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Abstract

Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression.
Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level
are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an
alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However,
the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and
protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-
nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity
of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and
affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific
biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but
often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic
specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition
to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The
testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of
binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict
the protein-nucleic acid structures and quantify their interactions.
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Introduction

Precise regulation of the biological activities within cells is

accomplished by biomolecular recognition which mainly involves

three major biological macromolecules, i.e. protein, DNA and

RNA. The protein-nucleic acid (protein-DNA and protein-RNA)

recognition is essential to the regulation of gene expression at every

level of the central dogma of molecular biology, including

replication, transcription and translation of genetic information

[1]. Determination of the structures of the specific protein-nucleic

acid recognition and insight into their interactions at a molecular

level are vital to understanding the regulation on a genomic scale

[2]. The knowledge of which would be also enormously useful for

a variety of biological and medical applications [3–8].

Although the structures of individual biomolecules are increas-

ingly well determined and structural studies of the biomolecular

complexes have been very active in the last decade, three-

dimensional atomic structures of many biomolecular complexes

are still difficult to determine due to the technical challenges of the

experimental approaches [9–11]. As an alternative, computational

approaches can complement existing experimental data and be

applied to the structural prediction of biomolecular complexes

[12]. The field of protein-protein docking has achieved substantial

progress over the last decade as witnessed by the CAPRI (Critical

Assessment of Predicted Interactions) [13, 14]. However, the

progress for the protein-nucleic acid docking, especially the

protein-RNA docking, lags behind due to the lack of reliable

scoring function of protein-nucleic acid interactions. Previously,

structural information was used extensively to derive scoring

functions for successful predictions of protein structures, as well as

protein-ligand and protein-protein interactions. Given the rapid

growth in the number of solved protein-nucleic complex structures

recently [15], it is natural and urgent to develop an accurate

scoring function of protein-nucleic acid interactions, general for

both protein-DNA and protein-RNA interactions.

For biomolecular functions, highly efficient and specific

biomolecular recognitions are required to satisfy both the stability

and specificity. The stability is determined by the affinity of the

complex while the specificity is controlled by the partner binding

to other competitive biomolecules discriminatively. The current

scoring functions of biomolecular recognition [16,17], whether

force-field based, empirical, or knowledge-based scoring functions,

mainly focused on improving the ability of predicting the known

binding affinities observed in experiments as accurately as possible.

The strategy of developing these scoring functions seeks to

optimize the stability based on the combination of energetics

and shape complementarity, but are often lack of the consider-

ations of the specificity. In the cell compartment, biomolecules are
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required to function by interacting with a small number of

partners rather than the myriad of others. The naturally occurred

biomolecular recognition is just a very small part of all possible

interacting complexes [18]. According to the Boltzman distribu-

tion (P* exp½{F=KT �), the equilibrium population is exponen-

tially dependent on the binding free energy. A gap in binding free

energy or affinity leads to significant population discrimination of

the native complex against alternative ones [19–24], which is the

requirement for the proper functions of the specific biomolecular

recognitions in cell. Recent works taking the consideration of

specificity into the computational design and optimization of

interface interactions has achieved a few successful applications

[6,19–23,25–29]. These works designed and optimized the

interactions that seek to stabilize the desired structures and also

destabilize the competitive structures. Thus, the accurate scoring

function of biomolecular interactions should satisfy the criteria that

the stability of the specific complex is maximized while the stability

of alternative complexes is minimized, which can guarantee both

the stability and the specificity for the functional biomolecular

recognition.

The reason that the specificity usually was not taken into

account previously in the development of the scoring functions is

that the description of binding specificity was challenging to

quantify. The conventional definition (Figure 1A) of specificity is

the ability of a biomolecule to specifically bind to its own partner

against other competitive partners, namely the relative difference

in affinity of one specific biomolecular complex to others [24,30].

The definition of conventional specificity is simple but the

quantification of conventional specificity is challenging since it

requires that the set of competitive complexes are not too large

and the affinities are already known. This makes the practical

quantification of the specificity impossible due to the incomplete

information on the competitive alternatives.

To overcome the challenge, we have proposed a novel concept

named as intrinsic specificity (Figure 1B) [19–23]. Here, we

expand the concept to the protein-nucleic acid interactions. In

particular, the intrinsic specificity of protein-nucleic acid binding

refers to the preference in affinity of a nucleic acid binding to its

protein receptor with a preferred pose over other poses (Figure 1B).

