence movie (KLM) 
is generated (Table 1, Figure 1C, KL divergence; and Supplemental 
Videos S1–S4). The KL divergence model attenuated the back-
ground signal while enhancing the signal of moving motors, hence 
isolating the particles of interest over the background.

Connectivity filtering: denoising the KLM
The KLM has larger pixel values where the two models are in dis-
agreement, suggesting evidence of mobile motors since 〈Q〉 was 
designed to ignore motion. However, the estimators are not perfect, 
and this results in unusually noisy pixels throughout the movie where 
〈P〉 and 〈Q〉 are in spurious disagreement with one another. This 
produces white pixels, known as salt noise, that are sprinkled in 
throughout the movie, without producing darker pixels, or pepper 
noise. Since the data are under sampling the Nyquist limit, the ad-
ditional effect of temporal averaging in 〈P〉 all but guarantees that 
the signal left by the moving motors spreads over multiple pixels. 
The spurious noise of the KLM is removed with a connectivity filter 
(Table 1; Figure 1C, Connectivity; and Supplemental Videos S1–S4), 
which eliminates all but the top 95% of the data within this model 

that includes the moving motor signal (Supplemental Figures S1 
and S2). To do this, any 3 × 3 pixel subregion in the KLM must have 
at least 3 pixel values greater than the 95th quantile, measured to 
be 0.1 nats (units of natural logarithm), or the center pixel of that 
subregion is set to 0 in the connectivity movie. The remaining signal 
represented moving particles (colored circles in the connectivity 
row; Figure 1C and Supplemental Videos S1–S4).

LoG filtering and detecting local minima
The denoised KLM is then passed through a scale space Laplacian 
of Gaussian (LoG) filter (Lindeberg, 1998) to detect the local curva-
ture of the signal left from the connectivity filter, using two σ values, 
1 and 1.5 pixels, representing the parameter width of the filtering 
kernels (Table 1, Figure 1C, LoG; and Supplemental Videos S1–S4). 
This step enhanced the boundaries of the motors where there is a 
high transition from dark to bright signal and returned negative val-
ues at their peaks, which is why the signal appears as circles with 
black centers (colored circles in LoG row; Figure 1C). The smaller σ 
value represents a typical motor signal and the larger σ value helps 
to identify potential motors that are moving much faster and display 
a smeared information signature in the denoised KLM. We did not 
notice an improvement in object detection with additional scales in 
the LoG filter. Other SPT programs such as u-track (Jaqaman et al., 
2008) and TrackMate (Tinevez et al., 2017) also use filters based on 
LoG segmentation, but apply them to raw data.

Local minima from the LoG filtered movies are then aggregated 
into a list of potential signal coordinates (Table 1, LoG Filter). The 
coordinates for each local minimum in LoG space (x, y, t) are used to 
retrieve the KL divergence score of the associated extremum pixel. 
Coordinates that point to a 3 × 3 region of KL divergence values that 
sum to less than a user-specified threshold were discarded. We used 
the 95th quantile of the connectivity movie (5 nats) to preserve only 
coordinate positions of moving motors (Supplemental Figures S1 
and S2). After detection, coordinates can be connected into trajec-
tories and analyzed with conventional tracking algorithms available 
for downstream SPT processing (Supplemental Videos S5–S8).

