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ABSTRACT
The tumor microenvironment (TME) profoundly influences tumor progression and affects immunotherapy 
responses and resistance. Understanding its heterogeneity is the key for developing immunotherapy. 
However, the available methods can only partially portray the TME heterogeneity with a small number of 
cell types. Here, we developed a deep learning-based frame with a design visible, DCNet, that embeds the 
relationships between cells and their marker genes in the neural network, and can infer the cell landscape 
with more than 400 cell types based on bulk RNA-seq data. DCNet accurately recapitulated the cell 
landscape of multiple single cell RNA-seq datasets, which showed better robustness and stability. Based 
on the cell landscape of TCGA patients, which was built with DCNet, the patients were divided into two 
groups with significant differences in survival time and distinct cell-type populations. DCNet provides 
a foundation for decoding TME heterogeneity. The source code of DCNet can be found on GitHub: https:// 
github.com/xindd/DCNet.
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Introduction

Immunotherapy has achieved remarkable success in treating 
advanced tumors.1 But because of the highly heterogeneous 
TME, only a relatively small fraction of patients obtain clinical 
benefit. The TME, comprising numerous and heterogeneous 
cell types counting fibroblats, immune cells, adipocytes, 
endothelial cells, becomes the hotspot of research in this field 
in the next few years and is being further explored by novel 
techniques.2,3 Single-cell transcriptome sequencing (scRNA- 
seq) as a novel sequencing technique can quantify transcripts 
in individual cells and provides a comprehensive cell landscape 
of the TME.4,5 But it is difficult for the generating of scRNA- 
seq data in a large population of patients for its high cost and 
technical challenges.

Bulk RNA-seq data source is a good choice for the identifi-
cation of TME as a large amount of patient high-throughput 
sequencing data is available. Several methods have been devel-
oped for deconvolution of bulk gene expression to evaluate cell 
landscape in bulk RNA-seq samples, such as CIBERSORTx,6 

EPIC,7 MCP-counter,8 quanTIseq,9 TIMER,10 and xCell.11 

These methods expand the application direction of expression 
profile generated by the bulk RNA-seq and make it possible for 
researchers to identify the TME from bulk RNA-seq data. 
Bogdan A. Luca et al. have proposed the ECOTyper method, 
a new machine learning framework for analyzing cell states and 
ecosystems, which used Cibersortx and NMF methods to 

evaluate the 12 major cell lineages abundance of bulk samples 
in tumors and defined 69 cell states in TME.12 But the existing 
methods usually focus on a very limited number of cell types 
and those methods are prone to different deviations for the 
dependent selection of marker genes. Recently, some deep 
learning methods such as multi-layer perceptrons (MLP), con-
volutional neural networks (CNN), long and short-term mem-
ory networks (LSTM), and autoencoders (AE) have been 
applied in the field of bioinformatics13–17 and shown more 
improvement and progress. However, as a black box model, 
due to their multilayer nonlinear structure, the deep learning 
methods are often considered to be nontransparent and their 
predictions not traceable. Many researchers try to “light up the 
black box” from different angles of analysis and 
visualization.18,19 For example, the structural relationships of 
GO (Gene Ontology) terms are embedded in an ANN (artificial 
neural network), enabling interpretation of gene functional 
relationship networks.18 It provides a new angle for the appli-
cation of neural networks in biology.

In this study, we present DCNet, an interpretable deep 
learning method, that embeds the relationships between 434 
cell types and their marker genes into the structure of the 
ANN. It can identify the cell landscapes with better robust-
ness and accuracy than other methods such as TIMER. Then 
10,176 tumor patient cell landscapes of TCGA were obtained 
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using the method of DCNet, and the patients was divided into 
two subtypes with significant differences in survival time and 
TME characteristics. Then four survival-related network 
modules were identified through the analysis of the cell co- 
expression network in TME. The patients were categorized 
into high risk and low risk group according the average 
expression value of genes in the survival-related network 
modules. Cell landscapes of non-small cell lung cancer in 
TCGA shows that there is significantly different in TME 
infiltration between the lung adenocarcinoma and squamous 
cell carcinoma. The significantly different cell types were 
identified between two subtypes, and a support vector 
machine (SVM) classifier was constructed using those signif-
icantly different cell types to predict lung cancer subtypes, 
and the precision of the SVM classifier was 0.975, as indicated 
in the ROC curve.

Result

Design of DCNet

Based on the AE neural network, we designed a deep learn-
ing model, called DCNet, with biologically meaning, that 
can identify the abundance of cell types from bulk RNA-seq 
data. It was designed to embed the relationships between 
434 cell types and their marker genes in the ANN, which 
makes DCNet contain a specific biological network struc-
ture between two layers of neural networks [Detail in 
method]. The processing of DCNet is as follows: 
According to the relationships among cell types, the hier-
archical structure of cell types in the patient TME was built, 
which bases on OBO database (Cell Ontology database) and 
CellMarker database [Supplementary Table 1], and 434 cells 
all located on the leaf node. For example, we combine the 
content of B cells, T cells, etc. to characterize the content of 
immune cells, and the relationships between cell and their 

marker genes were shown [Figure 1a]. Here we used mar-
ker genes expression in bulk tumors and the relationships 
between cells and their marker genes to infer the abun-
dance of cells. Gene expression levels were considered as 
the input and output neurons in DCNet. Here expression 
levels of 9078 marker genes and all (21,136) genes are used 
as input and output neurons, respectively [Figure 1b]. 
Finally, the encode layer and latent layer (434 neurons) of 
the neural network are transferred, and the activation value 
of the latent layer represents the abundance of cells 
[Figure 1c].

