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Abstract Systemic inflammation and infections are

associated with neurodegenerative diseases. Unfortunately,

the molecular bases of this link are still largely undiscov-

ered. We, therefore, review how inflammatory processes

can imbalance membrane homeostasis and theorize how

this may have an effect on the aggregation behavior of the

proteins implicated in such diseases. Specifically, we

describe the processes that generate such imbalances at the

molecular level, and try to understand how they affect

protein folding and localization. Overall, current knowl-

edge suggests that microglia pro-inflammatory mediators

can generate membrane damage, which may have an

impact in terms of triggering or accelerating disease

manifestation.
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Introduction

Neurodegenerative diseases are familial and sporadic

conditions characterized by the progressive dysfunction

of the nervous system [1, 2]. In some cases, the origins

of these diseases can be related to destabilizing muta-

tions in proteins, which become less stable and more

prone to aggregating or interacting with undesired part-

ners [3]. In these examples, neurodegenerative conditions

have a genetic, inheritable component and individuals

develop them at an earlier age. One of the most studied

cases is Alzheimer’s disease (AD), where mutations in

the amyloid precursor protein (APP) can lead to the

aggregation of the processed amyloid beta peptide (Ab),
generating characteristic plaques in the brain [4]. Fur-

thermore, in amyotrophic lateral sclerosis (ALS) and

Parkinson’s disease (PD), mutations in superoxide dis-

mutase and a-synuclein, respectively, may cause the

aggregation of these proteins and affect the function of

motor neurons, causing tremors and muscle paralysis [5,

6].

However, many patients suffering from late onset neu-

rodegenerative diseases lack a predefined genetic

background. Indeed, it is widely recognized that such dis-

orders are multifactorial and associated with both an

individual genome and environmental conditions [7].

Although the molecules and signaling pathways

involved in the inflammatory response have been widely

characterized, it is still unclear how they influence the

development of neurodegenerative diseases and are

linked to environmental challenges. In this paper, we

review how inflammatory mechanisms can have an

impact on membrane homeostasis and how this may

perturb the key proteins associated with neurodegenera-

tive disorders.
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Inflammation in neurodegenerative diseases

Though direct infection or hyper-sensitivity to foreign

proteins may cause an intrinsic inflammation, the brain is

also vulnerable to damage in response to systemic

inflammation as infiltration of immune cells and mediators

can lead to profound structural and functional changes [8].

The blood–brain barrier (BBB) isolates the central ner-

vous system (CNS) from the circulating blood, creating a

privileged environment. While this is required to maintain

brain homeostasis, it does not mean that the brain is

depleted of immune cells [9]. Also, the CNS is not com-

pletely isolated from blood circulation [10] as cytokines

may: (1) by-pass the BBB at the circumventricular organs

and mobilize resident macrophages; (2) activate the brain

endothelial cells and signal the microglia within the par-

enchyma; (3) activate the sensory afferents of the vagus

nerve communicating with neurons and, finally, (4) be

actively transported by the endothelium across the BBB.

Microglia cells, as resident macrophages of the CNS, play

a central role in the innate immune response [11, 12]. In the

absence of damage, resting microglia have a ramified

morphology and constantly survey the environment in

order to identify potentially harmful signals that require a

response [13]. When this happens, the microglia take on an

amoeboid morphology, changing the expression of surface

receptors and secreting pro- and anti-inflammatory medi-

ators (e.g., chemokines and cytokines), recruitment factors,

and chemicals such as reactive oxygen species (ROS). In

this state, the microglia cells are described as activated.