Imagining the N- and C-terminus of multiple protein receptors are

linked together, leading to an effective single large protein

receptor. Under the assumption that the protein receptor is large,

the conventional specificity of discrimination of a nucleic acid

binding to its protein receptor against other proteins can be

transformed to the intrinsic specificity that the nucleic acid binds

to the large receptor with a preferred pose over other poses. By

applying this concept, we have developed scoring functions for the

interactions of bimolecular recognition, including protein-ligand

interactions [21] and protein-protein interactions [22]. Also, the

connection between the intrinsic specificity and conventional

specificity was validated by studying a drug-target model [23],

where the conventional specificity is correlated with the intrinsic

specificity.

According to the theory of energy landscape [19–21,31–39], the

binding process of biomolecules can be visualized and quantified

as a funnel-like energy landscape towards the native binding state

with local roughness along the binding paths. The native pose of

protein-nucleic acid complex is the conformation with the lowest

binding energy and the energies of the conformation ensemble

follow a statistical Gaussian-like distribution. The intrinsic

specificity ratio (ISR~
dE

DE
ffiffiffiffi
S
p , where dE is the energy gap

between the energy of native conformation and the average energy

of conformation ensemble, DE is the energy roughness or the

width of the energy distribution of the conformation ensemble,

and S is the conformational entropy) can be defined to quantify

the magnitude of intrinsic specificity. With computationally

generated non-native poses (decoys), the ISR can be readily

obtained. Therefore, without evaluating the conventional speci-

ficity through exploring the whole set of competitive partners, ISR

physically provides a quantitative measure of the binding

specificity.

In this work, based on our practical quantification of binding

specificity, we have designed an optimization strategy to maximize

both the affinity and specificity of native binding mode simulta-

neously for developing the scoring function of protein-nucleic acid

interactions. The optimization strategy is to adjust the statistical

knowledge-based potentials of atom pairs by iteration until the

scoring function can effectively discriminate the native binding

pose against the decoys. The flow of developing procedures is

shown in Figure S1 in File S1. We have tested the derived scoring

function of protein-nucleic acid interactions (SPA-PN) via the

performance on the prediction of binding affinity and the

identification of native binding pose. The performance of SPA-

PN demonstrated that the quantified specificity is necessary to be

incorporated into the optimization of scoring functions of protein-

nucleic acid interactions.

Materials and Methods

Preparation of the datasets
Training dataset. The requirement of optimizing the

knowledge-based statistical scoring function is to train a set of

known structural data. The training dataset of protein-nucleic

complexes for developing SPA-PN were extracted from the

database NPIDB (Nucleic Acids-Protein Interaction DataBase)

[15,40]. NPIDB contains information derived from structures of

protein-DNA and protein-RNA complexes deposited in the PDB

(Protein Data Bank) [41]. To obtain a relatively high quality set of

protein-nucleic complexes for the training dataset, X-ray struc-

tures with resolutions better than 3.0Å for the protein-DNA

Figure 1. Schematic view of illustrating the equivalence of
conventional specificity to intrinsic specificity. (A) The same
nucleic acid (N, red) binding with multiple protein receptors (blue, P1 to
Pn), showing the conventional specificity as the gap in binding affinity
of the nucleic acid binding to the specific protein receptor (Pn) in
discrimination against other protein receptors. The binding affinities are
represented with corresponding energy spectrum (green). (B) The same
nucleic acid (N, red) binding on a large protein receptor thought as the
multiple different receptors linked together (blue) with multiple
binding modes (M1 to Mn), showing the intrinsic specificity as the
gap in binding affinity of the native binding mode (Mn) in
discrimination against other binding modes.
doi:10.1371/journal.pone.0074443.g001

Specificity of Protein-Nucleic Acid Interactions
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complexes and 3.5Å for protein-RNA complexes were selected.

Entries with more than 3 DNA or RNA chains, or the number of

heavy atoms of any chain less than 100 were discarded. By

removing the entry overlaps with the testing datasets below, the

resulting training dataset contains 1555 complexes, including 1221

protein-DNA structures and 334 protein-RNA structures (Ta-

ble S1 in File S1).