Training and selection of DCNet

Considering the incompleteness of the input data, DCNet 
model was trained and tested over various dropout rates 
(0.00, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5) for TCGA dataset. 
The independent dataset (CRC) was used to evaluate the gen-
eralization performance of the DCNet model. Here root mean 
square error (RMSE) of neurons was used as the evaluation 
index to describe DCNet model fitting. The training results of 
the DCNet models indicate that the RMSE value of AE gradu-
ally decreases as the number of neurons increases from 64 to 
4096 (power of 2), and when the number of neurons reaches 
2048, its RMSE value is the lowest relative to other AE models. 
The RMSE value of Full-DCNet increases significantly in train-
ing and test dataset of TCGA [Figure 2a]. The RMSE value 
gradually increases (DCNet-D0, DCNet-D01, DCNet-D03, 
DCNet-D05, DCNet-D07, DCNet-D10, DCNet-D30, DCNet- 
D50) with the increase of dropout rate. Meanwhile, the RMSE 
distribution of all genes in DCNet has a smaller fluctuation 
range, which is superior to other models. Overall, AE2048 and 
DCNet models showed better performance.

In CRC independent dataset, different neural network 
models show great differences in the distribution of error 
values [Figure 2b]. The RMSE value of the Full-DCNet 

Figure 1. DCNet architecture and design process. (a) Different cell types in the tissue, such as stromal cells, red blood cells, macrophages, T cells, B cells, neuronal 
cells, etc. These cells can be further divided into different cell types, which has a corresponding marker gene. (b) The basic structure of the DCNet model. The input is the 
expression levels of marker genes in bulk RNA-seq, and the output is the expression levels of all genes. The middle layer artificial neural network. (c) The gray neurons 
are activated neurons, and the white ones are inactive neurons. The first level relationship of the DCNet model is the corresponding relationship between cells and 
marker genes. The middle layer of the DCNet model represents the relative content of cells.
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increases higher, and the RMSE distribution range of all 
genes becomes larger. DCNet shows higher prediction 
accuracy and better prediction effect of the samples with 

the increase of dropout rate. When the input sample data 
is missing more than 10% (dropout rate>0.1), it may cause 
too much missing information, such a sample may be 

Figure 2. DCNet model determination and performance evaluation. (a) The root mean square error distribution of different models in the training set and test set in 
the TCGA sample. y is the root mean square error, and x is different neural network models. AE64~ AE4096 are three-layer autoencoders with 64 ~ 4096 neurons in each 
layer. Full-DCNet is similar to the DCNet architecture, but there is a fully connected neural network between neurons. DCNet-D0 means that the input data is not 
randomly censored, and DCNet-D01, DCNet-D03, DCNet-D05,DCNet-D07, DCNet-D10, DCNet-D30, and DCNet-D50 means that the input data is randomly censored by 
1%, 3%, 5%, 7%, 10%, 30%, and 50%, respectively. Blue is the training set and red is the test set. (b) The root mean square error distribution of different models in the 
CRC sample. y is the root mean square error, and x is different neural network models, same as Figure A. (c) For samples of different cancer types, the DCNet predicted 
value is correlated with the true value. The left ordinate is the correlation distribution value, the right ordinate is the number of samples, the abscissa is the cancer type, 
and the gray dashed line is the correlation 0.5. (d) Draw the ROC curve of the marker gene in single-cell levels, the red is the network without fine-tuning, the blue is the 
network after the fine-tuning, the abscissa is the false positive rate, and the ordinate is the true positive rate. (e) Frequency distribution diagram of ROC value calculated 
by gene. The abscissa is the ROC value, and the ordinate is the frequency distribution of the corresponding ROC value.
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a meaningless sample. In summary, here we recommend 
to choose DCNet model with dropout (dropout 
rate = 0.1).

Another important factor that affects the classification per-
formance of neural networks is the distribution of the class 
labels in the training and test data set. If the class labels of the 
samples in training data set is not uniform, it will lead to the 
bias of the prediction. We used oversampling method to reduce 
the imbalance of class labels in the training dataset. We also 
checked the effect of sample size on classification accuracy for 
different types of cancer patients in training data set. The 
correlation coefficients between the output of DCNet and the 
real cell abundance were calculated for each cancer [Figure 2c]. 
As the sample size increases, the predicted correlation of 
patients does not increase or decrease significantly, which 
represents the sample size has little effect on the model’s pre-
dictions. Interestingly, the correlation of normal patients is the 
highest, with an average level of over 0.9. This is not difficult to 
understand based on the characteristics of neural networks. 
During the training process, the neural network tried to find 
the generalization characteristics of all samples. All cells of 
TCGA patient originated from normal tissue, so this leads to 
higher prediction performance of the network for normal 
patients.