Fig. 1 Inflammation can disturb the membrane and promote protein

aggregation. Activated microglia cells produce peptides, proteins and

reactive species of oxygen and nitrogen that can perturb membrane

homeostasis. The binding of peptides and the oxidation of phospho-

lipids can increase the gel phase and raft domains, triggering protein

aggregation and disease. a APP is in equilibrium between its native

and cleaved forms, the latter of which is generated by the action of

different secretases (purple). In the non-lipid raft portion, which is

abundant in unsaturated phospholipids (light green), cleavage by a-
secretase produces soluble APP and membrane-bound CTFa. How-
ever, in terms of lipid rafts, where the membrane domains are rich in

cholesterol (red), glycosphingolipids (orange) and saturated lipids

(dark green), APP cleavage by b-secretase can generate APP-sb and

CTFb. The latter peptide can subsequently be processed by c-

secretase to produce the aggregation prone Ab peptide (blue).

b Changes in membrane composition can modify the phosphorylation

pattern (purple circles) of the tau protein and promote its aggregation

propensity. Ab aggregates and tau neurofibrillar tangles are charac-

teristic of AD. c Alterations in the distribution of a-synuclein between
different membrane domains can trigger a self-assembling process,

which can be accelerated by lipid peroxidation (dark blue). a-
synuclein oligomers can damage neuron membranes and promote the

development of PD. d Superoxide dismutase (SOD) can also bind to

different membrane domains in different compositions, and its

distribution between them can modulate its aggregation propensity.

Specifically, an increase in the content of saturated fatty acids and

oxidized lipids can support SOD-oligomerization, thereby promoting

the development of ALS
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Bacteria can activate microglia and promote memory

impairment in young mice through a mechanism that

involves interleukin-1, and the high-mobility group protein

B1 [14]. For example, a single sublethal injection of

lipopolysaccharide (LPS) can impair behavior and memory

in mice, reduce the proliferation of neural stems cells and

induce microglia invasion and activation to the hip-

pocampus [15]. Severe systemic inflammation, such as

sepsis, also leads to an increased production of the nuclear

factor jB [16] that changes the microglia phenotype [17].

Most interesting, there is convincing evidence that

increased amounts of inflammatory biomarkers are

observed before the clinical onset of dementia. For

example, Kuo and co-workers [18] found that an increase

in C-reactive protein in serum was increased 5 years before

the clinical onset of dementia. In another case, Buchhave

and co-workers showed that TNF receptors TNFR1 and

TNFR2 are also associated with the development of

dementia 4–6 years before to disease manifestation [19].

In this section, we aim to review how inflammation is

connected to the most studied neurodegenerative diseases.

We also highlight recent studies that support the notion that

triggering the brain immune system, either during early

embryonic stages or by chronic activation at a later age,

can promote and/or accelerate the development of neu-

rodegenerative disorders.

Fig. 2 Membrane damage as an explanation on how microglia-

secreted mediators may promote protein aggregation. a When a

systemic infection is detected in the body, several inflammatory

mediators are released. Some of these can cross the blood–brain

barrier and stimulate microglial cells (purple). These cells change its

morphology and become activated, releasing pro-inflammatory

cytokines, ROS and other peptide mediators in the brain. When a

chronic inflammatory signal is present, microglia cells become

permanently primed, and the continued release of pro-inflammatory

mediators can damage the surrounding neuronal cells (yellow). In

turn, neuronal damage contributes to increasing the microglia

activators that further activate microglial cells, causing a dangerous,

self-sustaining activation cycle. b At the molecular level, ROS and

the binding of pro-inflammatory mediators to specific receptors

generate a transcriptional response in neurons. Moreover, ROS can

cause lipid peroxidation (dark blue), thus perturbing neuronal

membrane homeostasis, while the unspecific binding of peptide

mediators can alter membrane fluidity. Globally, the integrated

response to microglial secretions at the membrane level may lead to

aggregation and protein mislocation. This may also trigger changes in

post-translational modifications, including the phosphorylation state

of several proteins such as a-synuclein, Ab and tau. Last but not least,

protein aggregates themselves or through the activation of receptors

and signaling complexes (e.g. TLR2 or NLRP3 inflammasome) may

generate a self-perpetuating mechanism of increased membrane

damage and aggregation
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Inflammation in Alzheimer’s disease

Alzheimer’s disease is a multifactorial, neurodegenerative

illness that is manifest as a cognitive impairment and

behavioral disorder [20]. Histopathological analyses of the

brains of patients with the condition reveal nerve and

synapse loss, but also two characteristic lesions: plaques

containing aggregated Ab peptide and tau neurofibrillar

tangles [21].