COMPARISON TO EXISTING METHODS
Candidate finding
To test Cega’s ability to correctly detect simulated particles over 
typical background signal, we generated a time series of simulated 
particles by adding simulated photons on temporally filtered experi-
mental data (see simulation methods). Fluorescent particles that 
represent GFP-K560 were simulated with mean photon emissions 
ranging from 50 to 600 photons per full frame of acquisition, corre-
sponding to a signal-to-noise ratio (SNR) ranging from 0.7 to 8.5. 
This range includes the SNR within our experimental data (Wang 
et al., 2014), which was measured to be ∼4 following integration 
time, but also encompasses SNR expected from dimmer fluorescent 
proteins as well as brighter organic dyes. Moving particles were de-
tected using Cega and background subtraction of median or mini-
mum temporal filters with a 31 frame window, or standard particle 
detection with no background subtraction (Lindeberg, 1998). All 
methods were manually tuned with thresholds to maximize perfor-
mance at a specific probe intensity. The background intensity was 
held fixed in simulations because detection capability is a function 
of SNR, and our simulations cover a large range of SNRs. The spot-
finding algorithms had a threshold based on the maximum pixel 
value in a 3 × 3 pixel neighborhood of the estimated spot center. To 
quantitatively compare Cega’s performance against other particle 
detection methods processes, we calculated the Jaccard index and 
recall rate (see Materials and Methods). The Jaccard index is a 
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statistic used to understand the similarities between sample sets 
(Milligan, 1981) and in this case is a measure related to the similarity 
between spot positions detected by each of the detection pro-
cesses compared with the actual simulated spot positions. The re-
call rate, or true positive rate (TPR), is a measure of the ability of 
each of the detection processes to find all the simulated spots.

The performance of Cega was ranked among typical spot-find-
ing algorithms that use the raw movie or a background-subtracted 
movie as the signal prior to scale space LoG filtering (Figure 2). No 
algorithm tested was capable of providing a detection solution at a 
SNR of ∼0.7, but Cega showed noticeable improvements at a SNR 
of ∼1.4 and the median background-subtracted spot finder matched 
performance after the SNR exceeded 4.2, which is greater than the 
range of our experimental data. The minimum background-sub-
tracted spot finder met up with the prior two algorithms at a SNR of 
4.9. The standard spot finder did not catch up in performance but 
started to improve significantly after the SNR exceeded 4.9.

The trends from the Jaccard index test show that any sort of 
background subtraction is a vast improvement over spot finding 
with the raw image (Figure 2, A and B). The trends also show that 
Cega is able to discern between false signal and a moving motor 
with less information than the background-subtracted methods. The 
recall rate was high for all methods at high probe intensities but was 
at 50% for Cega at ∼0.7 SNR (Figure 2, C and D), since Cega could 
not reliably extract particle features at this SNR. The other methods, 
which had twice the recall rate at ∼0.7 SNR, had similar or lower Jac-
card indices, which meant they had twice as many false positives. 
Finer parameter tuning could raise or lower Jaccard indices by a few 
percentage points, but the trends are clear: Cega performs more 
reliably at lower probe intensities and background subtraction 
methods converge in performance shortly thereafter.

In addition, receiver operating characteristics (ROC) curves indi-
cate clearly that Cega outperforms the other spot-finding algo-
rithms over a range of parameter values (Supplemental Figure S3). 

These curves, similar to Reismann et al. (2018), plot the TPR against 
the false detection rate (FDR) as one parameter is varied at a time. 
Points falling in the upper-left quadrant are ideal, as they maximize 
the number of true positives and limit the number of false positives. 
For Cega, we varied the stationary model sliding window size and 
the connectivity filter and LoG filter KLM thresholds. For the other 
spot-finding algorithms, we could only vary the pixel threshold. In 
general, the ROC curves resulting from sweeping Cega’s parame-
ters were shifted to the left of that produced from sweeping the 
other spot-finding algorithms, suggesting that Cega did not pro-
duce as many false positives as the other detection methods over a 
large range of Cega’s parameter values. The values for the sliding 
window and connectivity filter and LoG filter KLM thresholds chosen 
for Cega detection fell well below a FDR of 0.5, where the true posi-
tive fits overpower the number of false-positive fits.

Tracking
We also tested the ability of Cega to effectively discard stationary 
particles, which becomes apparent when performing a full tracking 
experiment. Cega detection was performed on simulated data with 
mean photon emissions of 200, or 2.8 SNR, as this SNR is similar to 
that of the dimmer particles within our experimental data. After can-
didate finding, simulated motor spot coordinates were connected 
into trajectories using an in-house tracking software (Relich, 2016; 
Schwartz et al., 2017) based on the linear assignment problem (LAP) 
used in u-track (Jaqaman et al., 2008). The trajectories formed after 
application of Cega or median background subtraction were then 
displayed on kymographs and compared against the known simu-
lated spot trajectories. Kymograph plots of simulated tracks show 
that parameter values chosen for Cega were optimal (Supplemental 
Figures S1 and S2), and spot detection using Cega provided for 
more accurate tracking of simulated particles compared with me-
dian background subtraction which had lower Jaccard indices 
(Figure 3). The zoom-in overlap shows that the median background 