We designed a fine-tuning network to update the network 
weights of the first and second layers with learning rates of 1e-6 
and 1e-4. The ROC curve is drawn to show that the AUC level 
reaches up to 0.78 [Figure 2d]. After fine-tuning the model, the 
loss function of the network is significantly improved, and the 
ROC of the second-level weight is higher [Figure 2e]. The AUC 
value of 80% of the genes is greater than 0.5. Therefore, for 
different samples, fine-tuning the network can improve the 
performance of the model.

DCNet portrayed the cell landscapes accurately

DCNet is a neural network model with a specific biological 
network structure, and its input layer and the intermediate 
layer are connected according to the relationships between 
cells and their marker genes. The intermediate layer neurons 
are composed of 434 cell types. In the intermediate layer, the 
ReLU activation function is used to ensure that the activation 
value of the neuron is greater than zero, and the activation 
value of intermediate layer neurons is used to represent the 
abundance of the cell. It means that given the gene expression 
level of the sample, 434 cells abundance can be inferred from 
the activation value of the intermediate layer neurons.

Two single-cell sequencing datasets (GSE81861, GSE72056) 
were downloaded from GEO database and were used as the 
validation datasets to verify whether the intermediate layer 
neurons could infer the abundance of cells. There are six cell 
types including B cells, endothelial cell, epithelial cell, fibroblast 
cell, macrophage cell, mast cell in the GSE81861 dataset, and 6 
cell types including B cells, CAFs cell, endothelial cell, macro-
phage cell, NK cell, and T cell in the GSE72056 dataset. The 
number of cells is considered as cell abundance, and the 
cumulative sum of gene expression levels in all single cells is 
used as bulk gene expression. Using a trained DCNet model, 
we predicted the abundance of 434 cells expressed by the 

activation value of the intermediate layer. We respectively 
calculated the cell abundance of B cell, endothelial cell, epithe-
lial cell, fibroblast cell, macrophage cell, mast cell, and T cell 
with the methods of Marker_sum, CIBERSORTx, EPIC, MCP- 
counter, quanTIseq, Timer, xCell. We checked whether the 
intermediate layer activation value of DCNet can accurately 
characterize the abundance of the cell through the correlation 
between the predicted value and the true value. In the CRC 
dataset, the correlation values are 0.95 for T cells, while just 
−0.09 for macrophage cells in xCell method. The similar results 
were got for MCP-counter method, where the correlation 
values are 0.96 and 0.98 for B cells and T cells, while just 0.30 
for NK cell and endothelial cell in the melanoma dataset. The 
correlation value of T cells and B cells can also reach 0.80 and 
0.98 in the melanoma sample (Marker_sum). However, the 
correlation of B cells in CRC samples is −0.13, and the evalua-
tion of other cells also fluctuates greatly. Although DCNet’s 
evaluation results for T cells and B cells are not the highest 
(0.81, 0.95 in the melanoma sample), its correlation values for 
all types of cells are stable. Those results show that the pre-
dicted cell abundance values of DCNet are positively correlated 
with the sum of the cell abundance in each sample, which is 
considered as actual cell abundance in all cell types (all correla-
tion coefficient values>0.7), but the correlation results showed 
instability in EPIC, TIMER, CIBERSORT, MCP-counter 
[Figure 3a]. The reliability of those methods tends to depend 
on the accuracy of marker gene screening. However, DCNet 
portrays the relationships between marker genes and cells, 
which avoids the contribution of individual marker genes to 
cell content. The 1000 cells simulation data generated using 
R package(immunedeconv) was used to analyze the correlation 
between DCNet and other methods in T cell and B cell. In 
T cells, the correlation between the DCNet method and the 
true value is 0.97, and the correlation with other methods 
exceeds 0.9, except for TIMER and CIBERSORTx, which 
have lower correlation with other software [Figure 3b]. And 
in B cells, all methods show high consistency [Supplementary 
Figure 1].

Next, we tested the capability of DCNet to identify the 
cell abundance of other cells, not just immune cells. 
A single cell RNA-seq data set (GSE86146) was obtained 
from the GEO database. It provides the cell abundance 
information of human embryonic germ cells (FGC) and 
stomatic cells, during the development for human germline 
cells. We obtained the FGC cell and somatic cell abundance 
by using DCNet and calculated the correlation coefficient 
between the predicted and actual cell abundance of FGC 
and somatic cells respectively. The values of the correlation 
coefficient show high consistency with 0.87 in FGC cells 
and 0.79 in somatic cell (p < .01), which suggests that 
DCNet can identify the cell abundance accurately for FGC 
and somatic cell accurately [Figure 3c]. The DCNet can not 
only estimate the abundance of FGC cell and somatic cell, 
but also the abundance of cell subclasses of those cells such 
as ciliated cells, epithelial cells, pre-meiotic embryonic germ 
cells, and embryonic germ cells. According to the cell 
ontology [Figure 3d], these cells have hierarchical relation-
ship which come from OBO database. For example, somatic 
cell (CL:000237) were divided into ciliated cells, epithelial 
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cells, B cell and so on. Germ cell (CL:0000586) were further 
divided into spermatogonium and oocyte. This result shows 
that DCNet has the ability to identify cell types that are 
closer to leaf nodes of the cell ontology structure.