A significant number of aged individuals with AD suffer

from more than one systemic disease [22] suggesting that

systemic inflammation might be a risk factor for AD. In

fact, systemic inflammation and acute infections have been

associated with cognitive decline in patients with AD [23,

24] and genome-wide analyses suggest that several genes

that increase the risks for sporadic Alzheimer’s disease

encode factors that regulate inflammatory reactions [25].

In a recent study, Krstic and colleagues developed a

model to demonstrate that viral infections are related to late

onset AD. The team treated isogenic mice with either the

viral mimic polyriboinosinic-polyribocytidilic acid

(PolyI:C) or a placebo, and measured neuropathological

changes during aging [26]. Only the mice treated with the

RNA analog developed amyloid plaques and experienced

significant impairments in their working memory at older

ages. These results suggest not only that inflammation and

infection can increase the probability of developing AD,

but also that environmental conditions can trigger neu-

rodegenerative disorders irrespective of the genetic

background.

The same authors suggest that during healthy aging

misfolded and aberrant proteins are directed to budding

structures called intracellular varicosities, which are later

extruded, engulfed and degraded by microglia cells [27].

According to the authors’ model, under chronic inflam-

matory stress, microglia cells become permanently

activated and cannot properly remove these deposits.

Thereafter, axonal varicosities swell and accumulate APP,

jeopardizing axonal transport. Moreover, activated micro-

glia secrete pro-inflammatory mediators and reactive

oxygen species that contribute to neuronal damage. Ulti-

mately, the aberrant processing of APP (misfolding stress)

and excessive neuronal damage (oxidative stress) promote

the formation of amyloid plaques that are released upon

neuron death.

Chronic inflammatory stimuli are also involved in tau

phosphorylation and tangle formation. Kitazawa and col-

leagues found an increase in the former at specific sites in

3xTg-AD transgenic mice after they were injected with

LPS, which also exacerbates pre-tangle pathology in a

cyclin kinase 5-dependent mechanism [28]. Although in

their experiments the progressive activation of microglia

was found to correlate with the onset of fibrillar aggregates,

the causal relationship between immune activation, tau

phosphorylation and fibrillation is still unclear. In another

study, Bhaskar and his colleagues observed that intraperi-

toneally administered LPS induced Iba1? activated

microglia promoting tau hyperphosphorylation in non-

transgenic mice [29]. They also noted that mice lacking the

fractalkine receptor CX3CR1 displayed enhanced tau

phosphorylation and aggregation, as well as behavioral

impairments. When LPS activates microglia, it induces the

release of fractalkine that binds to the microglia G-coupled

fractalkine receptor, downregulating the activation and

dampening the toxic effects of the activated microglia [29].

In fact, knocking out CX3CR1 in various mouse models of

AD worsens the phenotype [30] and aggravates cognitive

deficits [31]. As a result, it is possible that chronic neu-

roinflammation leads to the microglia being in a

permanently activated state that is insensitive to fractalkine

signaling, thus endangering neurons.

Inflammation in Parkinson’s disease

Parkinson’s disease is the second most common neurode-

generative disorder after AD, and causes a slow and

progressive degeneration of dopaminergic neurons in the

substantia nigra and a later degeneration in the central

cortex [32]. Patients affected by this disease have charac-

teristic intracellular protein inclusions called Lewy bodies

that contain a-synuclein, among other proteins. The origin

of these inclusions and the causes of neuronal loss are not

fully understood. Patients with PD have an increased level

of pro-inflammatory mediators in their cerebrospinal fluid

(including TNF-a, IL-1b and IL-6) and a presence of

microglial cells in the substantia nigra [33]. These changes

are associated with the progression of the disease, but it is

not known whether they are involved in the pathological

process or are a consequence of neuronal degeneration.

Experiments in animal models have revealed that the

injection of LPS leads to an accumulation of a-synuclein
and the progressive degeneration of the dopamine nigros-

triatal system, causing motor impairments [34]. Those

responsible for this research determined that neuroinflam-

mation induced by LPS generates damage caused by the

S-nitrosylation/nitration of mitochondrial proteins. These

events are followed by the progressive degeneration of

dopaminergic neurons in the nigrostriatal system [34].