FIGURE 2: Analysis of Cega spot detection. (A, B) Jaccard index values calculated for simulated spots detected with 
Cega, median or minimum background subtraction methods, or standard methods, as the SNR increases. (C, D) Recall 
rate for detection methods as SNR increases. Simulations were run 100 times and resulted in a SD of <0.0045.
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subtraction methods resulted in many false tracks, most likely due to 
capturing background signal. Comparison of the Jaccard index and 
recall rates showed that Cega was more accurate in generating 
known tracks. This was true for simulated movies from both axons 
and dendrites with differing background signal. The difference in 
Jaccard index between tracks resulting from Cega and median 
background subtraction was greatest for the simulated axonal 
movie which contained uneven illumination and more background 

signal than the dendritic movie. In addition, Cega allowed for im-
proved tracking in the simulated dendrite movie, where particle 
density was higher.

After testing Cega with simulated data, we used Cega to analyze 
our experimental data (Figure 4). Motor tracks detected during 
Cega analysis of experimental movies were mostly linear, with ve-
locities similar to those expected from kinesin-1 motors in an in vitro 
system, while median background subtraction produced many 

FIGURE 3: Analysis of tracking after Cega or median background subtraction methods. Simulated data using axonal 
background signal was used where mean photon emissions were set to 200 photons, which corresponds to a SNR of 
2.8. (A, B) Kymographs of tracks determined from simulated particles within axonal and dendritic compartments. 
Although the same number of particles were simulated in the axonal and dendritic movies, the dendritic movie was 
smaller in size, resulting in a higher density of particles. In the merge kymograph and zoom-in area, cyan indicates 
locations where only simulated tracks and Cega detected tracks overlap, whereas yellow indicates where only simulated 
tracks and median background-subtracted detected tracks overlap. Magenta tracks are where only Cega and median 
background-subtracted tracks overlap. Jaccard indices and recall rates for tracks determined after Cega filtering and 
median background subtraction are listed below each corresponding kymograph.
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tracks containing spurious noise, resulting in nonuniform tracks. We 
also found that Cega was able to track motors that switched direc-
tion during movement (Figure 4B, zoom-in). As these directional 
switches were not detected in this data set with programs such as 
u-track (Jaqaman et al., 2008) and TrackMate (Tinevez et al., 2017), 
the Cega algorithm provides a more reliable analysis of the data 
from these complex microtubule arrays.

DISCUSSION
SPT software allows automated quantitative analysis of both in vitro 
and in vivo experimental data. However, as experimental systems 
become more complex, background signal often increases and be-
comes nonuniform, posing a significant challenge to current soft-
ware. As an example, we analyzed the motility of kinesin motors 
moving along extracted neuronal cytoskeletal arrays, as these data 
are much noisier than data from more reductionist single molecule 
in vitro assays and contain spatially and temporally varying back-

ground. The quantitative metrics and qualitative comparisons 
shown here make it clear that more sophisticated particle identifica-
tion methods are required to reliably extract SPT information from 
more complex data sets. Conventional spot-finding algorithms use 
pixel intensity metrics for thresholding of real signals from artifacts. 
In our data sets from motility along extracted neurons, intensity-
based metrics failed to reliably threshold real motor signals from 
noise. As a result, more than half of the trajectories recovered from 
SPT software were false. Cega, on the other hand, uses statistical 
calculations which factor in background estimations so that artifacts 
from local regions of high background fluorescence are mitigated. 
Use of Cega on experimental data resulted in a dramatic reduction 
and temporal shortening of false trajectories.