Testing datasets. To validate the performance of a novel

scoring function, two kinds of tests are needed. First, to evaluate

the ability of SPA-PN on predicting the binding affinity. SPA-PN

was tested on a dataset of protein-DNA complexes with known

experimental binding affinities. This dataset for binding affinity

prediction was employed from the binding database which is a

modified version of Zhang et al. [42] and was used by Donald et al.

[43] and Xu et al [44]. The dataset (named as testing dataset1)

contains 30 protein-DNA complexes (Table S2 in File S1).

Second, in order to evaluate the ability of SPA-PN on

discriminating the native conformation from decoy conformations,

SPA-PN was tested on our collected benchmark of protein-nucleic

acid complexes. The collected benchmark for binding pose

prediction was obtained from available benchmarks of protein-

nucleic acid complexes. It combines two protein-DNA bench-

marks and two protein-RNA docking benchmarks. The first

protein-DNA benchmark obtained from the PDIdb (Protein-DNA

Interface database) [45] contains 246 representative protein-DNA

interfaces out of 922 entries collected in the PDIdb. The second

protein-DNA benchmark [46] contains 47 complexes which

covers almost all major groups of DNA-binding proteins according

to the classification of Luscombe et al [47]. The first protein-RNA

benchmark [48] contains 45 complexes covering all major groups

of protein-RNA complexes according to the classification of

Bahadur et al [49]. The second protein-RNA benchmark [50] is an

extended set of the first one and contains 106 protein-RNA

complexes, it was obtained from both experimental and homology

modeling data. This collected testing dataset were also filtered with

the criteria as composed on the training dataset. In addition, one

entry was kept if there are overlaps among the different

benchmarks. The final collected dataset (named as testing

dataset2) contains 315 complexes, including 232 protein-DNA

structures and 83 protein-RNA structures (Table S3 in File S1).

Docking decoys. For the optimization of SPA-PN, an

ensemble of decoys for each complex are needed to calculate the

ISR for specificity and carry out the iteration algorithm. The

RosettaDock v3.4 was taken as the structure optimization and

docking tool [51,52] to generate the decoys. Three steps were

performed. First, each docking partner of the complex was

prepared in isolation for optimizing their side-chain conformations

prior to docking using the prepacking protocol. Second, the

prepacked complexes were relaxed and minimized with high

resolution by the refinement protocol. Third, the refined structures

were taken as the starting structures for the docking using the local

docking perturbation protocol. The smaller partner was defined as

the docking ligand in the complex and the other was assigned as

the receptor which was kept fixed during docking. 1000

orientations for each complex were generated by docking. Other

docking parameters were set as default. The generated decoys are

structured diversely to explore the underlying binding energy

landscape.

Derivation of knowledge-based statistical potentials
Observed statistical potentials. The knowledge-based

scoring function consists of a set of statistical distance-dependent

atom-pair potentials to quantify the interactions. Normally, the

observed atom-pair potentials were directly derived from the

Boltzmann relation widely applied in the derivation of knowledge-

based statistical potentials for the protein-ligand, protein-protein

and protein-nucleic acid interactions [53–57], the Boltzmann

relation is written as

uobs
k (r)~{KBT ln gobs

k (r), ð1Þ

where gobs
k (r) is the observed atom pair distribution function

quantified by

gobs
k (r)~

f obs
k (r)

f obs
k (R)

: ð2Þ

f obs
k (r) is the observed number density of atom pair k within a

spherical shell between radius r and r+Dr. It can be directly

extracted from the structural database of protein-nucleic acid

complexes. f obs
k (R) is the number density within the sphere of the

reference state where there are no interactions between atoms. It

was obtained based on the approximation that the atom-pair k is

uniformly distributed in the sphere of the reference state [58].

Respectively, they were calculated as

f obs
k (r)~

1

M

XM
m

nm
k (r)