Recent studies suggest that cytokine IL-1 plays a central

role in mediating the functional changes induced by LPS,

but the precise mechanism by which microglial activation

occurs and leads to motor neuron impairment remains to be

determined [35].

As observed in AD, fractalkine receptor CX3CR1-

knockout mouse models of PD also reveal the worsening of

the phenotype [30], suggesting that the modulation of
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inflammation by fractalkine signaling can protect against

microglial neurotoxicity. Interestingly, Nash and his co-

workers found that soluble fractalkine is capable of

reducing the dopaminergic neuron loss caused by human a-
synuclein over-expression [36].

Inflammation in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is one of the most common

late onset neurogenerative diseases, with a prevalence of

*5 per 100,000 individuals. It is characterized by the

selective deterioration of motor neurons, which leads to the

progressive atrophy of skeletal muscles [37].

Autopsies of ALS patients have revealed that active

demyelination and neurodegeneration are present in those

with marked brain inflammation [38]. Recently, Frakes and

colleagues found that NF-jB signaling pathway is acti-

vated in ALS, predominantly in microglia [39]. Moreover,

the deletion of microglia NF-jB signaling rescues motor

neurons in mice with ALS by inhibiting pro-inflammatory

activation [39]. NF-jB is a protein complex that plays a

central role in regulating the immune response to infection,

and is also activated in the microglia cells of patients

suffering from AD and PD [40, 41].

In 2009, Saijo and his co-workers discovered an orphan

receptor called Nurr1 that functions as a key component of

a negative feedback loop in both microglia and astrocytes.

Nurr1 acts by recruiting the CoREST corepressor to NF-jB
target genes, regulating NF-jB turnover and restoring its

expression to a basal state. In this context, the absence of

Nurr1 makes cells susceptible to the toxicity caused by

mutations in superoxide dismutase 1 (SOD1), which is an

enzyme linked to ALS [42]. Interestingly, Nurr1 is also

related to other neurodegenerative pathologies, and pro-

motes exaggerated and prolonged inflammatory responses

that accelerate the loss of dopaminergic neurons in

response to a-synuclein overexpression [43]. Furthermore,

the number of Nurr1-expressing cells significantly declines

in an age-dependent manner that is concomitant with

increased Ab accumulation [44].

Inflammation in Huntington’s disease

Other neurodegenerative diseases have also been associ-

ated with inflammation. An example is Huntington’s

disease (HD), where the aggregation of huntingtin causes

motor impairments and neuropsychiatric disorders [45].

Similar to other neurodegenerative pathologies, cells

expressing mutant huntingtin with an expanded polyglu-

tamine (polyQ) repeat have elevated NF-jB activity [46].

Moreover, in cortico-striatal slices and primary neuronal

culture models, the microglia are localized in the vicinity

of neurons expressing mutant huntingtin genes and have

increased levels of the pro-inflammatory cytokine IL-6

[47].

Taken together, all of this evidence highlights the fact

that neuroinflammation is a general hallmark of neurode-

generative diseases, and that a permanent activation of the

brain immune system could increase the probability of

developing such conditions. Even more relevant, the liter-

ature suggests that neurodegenerative diseases may share

inflammatory pathways, including the activation of the NF-

jB pathway and the deregulation of fractalkine signaling.

In the next section, we attempt to elucidate how

inflammation is connected to both protein aggregation and

cell damage.

Inflammation and membrane damage

Membranes are transcendental structures in organisms,

because they compartmentalize the cell and organize cel-

lular processes. The cell membrane is a lipid bilayer that

envelops the entire cell, physically separating the internal

milieu from the extracellular environment. The cell mem-

brane acts a barrier, but also enables the transport of

molecules and ions and allows cell-to-cell communication.

Lipid bilayers must be impermeable to molecules and

ions from the surrounding environment, but, at the same

time, they need to be fluid enough to allow dynamic pro-

cesses like protein traffic within the membrane [48]. This

delicate balance can be easily disturbed by changes in lipid

structure and composition. This occurs, for example, due to

oxidative damage or when proteins and chemicals affect

the membrane recycling cycle. Overall, these processes

modify the bilayer fluidity and alter the membrane orga-

nization, i.e., they globally disturb membrane homeostasis

[49]. This homeostasis is critical for ensuring the curvature

of the membrane, correct receptor signaling, endocytosis,

exocytosis and organelle biogenesis.