We found that Cega was dependent on the quality of the back-
ground estimation technique used to determine 〈Q〉. Before settling 
on a temporal median background estimator, we first tried using the 
temporal minimum filter, but we found that the median filter was a 

FIGURE 4: Analysis of Cega performance on original data set. (A, B) Kymographs of tracks determined from kinesin 
motors moving on microtubule arrays within axonal and dendritic compartments. In the merge kymograph, yellow areas 
indicate where Cega and median background-subtracted detected tracks overlap.
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better discriminator of signal over noise at lower photon counts. It is 
possible that there is an ideal quantile value for background estima-
tion, but it was not an avenue we explored because it seemed that 
finding the optimal quantile would be dependent on specific ex-
perimental conditions. Another avenue for optimization would be to 
incorporate a weighted spatiotemporal median filter instead of the 
standard temporal median filter (Brownrigg, 1984). The current im-
plementation of Cega outperforms current background subtraction 
methods when analyzing neuronal data sets. Still, we believe that 
further improvement of Cega is feasible and future studies should 
focus on improving the accuracy of background estimation. For ex-
ample, more accurate background estimation techniques utilizing 
deep learning have been developed recently (Möckl et al., 2020) 
and incorporating these into the estimation of 〈Q〉 could improve 
the KLM movie.

The Jaccard index and the recall rate from a range of detection 
techniques that were compared demonstrate that Cega had better 
performance than a typical spot finder with background-subtracted 
data (Hoogendoorn et al., 2014). In either instance, the recall rate of 
both methods could approach 100%, but the number of false posi-
tives would skyrocket; this information on spot reliability is conveyed 
by the Jaccard index. Unfortunately, the Jaccard index does not fully 
represent tracking capability, as a false negative compromises track-
ing software much more than a false positive (Smal and Meijering, 
2015), but this is only true when false positives are not spatiotempo-
rally correlated to one another. We treat the Jaccard index as a 
baseline for the potential of a successful tracking analysis. A Jaccard 
index over 0.9 is very likely to return accurate, full-length trajecto-
ries. A Jaccard index of 0.5 is more likely to return partial trajectories 
if the recall rate is low or is more likely to return a high percentage 
of false trajectories if the recall rate is high and the artifacts are cor-
related. Therefore, although the Jaccard index and recall rate alone 
are not sufficient to guarantee tracking performance, together they 
provide good indicators as to assess the relative quality of tracking 
algorithms.

Our simulations were designed to be optimal for particle detec-
tion against structured background signal from our data sets. The 
simulations were generated by adding photons from simulated mo-
tors on a median background estimate of axonal and dendritic mov-
ies. The median background was taken from a much shorter tempo-
ral window (7 frames) than what is used from our spot-finding 
analyses (31 frames). The reason for this was that a shorter temporal 
median filter preserved the background structure better. Legitimate 
motors from experimental data were not completely filtered out as 
a direct consequence of using a shorter temporal window in the 
median filtering of our simulated data. As a result, there were spa-
tiotemporally correlated pixels that highlight moving particles in our 
background data. The estimation artifacts guaranteed that none of 
the measured spot-finding algorithms could score a perfect Jaccard 
index of 1. The moving background artifacts resulted in a few spuri-
ous particle coordinates in Figure 2 which actually corresponded to 
true trajectories in Figure 3. Nevertheless, all spot-finding algo-
rithms we tested tracked these artifacts. While the parameters that 
we used here were optimal for tracking moving motors, Cega is ca-
pable of detecting motors that intermittently pause as long as a 
window size encompassing the duration of >95% of the particles of 
interest is chosen for the stationary model estimation.

SPT remains an open problem and the field is constantly evolv-
ing. For this work, we used a consistent tracking software so we 
could focus on assessing the quality of the initial spot detection 
algorithm chosen. The in-house tracking software used here 
(Relich, 2016; Schwartz et al., 2017), based on the LAP used in 