V (r)
, ð3Þ

f obs
k (R)~

1

M

XM
m

Nm
k

V (R)
, ð4Þ

where M is the total number ( = 1555) of training protein-nucleic

acid complexes (Table S1 in File S1), nm
k (r) and Nm

k are the

numbers of atom pair k within the spherical shell and the reference

sphere for a given protein-nucleic acid complex m, where

Nm
k ~

X
r
nm

k (r). V (r)~
4

3
p((rzDr)3{r3) and V (R)~

4

3
pR3

are the volumes of the spherical shell and the reference sphere,

where Dr is the bin size and R is the radius of sphere. Dr and R are

set as 0.3Å and 8.2Å, respectively. In total, there are 20 spherical

shells with bin size 0.3Å from the shortest radius 2.2Å. Based on

the definition of atom type by SYBYL [59], 15 atom types were

used to cover the heavy atoms involved in protein-nucleic acid

interactions (Table S4 in File S1), these atom types were converted

from PDB files by OpenBabel [60]. A cutoff ( = 600) of total

occurrences for atom pair k (Nk~
XM

m
Nm

k ) was employed to

neglect the contribution from the atom pairs with statistically

insufficient occurrences. This lead to 95 effective types of atom

pairs for the protein-nucleic acid interactions (Table S5 in

File S1). There are 1900 types of interaction pair by multiplying

the number of atom pairs ( = 95) and the number of shells ( = 20).

In addition, if the atom pair has no occurrence in a particular

spherical shell, the corresponding pair potential was set as the van

der Waals interaction within this shell.

The observed statistical potentials from the known structures

has its limitations as the statistical potentials extracted from

equation (1) is not exactly the expected potentials that nature

employs to stabilize the complexes [61]. The origin of this problem

is attributed to the construction of the reference state where the

atom pairs are uniformly distributed and independent of each

other [58]. In reality, the protein-nucleic acid interactions involve

the excluded volume, sequences and connectivity. Thus the

Specificity of Protein-Nucleic Acid Interactions
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observed statistical potentials are generally not equal to the

expected potentials [62].

Expected statistical potentials. To circumvent the refer-

ence state issue and improve the statistical potentials, earlier efforts

[42,61,63–65] have taken different approaches to optimize the

statistical potentials. An effective way is to take into account both

native and nonnative conformations (decoys) [61,63,65] based on

the energy landscape theory that the native conformation should

be sufficiently favored over alternative nonnative structures

thermodynamically. However, these earlier works hasn’t com-

bined both the specificity and affinity to discriminate native

conformation over nonnative conformations. In our recent papers

on the study of the protein-ligand [21] and protein-protein

interactions [22], we considered the importance of both the

affinity for stabilizing the native conformation and the specificity of

discrimination over nonnative conformations, and combined them

into the optimization processes of scoring function. Here we

expand this concept to optimize the statistical potentials of protein-

nucleic acid interactions.

The expected statistical potentials are calculated similarly as the

observed statistical potentials, which is

u
exp
k (r)~{KBT ln g

exp
k (r), ð5Þ

where g
exp
k (r) is the expected atom-pair distribution function from

all the native and non-native conformations, which is

g
exp
k (r)~

f
exp
k (r)

f
exp

k (R)
: ð6Þ

Our aim is to obtain a scoring function that can significantly favor

the native conformation over all other decoy conformations, so

that the native conformation dominates the ensemble of confor-

mations according to the Boltzman distribution. Considering the

population discrimination of the native and nonnative conforma-

tions, the expected number density of atom-pair k was calculated

with Boltzmann-averaged weighting over the ensemble of confor-

mations [22,61,65], that is

f
exp

k (r)~
1

MN

XM
m

XN

n

nmn
k (r)e({bUmn)

V (r)
ð7Þ

f
exp

k (R)~
1

MN

XM
m

XN

n

Nmn
k e({bUmn)

V (R)
ð8Þ

where M is the number of native complexes mentioned above

and N is the number of total conformations ( = 1001 including

the native conformation and decoys) for each complex m. n

represents the nth generated decoy of the complex m. b is a

constant analogous to the inverse of temperature and set as 0.1.