When human microglia are activated during inflamma-

tion, they produce reactive species of oxygen and nitrogen

(ROS) to kill invading pathogens. However, ROS can also

affect surrounding host cells, inducing neurotoxicity [50,

51]. In these situations, as the most external part of the cell,

membranes can sustain a great deal of damage from these

ROS. Peroxidation processes target lipids within the

plasma membrane, in particular, polyunsaturated phos-

pholipids that modify membrane fluidity. Such changes can

affect the interaction of proteins and lipids across the

membrane. For example, macrophages treated with

hydrogen peroxide increase both the gel phase and raft

domains, reducing overall membrane fluidity [52]. Similar

effects have also been described in other cell types, such as

T-lymphocytes and endothelial cells [53, 54]. Activated

microglia also secrete pro-inflammatory mediators like
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cytokines, interleukins and antimicrobial peptides. These

molecules can interact with the cell membrane, promoting

a structural rearrangement. Antimicrobial peptides, for

instance, can redistribute cholesterol, reduce membrane

fluidity and create pores, damaging the membrane [55–57].

Lipid homeostasis is critical for protein activity, cell

membrane recycling and accurate signaling. In fact, lipid

composition alterations in the aged brain can have a dra-

matic effect on maintaining synaptic functions, including

membrane fusion processes, neurotransmitter receptor

dynamics and survival/death signaling pathways [58].

An uncontrolled inflammatory response can, therefore,

damage neurons by directly disturbing the cell membrane

homeostasis. Yet can this have an effect on the formation

of protein aggregates and the deposits observed in neu-

rodegenerative diseases? There are two important reasons

suggesting that this may be the case:

(1) All the known proteins related to brain neurode-

generative diseases need to bind to membranes to exert

their functions:

i. In AD, APP is an integral membrane protein, and the

tau association with the plasma membrane is crucial for its

correct phosphorylation [59].

ii. In PD, a-synuclein plays a role in lipid transport and

synaptic membrane biogenesis [60].

iii. In ALS, the binding of superoxide dismutase 1

(SOD1) to the membrane is required for adequate copper

distribution [61].

(2) Several observations suggest that membranes pro-

vide a singular environment for amyloid-like aggregates:

i. The diffusion of proteins in membranes occurs in two

dimensions, which enhances the probability of protein–

protein interactions [62].

ii. Membranes support the better growth of amyloid fibrils

[63]. Also the presence of lipid rafts may provide a singular

environment to regulate fibril formation and aggregation [64].

iii. Oligomers generally interact with membranes and

cause membrane damage (e.g., pore formation) [65].

Accordingly, inflammation may cause an imbalance in

membrane homeostasis and, in doing so, affect the aggre-

gation process of the proteins that are related to well-

known neurodegenerative diseases. In the following sec-

tions, we review how this can be linked to specific

neurodegenerative pathologies.

Membrane perturbation in Alzheimer’s disease

APP is in equilibrium when it is between its native form

and the cleavage between different secretases [66]. It can

be cleaved by a-secretase, leading to a free APP-sa peptide

and a membrane-bound CTFa in the non-amyloidogenic

cascade. This process takes place in the non-lipid raft

portion of the membrane, and the species produced are

non-pathogenic. However, lipid raft-associated APP can be

recruited in the endosomes and cleaved by b-secretase
(also known as BACE), generating a soluble peptide

known as APP-sb and a membrane-bound peptide called

CTFb. The latter is then processed by the lipid raft-asso-

ciated c-secretase to generate toxic Ab species. These

endosomes can be later degraded in lysosomes or re-ex-

ported to the membrane through the membrane recycling

process that secretes Ab fragments to the extracellular

medium.