u-track (Jaqaman et al., 2008), in combination with Cega, allowed 
for tracking of moving motors within a dense background. Impor-
tantly, Cega spot detection allowed for the tracking of motors that 
change directions, something that programs such as u-track 
(Jaqaman et al., 2008) and TrackMate (Tinevez et al., 2017) were un-
able to accomplish with this experimental data set. However, the 
tracking software we used is still not optimal for this problem; aside 
from the spot candidates, the additional information generated 
from Cega is not incorporated into the downstream tracking algo-
rithms. Incorporating the heterogeneous background information 
or the KL divergence score into downstream tracking methods 
would increase the robustness of the tracker in noisier data. Most 
notably is the localization algorithm used in this study. Our chosen 
tracker has a localization algorithm incorporating MAPPEL software 
(Olah, 2019), which does not incorporate the estimated background 
information from Cega. As a result, the returned fit statistics are 
suboptimal indicators for the tracking phase. It is well known that 
incorporating prior background information greatly enhances the 
accuracy and recall rate of single molecule microscopy (Hoogen-
doorn et al., 2014), so measuring the trajectory improvements from 
an enhanced localization estimator would be a good next step in 
improving tracking resources for motors community.

Although there are many components in SPT that are yet to be 
refined for tracking in more complex data sets such as the neuronal 
data analyzed here, Cega presents a marked improvement in a criti-
cal component of the greater SPT workflow. By using statistical hy-
pothesis techniques to segment background, we were able to track 
moving particles more reliably while discarding nuisance objects. 
Our refined trajectories dramatically minimize false trajectories be-
cause Cega is a better discriminator of signal than intensity-based, 
spot-finding algorithms. By estimating a baseline of accuracy in the 
beginning phases of a tracking algorithm, we can dramatically im-
prove downstream performance for all SPT algorithms that are 
structured to identify particles before the connecting trajectories.

MATERIALS AND METHODS
Protein expression and purification
K560-GFP protein was purified as described in (McIntosh et al., 
2018) with the following modifications. The K560-GFP DNA was 
transformed into BL21(DE3)pLysE bacteria (Sigma Aldrich, 
CMC0015-20 × 40UL) and cultures containing the plasmid were 
grown at 37°C until an OD600 of 0.4 was reached. Protein expres-
sion was then induced with 0.15 mM IPTG for 18 h at 18°C. Cells 
were pelleted and flash frozen in liquid nitrogen and stored at –80°C. 
On the day of purification, cells were resuspended in lysis buffer 
(50 mM NaPO4, 250 mM NaCl, 20 mM Imidazole, 1 mM MgCl2, 
0.5 mM ATP, 1 mM β-ME, 0.01 mg/ml aprotinin and leupeptin, 
pH 6.0) and lysed by passage through a microfluidizer (Microfluid-
ics). Lysate was clarified by centrifugation at 42,000 rpm for 30 min 
and subsequently run over a Co2+ agarose bead (GoldBio, H-310-
25) column at 1 ml/min. Bound protein was washed with wash buffer 
(50 mM NaPO4, 300 mM NaCl, 10 mM Imidazole, 1 mM MgCl2, 
0.1 mM ATP, 0.01 mg/ml aprotinin and leupeptin, pH 7.4) and 
eluted with elution buffer (50 mM NaPO4, 300 mM NaCl, 150 mM 
Imidazole, 1 mM MgCl2, 0.1 mM ATP, pH 7.4). Elution fractions were 
pooled and concentrated. Buffer was exchanged to BRB80 (80 mM 
NaPIPES, 1 mM MgCl2, 1 mM EGTA, pH 6.8) by loading protein 
over Nap10 (GE Healthcare, 17-0854-01) and PD10 (GE Healthcare, 
17-0851-01) exchange columns. MT affinity/dead-head spin was 
performed as described in (McIntosh et al., 2018). Protein concen-
tration was determined using Pierce BCA Protein Assay Kit (Thermo-
Fischer Scientific, 23225).
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Neuronal cell culture
Thirty-five millimeter glass-bottom dishes (MatTek, P35G-1.5-14-C) 
were coated with 0.5 mg/ml poly-l-lysine (Sigma-Aldrich, P1274) 
overnight and rinsed with dH20 and MEM (Life Technologies, 1109-
072) prior to plating neurons. E18 Sprague–Dawley rat hippocampal 
neurons were received from the Neuron Culture Service Center at 
the University of Pennsylvania and plated in attachment media 
(MEM [Life Technologies, 1109-072] supplemented with 10% horse 
serum [Life Technologies, 26050-070], 33 mM glucose [Corning, 25-
037-CIR], and 1 mM sodium pyruvate [Life Technologies, 11360-
070]) at a density of 250,000 cells per dish and cultured 37°C with 
5% CO2. After 4–6 h of attachment, media were replaced with main-
tenance media (Neurobasal [Life Technologies, 21103-049] supple-
mented with 33 mM glucose [Corning, 25-037-CIR], 2 mM Gluta-
MAX [Life Technologies, 35050-061], 100 units/ml penicillin, 100 
μg/ml streptomycin [Life Technologies, 15140-122], and 2% B27 
[Life Technologies, 17504-044]);. 24 h after initial plating, AraC 
(Sigma Aldrich, C6645) was added at 10 μM to prevent glial cell 
division.