It can be seen that the overall trend of those cells abundance 
increases gradually from 4 to 14 weeks of pregnancy, and the 
cell abundance remains relatively high level after 14 weeks 
[Figure 3e, Supplementary table 2]. By the second and third 

months of embryonic development, the primordia of almost all 
organs have basically been formed. This is followed by the 
internal cell proliferation and increase in volume. This phe-
nomenon may be related to the cells maintaining a high level 
and active state after 14 weeks. These cells play an important 
role in the process of development and overall development. 
These breakthroughs span several stages of development, 
which is consistent with previous research.20,21 The above 

Figure 3. Comparison of cell content assessed by DCNet with other methods. (a) Heatmaps of the correlation between the estimated and true levels of cells on CRC 
samples and Melanoma samples by different methods. The left side is the CRC sample, and the right side is the Melanoma sample. The redder the color, the closer the 
correlation level is to 1. The methods include DCNet, Marker_sum (the expression value of marker genes screened in this topic), CIBERSORTx, EPIC, MCP-counter, 
quanTIseq, TIMER, xCell. The longitudinal direction indicates different cell types. Gray represents that this cell type can not be identified by the corresponding 
deconvolution method. (b) In the simulation data, the consistency analysis of different methods. The scatter chart shows the distribution of 1000 simulation samples 
among different methods, and the pie chart shows the level of correlation. The redder the color, the higher the correlation. The diagonal lines are the names of different 
models, and TRUE is the true level of cell content. (c) The correlation between the predicted value of the DCNet model and the true level. The abscissa is the true cell 
content, and the ordinate is the cell content predicted by DCNet. The upper part represents FGC cells and the lower part represents Somatic cells. (d) Cell ontology 
hierarchical relationships among FGC cell, somatic cell, and cell subclasses of those cells, each node represents a cell ontology identity. Highlighted red indicates the cell 
types recognized by DCNet. (e) enriched cell types evaluated by DCNet shows a big difference in cell abundance levels of human embryos at the developmental stage. 
The redder the color, the higher the level of cell abundance. The y-axis of the histogram (at the top of 3E) is the sum of the overall cell abundance level of human 
embryos at each week.
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result shows that DCNet can not only predict the cell abun-
dance of the common immune cells mentioned above but also 
quantify the cell abundance of other cell types.

The patients from TCGA cohort exhibits two significantly 
different types of TME

To further study the potential of DCNet to evaluate the TME, 
we built the cell abundance landscapes of 434 cell types for 
10,176 tumor samples of TCGA using DCNet. Based on the 

information of the cell abundance landscapes, two TME cancer 
subtypes with obvious difference in the cell abundance, named 
immunoprotective subtype (IPS) and nonimmune protective 
subtype (NIPS), were identified by using the consensus cluster-
ing method.22 There are more samples in IPS, and there are 
more cancer types than NIPS [Figure 4a]. There is a statistical 
difference in survival time between two TME cancer subtype 
group (log-rank test, p < .0001) [Figure 4b]. Patients in the 
cancer IPS group have better survival than patients in the 
cancer NIPS group.

Figure 4. Recognition of cancer subtypes based on DCNet method and mining of cell interaction networks. (a) tSNE distribution map, x is tSNE_1, y is tSNE_2. 
Each dot represents a sample, and the text represents the type of cancer. Red is IPS and blue is NIPS. (b) Survival curve of IPS and NIPS. The abscissa is the survival time, 
and the ordinate is the survival rate. (c) and (d) respectively represent IPS and NIPS. The left side of the two graphs is the cell interaction network. The size of the dot is 
the expression level of the cell. The redder the color, the higher the risk (HR), and the green line is positive Correlation, the black line is negative correlation, triangles 
represent nonimmune cells, circles represent immune cells, and squares are tumor cells. The middle list of (c) and (d) shows the cell composition information of the four 
motifs, and the right list shows the survival curves of the high- and low-risk groups according to the four modules.

e2043662-6 X. WANG ET AL.



To investigate the cell abundance characteristics of two 
cancer subtypes in the TME, we analyzed the differences in 
cell-type composition, cell abundance, and hazard risk for each 
cancer subtype. For each cell, the patients were divided into 
two groups according to the median of this cell abundance and 
the hazard ratio of each cell was calculated in each cancer 
subtype respectively. Then the correlations between cells were 
calculated by using the cell abundance co-expression level (see 
the detail in the method section). Based on information of the 
hazard risk for each cell and the correlations between cells, the 
cell-cell related networks were constructed for each cancer 
subtype. The cell-cell related network describes biological 
interactions among cells and provides a systematic under-
standing of the TME [Figures 4C, D, left panel]. From 
a global perspective, it represents the different TME between 
NIPS and IPS. The patients of IPS have more immune cells and 
low hazard cells infiltration, and stronger connections between 
cells, in which the number of edges in the cell-cell related 
networks for cancer IPS and NIPS is 1528 and 1266. Two 
network modules (motifs) for the IPS were discovered by 
using MCODE method respectively [Figures 4C, D, middle 
panel]. In motif-1, there are fewer cell types, but more abun-
dant of T cells and B cells. In motif-2, it shows there are more 
connections between immune cells and cancer cells, which is 
more likely to occur in the killing process of tumor cells. But 
for the patients of NIPS, they have more nonimmune cells and 
high-risk cells, which may contribute to the worse prognosis of 
those patients. Two network modules (motifs) were also dis-
covered in NIPS, most of cells in motif-1 are nonimmune cells, 
and not communicate with tumor cells.