The resulting Umn is the potential which is supposed to be able

to discriminate the native conformation against decoys. As

discussed, both the stability and specificity are the requirements

to form an efficient and specific functional complex. Thus, Umn is

designed to take into account of both affinity and specificity

optimized through parameterizing the affinity (E) and specificity

(ISR), which is given by

Umn~cEmnzlmn: ð9Þ

Emn is the energy score of the protein-nucleic acid conformation

(nth decoy of the complex m) by summing over all the expected

interatomic pair potentials among the interface, representing the

affinity of the protein-nucleic acid conformation, lmn is the ISR

representing the specificity of the protein-nucleic acid conforma-

tion [19–21]. c is a parameter which balances the values of Emn

and lmn and set as 0.1. Emn and lmn are calculated as

Emn~
X

k

X
r

tk(r)uk(r) ð10Þ

lmn~am
dEmn

DEmn

, ð11Þ

where tk(r) represents the occurrence times of the atom-pair

interaction between the protein-nucleic acid interface; am is a

scaling factor which accounts for the contribution of the entropy to

the specificity (am~
1ffiffiffiffiffiffi
Sm

p , where Sm is the conformational

entropy of the complex m) [19]. Here, am approximately depends

on the number of interfacial residues/nucleotides (am*

ffiffiffiffiffiffiffiffiffiffi
1

ninter

s
) of

the native protein-nucleic acid conformation of the complex m. An

interfacial residue/nucleotide is defined if any atom of this

residue/nucleotide in one partner of the native protein-nucleic

acid conformation is within 10Å from the other partner. am

normalizes the increase of ISR with the number of interfacial

residues/nucleotides. dEmn is the energy gap between the energy

of a given conformation Emn and the average energy of the

conformation ensemble vEe
mw including the native conforma-

tion and all the decoys of the complex m, DEmn is the energy

roughness or the width of the energy distribution of conformation

ensemble, namely dEmn~Emn{vEe
mw and

DEmn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(Ee

m)2
w{vEe

mw
2

q
, v w means the average over

the ensemble of conformations.

Optimization of knowledge-based statistical potentials
The iterative method [61,65] was employed to realize the

optimization. The idea of the iterative method is to circumvent

the inaccessible reference state problem by adjusting the expected

statistical pair potentials until they are able to discriminate native

binding mode from decoys. As aforementioned, the expected

potentials obtained from the ensemble of conformations generally

are not equal to the potentials from the observed native

conformations. The difference between the expected statistical

potentials and the observed statistical potentials, as well as the

iterative equation are expressed by

Dui
k(r)~ui

k(r){uobs
k (r) ð12Þ

u
(iz1)
k (r)~ui

k(r)zxDui
k(r): ð13Þ

ui
k(r) is the expected distance-dependant potentials u

exp
k (r)

starting from i = 0 and the new expected statistical distance-
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dependant pair potentials u
(iz1)
k (r) was taken to compute the Emn

and lmn, as well as Umn through equations (9–11). In return, the

Umn was used to update the expected pair potentials through

equations (5–9). Thus, the expected pair potentials were adjusted

with the difference Dui
k(r) at each iteration step. The x controls the

speed of the convergence and was set as 0:1. The iterative

procedure was repeated until the success rate of the best-scored

conformations passing the high quality accuracy of CAPRI criteria

(Table S6 in File S1) converges to a high value. The resulting set

of the expected pair potentials constitutes the optimized scoring

function of protein-nucleic acid interactions, namely SPA-PN.

Results and Discussion

Optimized SPA-PN
To validate the effectiveness of the iterative procedure on the

improvement of the statistical potentials, we show the evolution of

the average interfacial RMSD (Irms, root-mean-square displace-

ment of backbone atoms among the interface) of the best-scored

poses and the success rate of the best-scored poses passing high

accuracy of CAPRI evaluation criteria (Figure 2A). It can be seen

that the success rate increases from 56:6% and converges to 92:0%
while the average Irms decreases from 1:31 and approaches to 0:32
through adjusting of the atom-pair potentials via iteration. When

the iteration reaches convergence, almost all the best-scored poses

of the protein-nucleic acid complexes in the training set are

identified as the native conformations by the optimized scoring

function SPA-PN, and the structures of the best-scored poses are

identical or similar to their native conformations with low Irmss.

This suggests that the accuracy of the statistical expected

knowledge-based pair potentials on the prediction of the binding

affinity and identification of native conformation are improved

gradually as the iteration continues until the convergence is

reached. It satisfies our expectations that the optimized scoring

functions is to favor the native conformations energetically as

occurred in nature.