Motor-PAINT assay
The neuronal MT cytoskeleton was extracted, stabilized, and fixed 
according to previous work (Tas et al., 2017) with slight modifica-
tions. At 9-10 DIV, membranes were extracted from neurons by in-
cubation with extraction buffer (1 M sucrose, 0.15% Triton-X in 
BRB80, pH 6.8, at 37°C) for 1 min. An equal amount of fixation buf-
fer (1% paraformaldehyde in BRB80, pH 6.8, at 37°C) was added for 
1 min with gentle swirling. Dishes were rinsed 3× with wash buffer (2 
μM Paclitaxel in BRB80, pH 6.8, at 37°C) and once more right before 
imaging. For imaging, extracted MT arrays were placed in imaging 
buffer (1 mM ATP, 2 μM Paclitaxel, 0.133 mg/ml casein [Sigma Al-
drich, C5890-500G], 0.133 mg/ml bovine serum albumin [Fischer 
Scientific, 50-253-90], 4 mM DTT, 6 mg/ml glucose, 49 U/ml glucose 
oxidase [Sigma, G2133-250KU], 115 U/mg catalase [Sigma, C100-
500MG], 0.21 mg/ml creatine phosphokinase [Sigma, C3755-35KU], 
and 4.76 mM phosphocreatine [Sigma, P7936-1G] in BRB80, pH 
6.8) containing 5–10 nM K560-GFP motor dimer.

Microscopy
Motor-PAINT assays were performed at 37°C using a PerkinElmer 
Nikon Eclipse Ti TIRF system using a Nikon Apo TIRF 100 × 1.49 NA 
oil-immersion objective and a Hamamatsu ImagEM C9100-13 
EMCCD camera operated by Volocity software. Movies were 
obtained by continuously acquiring K560 motor images at 5 fps for 
2 min.

Offset and gain calibration
Gain calibration of the Hamamatsu ImagEM C9100-13 EMCCD 
camera was performed by fusing techniques from standard and au-
tomated gain calibration practices. Our camera had a few damaged 
pixels in the upper-right quadrant of the sensor region of interest 
(ROI). The damaged pixels caused errors in automated gain calibra-
tion (Heintzmann et al., 2018), but we were able to reliably track 
molecules with scalar gain, offset, and read noise variance parame-
ters by cropping the sensor ROI so that only undamaged pixels 
were used in the following gain regression algorithms.

First, a dark movie was acquired with 200 frames with the camera 
shutter closed. The mean pixel value of the dark movie used the 
estimate for O and the corresponding variance was the estimate for 
var(R) in units of ADU2.

We performed the single shot gain estimator on a few cropped 
images given knowledge of O and var(R) and we extracted an aver-

aged G as our gain parameter using the single shot gain estimation 
algorithm described in Heintzmann et al. (2018). With G we were 
able to determine that var(R) G–2 << 1 on this camera which allowed 
us to ignore the effects of additive read noise for the remainder of 
our analysis. The technique failed when processing with the com-
plete camera ROI because a strip of about 6 adjacent camera pixels 
that appeared to have been damaged by a photon oversaturation 
event resulted in an overestimation of the energy contribution from 
the high frequency Fourier spectrum. The damaged pixels were no-
ticeably darker than the more functional neighboring pixels, but 
they were spatially correlated, limited in number, and did not notice-
ably affect tracking results or biological experiments.