According to the mean HR of different motifs, patients are 
divided into high and low risk groups, all of which have a large 
difference in survival (log-rank p < .0001). These four motifs 
can be used as markers for dividing sample risks [Figures 4C, 
D, right panel].

It is difficult to measure the cell abundance landscapes in the 
process of clinical diagnosis and treatment, which causes the 
difficult in identifying the patients’subtype. But several gene 
expression signatures are easy to be detected in routine clinical 
practice. We further identified the TME specific genes as diag-
nostic markers. First, we analyzed the differentially expressed 
cell types based on the cell abundance of the two subtypes, and 
obtained top 1500 differentially expressed marker genes of 
these cells. Single and multiple Cox’s proportional-hazards 
regressions were fitted on differentially expressed marker 
gene expression and, and we identified 33 gene signatures 
whose risk score was confirmed to be an independent prog-
nostic factor [Figure 5a]. GO function enrichment analysis of 
the prognostic signature was performed and these 33 genes are 
significantly enriched in functions linked to binding for post- 
transcriptional gene silencing, mRNA binding participates in 
post-transcriptional gene silencing, and other functions 
[Figure 5b].

Next, those genes were gathered as a signal prognostic 
signature, which may be a potential biomarker for the prog-
nosis of patients. The risk score was calculated to evaluate the 
predictive value of those genes. According to risk score values, 
we have divided the PD1 immune response patients into low 
risk group (risk score lower), and high risk group (risk score 

higher). Then survival curve analysis demonstrated that the 
overall survival rate of high risk patients was significantly 
poorer than that of low risk patients (p < .05) [Figure 5c]. We 
analyzed the difference in risk scores between PD1 response 
and non-response patients groups, and found that the risk of 
non-responders was significantly higher than the risk scores of 
patients in the response group (p = .00051) [Figure 5d]. All in 
all, our results suggest that the cell abundance landscapes 
evaluated by DCNet can be used to describe the TME accu-
rately and to to identify the TME-specific gene markers, which 
is meaningful for clinical applications. There are many com-
munications between nonimmune cells and tumor cells, which 
may be contributed to understand the role of immune cells in 
the TME.

Lung cancer subtypes show significant differences in cell 
landscape

We analyzed the abundance difference of cells between the two 
subtypes of non-small cell lung cancer (LUAD and LUSC in 
TCGA). The cells with a significant difference in abundance of 
LUAD and LUSC are identified (log2(Fold Change+1)>1, log2 
(Fold Change+1)<-1, p < .01) in comparison to normal 
patients. Further, lung-specific and immune cell types were 
retained. There are 15 deferentially expressed cells in LUSC 
and 18 deferentially expressed cells in LUAD, and 12 common 
deferentially expressed cell types in both cancer subtypes, 
which presents that LUAD and LUSC have significant differ-
ences in TME of lung cancer [Figure 6a, Supplementary 
table 3]. Among them, the cell abundance of Neuroepithelial 
cell, Myofibroblast and Basal cell were significantly higher in 
LUSC than in LUAD [Figure 6b]. However, the content of 
Granulocyte, Alveolar cell, Leukocyte, Secretory cell, Myeloid- 
derived suppressor cell, Ciliated cell is higher in LUAD 
[Figure 6c]. This reflects the difference between LUAD and 
LUSC in the TME. Here, we consulted the literature and found 
that all these cell types were specifically related to lung cancer 
subtypes.23–31 For example, basal cell is a candidate cell of 
origin for LUSC. More importantly, distinct basal cell lineage 
trajectories may be involved in homeostasis and injury repair.25 

Isaeva, O.I. et al. found that tumor-infiltrating B-cells were 
significantly associated with LUAD prognosis, and the main 
mechanism was that the positive effect of IgG4 was related to 
the activation of the myeloid suppressor cell, thereby avoiding 
immunosuppression.30

Based on these different cells, we constructed a SVM classi-
fier to distinguish the patients of LUAD and LUSC, with 
AUC = 0.87 for the ROC value [Figure 6d], which reflects the 
accuracy of subtype specific cell recognition and further proves 
that these cells are significantly related to non-small cell lung 
cancer subtype.