The novelty of our optimization strategy is to couple the

optimizations of the affinity and specificity simultaneously via the

iterative adjustments of the atom-pair potentials. As seen

(Figure 2B), the distribution of ISR value of pre-optimized and

optimized SPA-PN is clearly separated, and the average value of

ISRs for the native poses increases from 4:68 to 7:94. It implies

that the specificity of native conformation is more pronounced

Figure 2. Optimization of SPA-PN. (A) Evolution of the success rate and the average interfacial RMSD (Irms) as the iteration precedes. (B) The
distribution of ISR values calculated with pre-optimized SPA-PN and optimized SPA-PN respectively.
doi:10.1371/journal.pone.0074443.g002

Figure 3. A typical example of protein-nucleic acid complex (PDB 1TRO). (A) Protein-nucleic acid binding structure with protein colored in
blue and nucleic acid colored in red. (B) Plot of interfacial RMSD (Irms) as a function of the fraction of native contacts (fnat) for 1000 docking decoys of
the typical complex. (C) Energy spectrum and distribution calculated with pre-optimized SPA-PN (green) and optimized SPA-PN (magenta), the
corresponding ISR values are shown and the energy of the native conformation is marked as red.
doi:10.1371/journal.pone.0074443.g003

Specificity of Protein-Nucleic Acid Interactions
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while the stability is more strengthened with the optimized SPA-

PN. A typical example of protein-nucleic acid docking complex

(PDB ITRO) is represented with its ensemble of docking

conformations (Figure 3). After optimization, the native confor-

mation becomes more separated from the decoy ensemble while

the energy distribution of decoys becomes more narrow, i.e. the

energy gap between the energy of native conformation and the

average energy of conformation ensemble is enlarged, while the

energy roughness or the width of the energy distribution of the

conformation ensemble is reduced. The ISR value of the native

conformation increases from 3:16 to 5:10 during the optimization,

and also the stability of the native conformation is enhanced

compared to the decoy ensemble. Collectively, the optimizing of

the statistical potentials improves the performance of SPA-PN on

characterizing both the stability and specificity of the native pose.

A subset of atom-pair potentials of the optimized SPA-PN are

shown in the Figure S2 in File S1. The potentials are normally

have more than one minimum, which is consistent with the

characteristic feature of the knowledge-based potential that is the

mixture of different kinds of atom-pair interactions, such as

electrostatic, hydrogen bonding, hydrophobic and van der Waals

interactions.

Scoring functions of biomolecular recognition are generally

used for two applications: (1) to predict and explain the

experimentally determined affinities; and (2) to score and rank

the binding poses generated by the docking programs. Thus, to

validate the performance of SPA-PN, two kinds of tests related to

corresponding applications are carried out and the testing results

are shown in the sections below.

Prediction of binding affinity
The prediction accuracy of the binding affinity determines the

performance of the scoring function on how well it can

reproduce the experimentally measured affinity and predict the

biomolecular interactions. Due to scaling, the scoring functions

usually can not reproduce the absolute values of experimental

binding affinity, the Pearson correlation coefficient (CP) between

the predicted and experimental measured binding affinities were

computed for the 30 protein-DNA complexes of the testing

dataset1. The CPs of the scoring functions (cFIRE, DDNA,

FIRE, vcFIRE and vFIRE) were obtained from the paper [44].

The correlations between the predicted and experimental

affinities are shown in Table 1 and the detailed affinity values

are listed in Table S2 in File S1. In order to emphasize the

importance of ISR on the optimization of scoring function, we

also optimized the scoring function by only taking affinity into

the optimization (called as Affinity-PN), i.e. the equation 9

becomes Umn~cEmn. From the comparisons with other scoring

functions, the performance of SPA-PN ranks best with

CP~0:862 (Figure 4). The high consistence with experimental

measurements indicates that SPA-PN is accurately predicting the

binding affinities for the protein-nucleic acid interactions.

Identification of native pose
The aim of computational docking is to look for the native or

near-native binding pose for the assembly partners. Whether the

best-scored binding pose resembles the native conformation in

structure determines the scoring and ranking ability of the scoring

function. The performance of binding pose prediction for SPA-PN

is tested on both protein-DNA and protein-RNA complexes of

testing dataset2 (Table S3 in File S1). The performances of SPA-

PN on identifying the native pose are compared with pre-

optimized SPA-PN and affinity-PN (Table 2). The success rates of

the native pose identification calculated by SPA-PN for both

protein-DNA and protein-RNA complexes are over 85% which is

much higher than that of pre-optimized SPA-PN. The success rate

for the testing dataset is close to that for the training dataset. This

suggests that the optimized SPA-PN is successful and robust on the

ability to identify native or near-native binding poses. The high

success rate also means that optimized SPA-PN is effective to

discriminate the native binding pose against decoys, namely able

to characterize the specificity. It is worth noting that the

comparison of Affinity-PN and SPA-PN demonstrates the

importance of incorporation of ISR into the optimization strategy

since it further improves the performance of the scoring function

on the identification of native or near-native binding poses. With

affinity and specificity optimization, SPA-PN outperforms Affinity-

PN not only on the affinity prediction but also the identification of

native conformation.