We estimated our Poisson movie K ≈ (S–O)G–1 and discarded the 
read noise term. We use the movie K for all of our subsequent analy-
sis for Cega and downstream tracking.

Motor protein simulations
Simulated data were generated by fusing a background estimate of 
experimental data with simulated photon signatures from procedur-
ally generated trajectories. The resulting process provided a realistic 
movie with simulated motor photons and a ground truth of aver-
aged positions.

The experimental movie was stripped of its true motor proteins 
via a median filter with a temporal width of 7 frames. The shortened 
temporal median filter provided a more accurate depiction of the 
experimental background data but left some noticeable residual 
emissions from moving motors wherever the motors had aggre-
gated. This resulted in data where a certain fraction of false positives 
was guaranteed with experimentally relevant photon intensities for 
the simulated motors. Poisson noise was added to the median fil-
tered movie.

The motor photon trajectory positions were calculated at time 
points before and after every simulated camera acquisition. The 
rough positions were modeled from a Kalman filter process, where 
proteins are subjected to diffusion with drift, but a white process 
noise is applied to the drift velocity so that proteins could gradually 
change direction and speed. The initial mean velocities were drawn 
from a log normal distribution to match the distribution of velocities 
observed in experimental data. Motor protein photons were painted 
by interpolating discrete trajectory positions with a Brownian bridge 
(Lindén et al., 2016) given exponentially sampled time points with a 
rate set by the mean photon parameter.

The final simulation movie consists of the simulated motor 
photons, summed with the background movie and white noise. The 
white noise had a σ of 0.1 photons that was added to all pixels to 
simulate extra read noise.

SNR
We calculated the SNR for data of simulated motors with mean 
photon emissions ranging from 50 to 600 photons per full frame of 
acquisition based on the following equation described in Salehi-
Reyhani (2017):

SNR
S B( )

=
−
σ

 (8)

where S is the maximal peak intensity of the simulated molecules, B 
is the average background pixel intensity, and σ is the SD of the 
background pixel intensity.

Jaccard index score and recall rate
The Jaccard index (Milligan, 1981) is an algorithm performance met-
ric defined as:



Volume 32 April 19, 2021 Cega Segmentation of Moving Particles | 941 

J
TP

TP FP FN
=

+ +
 (9)

where TP is the number of true positives, FP is the number of false 
positives, and FN is the number of false negatives when comparing 
a list of coordinates to a known ground truth. Similarly, the recall rate 
is defined as:

R
TP

TP FN
=

+
 (10)

and is useful for determining how well a true trajectory can be re-
constructed if there was a downstream method for removing false 
positives.

To score the performance of Cega and the other spot finders, the 
LAP (Jonker and Volgenant, 1987) was used to assign the nearest 
true coordinates to the algorithm coordinates. The squared distance 
between ground truth and algorithm coordinates plus 1 was used as 
the cost for assignment. The birth and death costs were set to 4. Any 
assignment costs greater than 4 were discarded to prevent assign-
ing coordinate pairs that were separated by at least 2 pixels. Coor-
dinate pairs that were assigned to one another were counted as true 
positives, true coordinates did not pair were scored as false nega-
tives, and algorithm coordinates that did not pair were scored as 
false positives. For trajectories formed after spot detection with 
Cega and the other spot finders, the Jaccard index and recall rates 
were calculated by taking each kymograph and measuring the over-
lap of track segments to the ground truth on a pixel basis.

Tracking software
The tracking software implemented for this paper was adapted from 
the MATLAB software developed for Relich (2016) and Schwartz 
et al. (2017) and is based on the software used in u-track (Jaqaman 
et al., 2008). A few minor modifications were applied to make the 
workflow amenable to motor proteins, primarily the blob-finding 
routine for initial candidate selection was replaced with Cega. The 
software in its current implementation does not yet incorporate het-
erogeneous background information in the localization routines. A 
median background subtraction on the data was considered for the 
localization routine but was omitted from this exposition because 
the maximum a posteriori estimator cannot process negative pixel 
values. The same tracking software and parameters were used for all 
comparisons between Cega and the median-subtracted spot finder.
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