Discussion

Here, the new method DCNet is proposed for portraying the TME 
based on the relationships between 434 cell types and 9078 marker 
genes, using the deep learning method. It can evaluate the cell 
abundance landscapes of patients from bulk RNA-seq sequencing 
data. The design purpose of the DCNet method is to try to 
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summarize the relationship between marker genes and cells, and 
to avoid the contribution of individual marker genes to cell types. 
In the assessment of the content of 434 cells, the analysis results of 
immune cell types are more stable and more robust than existing 
methods. Similarly, in the nonimmune cell types, it also shows 
higher accuracy and important biological significance. 
Furthermore, based on the DCNet method, we identified two 
cancer subtypes and found four modules in the cell-cell interac-
tion network. The TME-specific biomarker genes were identified, 
that can divided the patients into lower risk group and higher risk 
group. Cell types that may participate in the microenvironment of 
lung cancer have been found. In actual application, we recom-
mend choosing DCNet with a dropout of 0.1, and fine-tuning the 
DCNet model in the sample data set. This can improve the 
accuracy of DCNet’s evaluation. Because DCNet method covers 
all cell types currently available, it is recommended that research-
ers chose the appropriate or top ranked cell types to analysis 
according the purpose of research and the dataset used.

In general, we provide an important neural network model 
method DCNet, which can evaluate the cell abundance land-
scapes of patients from bulk RNA-seq data. The performance 

of DCNet is better than other existing methods, and it is 
a comprehensive and accurate method for analyzing the cell 
abundance landscapes. It has been verified in practical 
applications.

Data and methods

Data Available

From the GDC database (https://portal.gdc.cancer.gov/pro 
jects) downloaded 32 kinds of cancer samples and normal 
samples, a total of 10,906 patients’ RNA-seq expression profiles 
and clinical data. Two subtypes of non-small cell lung cancer 
data were used separately: lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC). Download five sets of 
data from the GEO database (https://www.ncbi.nlm.nih.gov/ 
geo/). GSE81861 (CRC): 11 samples of colorectal cancer 
patients, 7 cell types.32 GSE75688 (BC): Single-cell sequencing 
data of 11 breast cancer cells and lymph node metastases.33 It is 
including 515 single cell RNA-sequencing data, which was 
sequenced with Illumina HiSeq 2500. The gene expression 

Figure 5. PD1 response samples verify cancer subtypes. (a) A heatmap of the expression level of differential genes. The darker the color, the higher the expression 
level of the gene. The upper band represents the type of cancer pressure type, red is IPS, and blue is NIPS. (b) Gene function enrichment, the abscissa is -Log10P level, 
and the ordinate is the function name. Blue is Canonical pathway, green is KEGG pathway, Orange is GO biological process, and purple is response group gene 
combination. (c) Survival curves of PD1 response and non-response samples. (d) The risk of PD1 response and non-response samples are compared. NR is the non- 
response group, R is the response group, and the ordinate is the risk score.
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level is represented as TPM (Transcript per million), which are 
already normalized and can be comparable across samples in 
the next analysis. GSE86146 (FGC): 2167 individual PGCs and 
their gonadal niche cells, covering the developmental stages of 
female and male human embryos from 4 to 26 weeks after 
pregnancy.21 GSE72056 (Melanoma): 31 melanoma samples 
and their 6 cell types.34 GSE78220 (PD1): Transcriptome sam-
ples and corresponding clinical data of 38 melanoma biopsy 
specimens before anti-PD-1 treatment.35 The cell types and 
corresponding marker gene are obtained from the 
CellMarker36 database (http://bio-bigdata.hrbmu.edu.cn/ 
CellMarker/).

CellMarker data preprocessing

We downloaded 13,605 marker genes across 467 cell types in 
158 human tissues from the CellMarker database. The data was 
processed as follows: As some cells and their marker genes 
repeatedly appear in different human tissues, tissue-specific 
duplications were deleted, keeping only one cell and its marker 
genes as representative of the duplicated group. The marker 
genes which not detected in TCGA gene sets were also deleted 
for the purpose of the DCNet model trainning [detail in TCGA 
data preprocessing], then 33 cell types were discarded because 
none of marker-genes were detected. Finally, 434 cell types 
including immune cells, cancer cells, stromal cells and so on, 
and their corresponding 9078 marker genes were kept for 
further analysis. The cell abundance for major cell types was 
calculated by integrating the category information of the 

cellmarker database (http://biocc.hrbmu.edu.cn/CellMarker/) 
and Cell Ontology database (OBO: http://www.obofoundry. 
org/ontology/cl.html). In the 434 cell types identified by 
DCNet, there were 77 cell types without Cell Ontology IDs, 
and 137 cell types have no owns Cell Ontology IDs but were 
assigned to its parent’s term IDs, and 220 cell types have owned 
Cell Ontology IDs in the OBO database. For the cell types 
without Cell Ontology IDs or only with its parents Cell 
Ontology IDs, the hierarchical relationship information 
between the cell types was obatined from the CellMarker 
database. For the cell types with owns Cell Ontology IDs, the 
ontology structure information between the cell types was 
downloaded from the cell OBO database. Integrating those 
information, the Supplementary Table 1 was created and it 
includes information of the parent and child cell type name, 
the cell ontology ids of parent and child cell type, the data 
source database (CellMarker or OBO).