Figure 4. Pearson correlation between the predicted affinities
calculated by SPA-PN and experimental binding affinities for
30 protein-DNA complexes of testing dataset1. The correlation
coefficient (CP) is 0.862 (statistical significance Pv0:001). The predicted
affinities are obtained by scaling the binding scores with a linear
equation:y = 0.0045x-5.129 which is a fitting equation based on the
experimental affinities.
doi:10.1371/journal.pone.0074443.g004

Table 1. Pearson correlations (CP) between the predicted
binding affinities and experimentally measured binding
affinities for 30 protein-DNA complexes of the testing
dataset1.

Scoring function Cp

SPA-PN 0.862

Affinity-PN 0.857

Pre-optimized 0.817

RosettaDock 0.638

cFIRE 0.847

DDNA 0.840

FIRE 0.790

vcFIRE 0.720

vFIRE 0.550

doi:10.1371/journal.pone.0074443.t001
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Conclusion

In this work, we have developed a novel scoring function SPA-

PN for protein-nucleic acid interactions with the concept of

intrinsic specificity. Our optimization strategy of SPA-PN satisfies

the requirement that the stability of the specific complex is

maximized while the stability of competing complexes is

minimized. It guarantees both the stability and the specificity for

the specific complex. This optimization strategy represents a

significant advance over the previous investigations on protein-

nucleic acid interactions which only focused on affinity. We have

employed a largest set of high quality protein-nucleic acid

structures so far for training the SPA-PN and includes both

protein-DNA and protein-RNA complexes, making SPA-PN more

independent on the training set and more generalizable for

applications. The remarkable performance of SPA-PN was

validated by testing the ability on the identification of native pose

and prediction of binding affinity. In addition, SPA-PN is

composed of statistical pair-potentials which are discrete potentials

dependent on the distances between the interacting atom pairs.

The statistical pair-potentials incorporate multiple energy terms

into one potential energy term. Therefore, the computational

docking procedure with SPA-PN will cost less time if SPA-PN is

implemented into the sampling and ranking of protein-nucleic acid

structure prediction.

The success of SPA-PN demonstrates that the specificity is

critical to the protein-nucleic acid interactions and necessary to be

incorporated into the optimization of scoring function. Similar

concept was taken in computational redesign for biomolecules.

Design of biomolecules requires the energy discrimination of

interacting with specific partners against other competitive

partners. In natural systems, evolution could encode the specificity

in the functional structures against the large number of alterative

ones. The quantification of the specificity for biomolecular

interactions opens up a new window to explore new approaches

for both the development of scoring functions and computational

design of biomolecules. Our proposed quantification of specificity

by ISR can be employed as a framework for further improvement

of SPA-PN, and as a criteria for the computational redesign of

protein-nucleic acid interface.

Supporting Information

File S1 Supporting figures and tables. Figure S1 The

development of SPA-PN contains three stages: The preparation

of database, optimization of the scoring function, Testing and

application of SPA-PN. Figure S2 Typical atom-pair interaction

potentials of SPA-PN. (A and B) Two of most frequently occurred

atom pairs. (C and D) Atom pairs related to hydrogen bond. (E

and F) Atom pairs involving phosphorus atom. Table S1
Training dataset for the development of SPA-PN. Table S2
Experimental determined affinities and SPA-PN predicted affin-

ities for 30 protein-DNA complexes of the testing dataset1, the

calculated affinities were obtained by scaling the binding scores

with linear fitting equations (SPA-PN: y = 0.0045*x-5.129, Affin-

ity-PN:y = 0.0044x-5.080, Pre-optimized: 0.0043x-5.443, Rosetta-

dock: y = 0.0053x-7.24) based on the experimental affinities.

Table S3 PDB codes of the testing dataset2. Table S4 15 Atom

types used for calculating the atom pair potentials based on the

SYBYL definition of atom type. The atom types can be converted

from PDB files by the software OpenBabel. Table S5 95 effective

types of atom pairs for the protein-nucleic acid interactions with

the cutoff of total occurrences larger than 600 in the training

dataset. Table S6 The high accuracy quality of CAPRI

assessment criteria was taken to define the near-native conforma-

tion.
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