In this scenario, as Ab formation is raft dependent, the

situations that shift the distribution of APP to lipid rafts

could increase Ab production, triggering AD [67]. For

example, a decrease in membrane fluidity due to lipid

oxidation could lead to the APP accumulating in the gel

phase, increasing APP cleavage by c-secretase and toxic

Ab peptide levels (Fig. 1a).

Much evidence supports the notion that a decrease in

membrane fluidity could enhance the production of Ab and

accelerate its aggregation:

(1) Saturated phospholipids and gel phase membranes

support the growth of amyloid intermediates better [63,

68].

(2) Cholesterol exposure increases Ab production by

clustering APP and BACE together [69, 70].

(3) AD predominantly affects the cerebral cortex and

hippocampus, which is a region of the brain that is sig-

nificantly enriched in cholesterol when compared to other

areas such as the cerebellum [71].

(4) Diets lower in cholesterol and saturated lipids reduce

the risk of developing AD [72].

Membrane homeostasis imbalances can also be related

to tau aggregation. Maas and colleagues used a micro-

sphere separation process to isolate plasma membrane-

associated tau and reported that it was differentially

phosphorylated when compared with cytosolic tau [73].

More recently, Hernandez and her co-workers analyzed tau

phosphorylation after the incubation of SHSY-5Y cells

with Ab peptide [74]. The authors observed both an

increase in Tyr18 phosphorylated tau after 2 min of treat-

ment and a higher association with lipid rafts. After

10 min, they began to detect Ser396 and Ser404 phos-

phorylated tau, which became more intensively associated

with lipid rafts, suggesting a correlation between phos-

phorylation and raft association. In addition, several

authors have reported that tau aggregation is modulated by

the bilayer lipid composition [75, 76]; specifically, nega-

tively charged and oxidized phospholipids can increase its

aggregation [76, 77]. Consequently, changes in membrane

dynamics can affect protein folding and phosphorylation,

affecting the location, function and aggregation of tau
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(Fig. 1b). Indeed, tau intermediate aggregates may promote

neuronal damage through membrane disruption [76].

Membrane perturbation in Parkinson’s disease

a-Synuclein is a protein that is neuropathologically related

to PD, and promotes the loss of dopamine-producing

neurons in the mid-brain [78]. It is widely accepted that a-
synuclein forms toxic oligomeric conformations that dis-

rupt the synaptic function and eventually lead to neuronal

death [79].

The binding of a-synuclein to membranes is funda-

mental for its natural function, but this interaction can also

start a nucleation process that generates seeds that can later

grow by incorporating cytosolic monomers [80].

Unfortunately, the precise membrane location of

a-synuclein is still controversial. Fortin and her co-workers

demonstrated that lipid rafts settle the synaptic localization

of a-synuclein [81]. Meanwhile, in a recent study, Pranke

and colleagues revealed that a-synuclein does not localize

widely to the plasma membrane, but only to vesicular

clusters closely associated with it [82]. As a result,

a-synuclein distribution between the different lipid phases

of the plasma membrane may impact its function and its

aggregation properties (Fig. 1c).

Lipid peroxidation in the brain substantia nigra has been

reported in patients suffering from PD [83]. Similar to

other lipids, cholesterol is also affected by oxidative stress,

which can change the aggregation properties of the proteins

residing in lipid rafts. Bosco and his co-workers detected

the presence of oxidized cholesterol metabolites in Lewy

bodies, and proposed that oxidative stress produces

cholesterol aldehydes that may cause a-synuclein aggre-

gation [84]. In the same direction, Giasson and colleagues

identified a selective and specific nitration of a-synuclein
in both PD and dementia [85], and concluded that the

oxidative and nitrative damage caused by it are directly

linked to neurodegeneration. As the nitration of tyrosines in

the C-terminus of the protein may restrict its binding to the

membrane [86], it is possible that the oxidation and nitra-

tion processes could promote synapse damage and, at the

same time, release a-synuclein into the cytoplasm, where it

may aggregate due to the exposure of previously hidden

hydrophobic patches (Fig. 1c).

Membrane perturbation in amyotrophic lateral

sclerosis

Superoxide dismutase 1 is the best characterized gene of

the proteins that lead to ALS, which is a paralytic disorder

caused by the degeneration of motor neurons [87].