The cell abundance of parent cell types was calculated by the 
accumulation of the cell abundance of its child cell types for the 
CellMarker database and its leaf node in the cell ontology 
structure for OBO database.

TCGA data preprocessing

For the expression profile data of TCGA, the genes whose 
expression level is 0 in more than 1/3 samples were deleted, 
21,136 genes were retained, and log normalization was per-
formed. We divided the gene expression of each sample into 
input data (expression level of 9078 marker genes) and output 

Figure 6. Predict cell types involved in the tumor microenvironment. (a) Differential cells of non-small cell lung cancer. Blue is the number of LUAD differential cells, 
Orange is the number of LUSC differential cells, green is the number of cells verified in the paper. (b) The content of LUAD specific cell types is compared with LUSC, 
where x is the cell type and y is the cell content evaluated by DCNet (t test ***, p < .001). (c) The content of LUSC specific cell types is compared with LUAD, where x is the 
cell type and y is the cell content evaluated by DCNet (t test ***, p < .001). (d) ROC curve, x is sensitivity, y is specificity.
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data (expression level of 21,136 genes). Due to the uneven 
distribution of cancer samples, we adopted an oversampling 
method to enlarge the number of samples while balancing the 
sample categories. In addition, during the experimental mea-
surement process, some genes cannot be detected due to the 
low expression intensity of some genes or experimental errors, 
which will cause the input dimension of the model to not 
match the marker gene dimension. In order to solve this 
problem, the input data was randomly deleted with the prob-
ability of 0.1, 0.3, 0.5 (0 fill), which could not only increase the 
training sample, but also reduce the risk of overfitting. Finally, 
all samples were divided into training set and test set with 
a ratio of 80% and 20%.

We also obtained clinical data of 1487 patients with tumor 
metastasis and drug treatment information from TCGA 
cohorts using the TCGAbiolink37 package. If the number of 
patients under treatment with a certain drug is less than 48, 
then the information of this drugs and the patients was deleted. 
Finally, a total of 7 drugs and 740 patients were kept.

DCNet neural network construction and training

DCNet model trains a deep neural network, which embeds the 
relationships between cells and their marker genes, to predict 
more than 400 cell types proportion within bulk seq dataset. 
The depth of DCNet model is three layers including input 
layer, hidden layer and output layer. Each cell type is repre-
sented by a hidden neuron in the DCNet model. The number 
of neurons in DCNet is determined based on the correspond-
ing relationships between cells and their marker genes 
[Supplementary Figure 2A]. The number of neurons in the 
input layer is equal to the number of total marker genes 
(9078), the number of neurons in the hidden layer is equal to 
the number of cell types (434), and the number of neurons in 
the output layer is equal to the number of TCGA genes 
(21,136). The construction and training details of the model 
are described as follows:

First, DCNet model is constructed based on the autoenco-
der neural network. For the input layer, DCNet input training 
data set is denoted as I ¼ fðM1;G1Þ; . . . ; ðMN ;GNÞg, and N is 
the number of patients. For each patient i, Mi represents an 
expression vector for expression of total marker genes, and the 
dimension is the number of marker genes NM, and Gi repre-
sents an expression vector for the observed expression of total 
TCGA genes. For the hidden layer, the neurons C denotes the 
hidden layer and its activation value is used to characterize cell 
proportion in tumor microenvironment, the dimension is the 
number of cell types NC [Supplementary Figure 2B]. For the 
output layer, O denotes the ouput vector and it represents an 
expression vector for the prediction expression of all TCGA 
genes, NO represents the number of all TCGA genes.

The neurons are not fully connected between the input layer 
and the hidden layer. The connection matrix is defined as P, 
where P is one-zero matrix with size NM � NC. Pij ¼ 1 indi-
cates that there is a connection relationship between the ith 
marker gene(the i th neuron in the input layer) and the j th cell 
type (the j th neuron in the hidden layer) and Pij ¼ 0 indicates 

that there no connection relationship [Supplementary 
Figure 2C]. The neurons are fully connected between the 
hidden layer and the output layer.

In order to ensure that the output values of the hidden layer 
and the output layer are positive, the rectified linear activation 
function (RELU) is chosen as the constraint function between 
those layers. For the input layer and the hidden layer, RELU 
definition is shown as follows: 

cj ¼ RELCð
XMj

i¼1
Wð1Þ

ij mi þ βð1Þj Þ

Here cj represents the activation value of neurons j in the 
hidden layer, which denotes cell j proportion. Mj represents 
the number of corresponding marker genes of cell j. The 
initialization weight matrix is defined as Wð1Þ ¼W � P, W is 
a random weight matrix with size NM � NC. Wð1Þ represents 
only those edges between cell type and their marker gens are 
connected and weighted. Wð1Þ

ij is the weight of the relationship 
between the neuron j in the hidden layer and neuron i the input 
layer. mi is input neuron i, which represents expression value of 
marker gene i. βð1Þj represents the bias of the j th neuron in the 
hidden layer.

For the hidden layer and the output layer, RELU definition 
is shown as follows: 

ov ¼ RELUð
XNc

j¼1
Wð2Þ

jv cj þ βð2Þv Þ

Here ov represents the output value of neurons v in the output 
layer, which represents the prediction expression of the v th 
TCGA gene. Wð2Þ

jv is the weight of the relationship between 
neurons j in the hidden layer and neurons v in the output layer, 
which denotes the expression level of the v th gene in the j th 
cell., and βð2Þv represents the bias of neurons v in the output 
layer.

To train the DCNet model, its parameters are set as adam 
optimizer, relu activation function, L2loss loss function, learn-
ing rate 1e-4, number of iterations 600, 256 samples per batch, 
cpu training respectively. DCNet model were coded using the 
mxnet framework in python and its source code has been 
uploaded to GitHub (http://github.com/xindd/DCNet).

Other neural network methods for comparison

In addition, in order to verify that the performance of the 
structured neural network for DCNet, we built and trained 
other neural networks for comparison. First, we designed five 
deep autoencoder models (AE), the encoding layer and the 
decoding layer are both two layers, the number of neurons 
increases by the power of 2, from 64 to 1024 (named: AE64, 
AE128, AE256, AE512, AE1024). Second, we designed a fully 
connected neural network with three layers (Full-DCNet). and 
the number of neurons is same as DCNet model. Its neurons 
are fully connected, which is different from the structured 
neural network of DCNet. Finally, 0.00, 0.01, 0.03, 0.05, 0.07, 
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0.1, 0.3, 0.5 dropout ratio parameters were set to train DCNet 
model respectively (DCNet-D0, DCNet-D01, DCNet-D03, 
DCNet-D05, DCNet-D07, DCNet-D10, DCNet-D30, DCNet- 
D50). All neutral network were coded using the mxnet frame-
work in python, and the parmameters are same to the training 
of DCNet.

Comparison with other methods

For the datasets used in this study, we evaluated their cell 
abundance profiles by used CIBERSORTx (Cell Frections mod-
ule, https://cibersort.stanford.edu/index.php), EPIC (http:// 
epic.gfellerlab.org/), MCP-Counter (https://github.com/ 
ebecht/MCPcoun

ter), quanTIseq (https://icbi.i-med.ac.at/software/quanti 
seq/doc/index.html), TIMER (https://cistrome.shinyapps.io/ 
timer/) and xCell (https://xcell.ucsf.edu/) respectively. Each 
method is set to default parameters.The immuneconv 
package38 of the R language, which is a comprehensive method 
to estimate the cell abundance by integrating methods of 
CIBERSORT, EPIC, MCP-Counter, quanTIseq, TIMER and 
xCell. We used it to construct simulation data of bulk RNA- 
seq expression profiles based on BC samples for comparison 
with other models.

Related statistical analysis

Marker genes should be cell-specific high expression in the 
corresponding cell type. It means that the relationships 
between the cell of the hidden layer and its marker gene of 
output layer should have higher weight. We used relation-
ships’weight value bewteen the hidden layer and ourput layer 
as genes score vector, and created a vector containing the 
values 0, 1 based on whether the gene is a cell marker gene. 
We calculated the AUC value with the above two vector. The 
value of ROC curves is higher means that the marker genes are 
cell-specific higher expression.

FGC dataset was analyzed by DCNet, and the abundance of 
434 cell types were obtained. Sort the cell type in descending 
order according to the abundance of each cell type and select 
the top 20 cell types as enriched cell types in FGC dataset, and 
then only cell types with cell ontology identity were kept for 
further analysis. We used an R package ontoProc (https:// 
github.com/vjcitn/ontoProc) to visualize structure of cell 
ontology of those cell types.

The R package of ConsensusCluster,22 which provides 
a consensus clustering approach was used to classify pancancer 
patients into different cancer subtypes according the cell land-
scape identified by DCNet model. In brief, using a manhattan 
distance, the cluster method of partition around medoids 
(PAM) was resampled by 0.8% from all cell type features in 
1000 iterations. The result is a co-classification matrix with the 
matrix element value equal to the frequency at which each pair 
of samples was found in the same cluster in the 1000 iterations. 
The consensus cluster result was obtained by a final k-mean 
clustering. In order to select the number of clusters K, the 
cophenetic correlation coefficient was calculated and the opti-
mal number of consensus cluster was selected as K preceding 
the largest drop in the cophenetic correlation coefficient.

To identify differentially enrichment cell types, foldchange>2 
or foldchange<0.5 and q-value<0.01 were used as standards by 
using limma package. Univariate and multivariate Cox regres-
sion models are used for cell type risk assessment. T test was 
used to identify differentially expressed genes (DEGs) between 
cancer subtypes. Function enrichment analyses of DEGs were 
performed using Metascape (http://metascape.org).

A risk model was constructed with the formula: Risk 
score = Σ(log10(HR)×genes expression), and the patients 
were divide into high-risk and low-risk groups based on the 
median risk score. Kaplan-Meier plots were used to compare 
survival curves of high risk and low risk groups.

Cell-cell interactions network was constructed and analyzed 
by using cytoscape software (https://cytoscape.org/). Network 
motifs were identified by MCODE (Molecular Complex 
Detection), which is a cytoscape plugin and it can detect sub-
networks in an interactome.39
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