As described for APP, tau and a-synuclein, SOD1 also

has the ability to bind to membranes [61], with a significant

fraction associated with lipid rafts [88]. In fact, lipid

binding and oxidation processes can enhance SOD1

oligomerization and the formation of cytotoxic aggregates

[89, 90]. Accordingly, alterations in membrane dynamics

may redistribute SOD1, modulating its aggregation

propensity. For example, lipid peroxidation can generate

radicals in the membrane that promote the oligomerization

of the protein (Fig. 1d).

Other proteins have also been related to ALS, including

TDP-43, alsin and dynactin. To the best of our knowledge,

TDP-43 membrane-binding activities have not yet been

characterized. However, alsin and dynactin play relevant

roles in membrane traffic: alsin plays a part in cell mem-

brane organization and endocytosis, while dynactin is

essential for vesicle movement [91, 92].

Membrane perturbation in Huntington’s disease

Huntingtin is a large protein that is related to development

and apoptosis, and is neuropathologically linked to HD. Its

aggregation is due to the presence of a poly-Q repeat,

which is formed either by the configuration of hydrogen

bonds between amide residues or through the action of

transglutaminase [93]. It is believed that huntingtin

aggregates may cause neurodegeneration by sequestering

other essential proteins and disrupting the protein quality

control machinery [94].

Huntingtin is normally associated with membranes by

palmitoylation, which is essential for its function and traffic

inside the cell [95]. Bertoni and colleagues observed that

an expansion of the poly-Q repeat causes the migration of

the protein to lipid rafts, where it interacts with gp91, a

membrane NADPH-oxidase subunit. Gp91, in turn, stim-

ulates ROS production and DNA damage [96].

Additionally, the poly-Q aggregates are also able to induce

membrane damage [97].

Future perspectives

From the literature examined in this paper, it is reasonable

to conclude that perturbations at the membrane level may

have a major impact on the folding, location and function

of proteins and a direct implication in disease. Further-

more, membrane perturbation can also trigger functional

changes in membrane-anchored proteins [98] that may be

relevant for the progression of a disorder, including

G-coupled receptors that can alter Ab production and

degradation [99, 100].

Taking into consideration all the data reported above,

we suggest that neuroinflammation promoted by the dys-

functional actions of microglia can cause an imbalance in

membrane homeostasis, thus promoting or aggravating
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protein aggregation (Fig. 2). Additionally, amyloid aggre-

gates, mainly oligomers [101], can also destabilize

membranes [102] and contribute further to worsen

inflammation by activating the NLRP3 inflammasome and

Toll-like receptor 2 [103]. These events may, thus, generate

a self-perpetuating mechanism of increased membrane

damage and aggregation (Fig. 2).

If inflammation can effectively trigger or accelerate the

progression of neurodegenerative diseases it would provide

promising avenues for the development of new biomarkers

and drugs to fight these pathologies. Several authors have

already proposed that NLRP3 inflammasome inhibition

represents a new therapeutic intervention for the disease

[104]. In fact, small molecules have been designed to

inhibit the NLRP3 inflammasome for the treatment of

inflammatory diseases [105]. All these results are encour-

aging and bring us closer to an effective treatment for

neurodegenerative pathologies.

It is our view that comprehension of the link between

inflammation, membrane homeostasis and protein confor-

mational plasticity will lead to a better understanding of

diseases. Consequently, a multidisciplinary approach is

required:

(1) At the biochemistry and biophysics level to under-

stand how membrane interaction drives the conformational

switch of proteins.

(2) From a cell biology perspective to comprehend how

changes in membrane dynamics and composition are

translated into signaling processes and protein post-trans-

lational modifications.

(3) From an immunology point of view to identify and

characterize the cells and mediators responsible for this

membrane homeostasis imbalance. The results provided by

future studies in these areas will hopefully lead to the

development of new drugs and treatments for neurode-

generative diseases.

Last but not least, a more detailed comprehension of

inflammation in less prevalent diseases (e.g., HD, ALS)

may help to understand common as well as particular

molecular mechanisms involved in neurodegeneration.
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