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Abstract 

Background:  The prediction of potential drug-target interactions (DTIs) not only provides a better comprehension 
of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of expensive 
and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in 
the database were verified experimentally. Therefore, it is meaningful and important to develop new computational 
methods with good performance for DTIs prediction. At present, many existing computational methods only utilize 
the single type of interactions between drugs and proteins without paying attention to the associations and influ‑
ences with other types of molecules.

Methods:  In this work, we developed a novel network embedding-based heterogeneous information integration 
model to predict potential drug-target interactions. Firstly, a heterogeneous multi-molecuar information network is 
built by combining the known associations among protein, drug, lncRNA, disease, and miRNA. Secondly, the Large-
scale Information Network Embedding (LINE) model is used to learn behavior information (associations with other 
nodes) of drugs and proteins in the network. Hence, the known drug-protein interaction pairs can be represented 
as a combination of attribute information (e.g. protein sequences information and drug molecular fingerprints) and 
behavior information of themselves. Thirdly, the Random Forest classifier is used for training and prediction.

Results:  In the results, under the five-fold cross validation, our method obtained 85.83% prediction accuracy with 
80.47% sensitivity at the AUC of 92.33%. Moreover, in the case studies of three common drugs, the top 10 candidate 
targets have 8 (Caffeine), 7 (Clozapine) and 6 (Pioglitazone) are respectively verified to be associated with correspond‑
ing drugs.

Conclusions:  In short, these results indicate that our method can be a powerful tool for predicting potential drug-
target interactions and finding unknown targets for certain drugs or unknown drugs for certain targets.
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Introduction
Predicting potential drug-target interactions (DTIs) 
plays an important part in drug research and discovery. 
It not only helps researchers better understand biological 

processes but also reduces the failure rates and costs in 
the development of new drugs [1, 2]. However, there 
are still many difficulties in the prediction of drug-tar-
get interactions. For example, drugs have many posi-
tive and negative effects that are difficult to detect and 
clarify. In addition, different people respond differently 
to drugs, even if the gene products are slightly different 
[3–6]. Moreover, the biological interactions in the human 
body are extremely complex, making it difficult to trace 
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the effect of drugs. In the past few years, humans have 
made great efforts in predicting drug-target interactions 
to overcome these difficulties. With the completion of the 
Human Genome Project and the development of molec-
ular medicine, more and more unknown drug-target 
interactions have been discovered. However, due to the 
high time-consuming, high cost and small research scope 
of the previous traditional experimental methods, the 
number of experimentally validated drug-target pairs is 
still very small. Therefore, this has spurred researchers to 
develop new computational methods to overcome these 
limitations to predict potential drug-target interactions 
[7–9].

At present, a number of public online drug-target 
interaction databases, such as DrugBank [10], STITCH 
[11], KEGG [12] and ChEMBL [13], all store the major 
information about drugs and their interacting targets. 
These databases greatly facilitate the study of new meth-
ods involving drug-target interactions, and many existing 
calculation models are based on the known drug-target 
interactions in these databases to predict potential drug-
target interactions. More specifically, these methods can 
be roughly divided into two categories: docking simula-
tion and machine learning. However, the docking simu-
lation method usually requires a three-dimensional (3D) 
structure of the target (traditional docking) or a larger set 
of drugs (reverse docking). Because of these limitations 
of the less known 3D structure of the target or the small 
size of the existing drug data sets or the high time-con-
suming, this method is often difficult to conduct. There-
fore, machine learning methods are more commonly 
used in the prediction of drug-target interactions. For 
example, Wang et al. [14] encoded the protein sequence 
as a position-specific scoring matrix (PSSM) descriptor 
to represent biological evolution information of proteins 
and encoded the drug molecules as a fingerprint feature 
vector to indicate the presence of a specific functional 
group or fragment. After that, the Rotation Forest clas-
sifier was adapted for the prediction of potential drug-
target interactions. Wang et  al. [15] used the stacked 
auto-encoder model in deep learning to fully extract drug 
molecular structure and protein sequence information. 
In this way, they generated highly representative features 
through multiple layers of iteration. Finally, the Rotation 
Forest classifier was used for the prediction of potential 
drug-target interactions and achieved good results. Meng 
et  al. [16] developed a novel prediction model for the 
potential drug-target interactions based on the protein 
sequence. This method combined position-specific scor-
ing matrix (PSSM), principal component analysis (PCA) 
with relevance vector machine (RVM) and bi-gram prob-
abilities (BIGP), and had good effectiveness and robust-
ness. Li et  al. [17] proposed a computational model for 

the prediction of drug-target interactions, which used 
the position-specific scoring matrix (PSSM) of the tar-
get protein sequence information, the discriminant vec-
tor machine (DVM) classifier, the local binary pattern 
(LBP) histogram descriptor and the high-identification 
information of the drug-target interactions. The experi-
mental results show that this method can effectively pre-
dict the potential drug-protein interactions. Huang et al. 
[18] exploited the pseudo substitution matrix representa-
tion (Pseudo-SMR) descriptors to represent the protein 
sequence and used a new fingerprint feature vector to 
represent the drug signatures. After that, the two vec-
tor spaces are connected to represent the drug-protein 
interaction pairs. The final experimental results indicated 
that this method has a good performance for the predic-
tion of the potential drug-protein interactions. Wen et al. 
[19] developed an algorithm framework based on deep 
learning to predict the potential drug-protein interac-
tions. This approach solves the shortcomings of many 
traditional methods, which relied heavily on descriptors 
describing proteins and drugs, and can accurately predict 
the potential interactions between drugs and targets.

However, many existing computational methods only 
utilize the single-type of known drug-target association 
information without paying more attention to the asso-
ciations between drugs and proteins and other biomol-
ecules. In this work, we propose a novel computational 
model for predicting potential drug-target interactions. 
Firstly, we comprehensively analyzed and constructed a 
heterogeneous multi-molecular information network by 
combining known associations among disease, protein, 
drug, lncRNA, and miRNA from multiple databases as 
shown in Fig.  1. In the network, the nodes and undi-
rected edges among these nodes respectively represent 
lncRNAs, miRNAs, diseases, drugs and proteins, and 
interactions among them. In this way, the heterogene-
ous information network can help people more clearly 
understand the various life activities of living things 
[20, 21]. Secondly, the LINE [22] method is conducted 
to extract the association information between drugs 
and proteins and other nodes in the network, which 
we call the behavior information of drugs and proteins. 
The LINE method can map tightly connected nodes in 
large networks to similar low-dimensional vector space 
locations. Thirdly, we integrate the attribute informa-
tion (sequences of proteins and drugs’ molecular fin-
gerprints) and behavior information (associations with 
other molecules) to represent known drug-protein 
interaction pairs. Finally, the Random Forest classifier 
is applied for the training and prediction of the drug-
target interactions. For the training samples in our 
model, 11107 known drug-protein interaction pairs 
obtained from DrugBank 3.0 [10] databases are selected 
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as positive sample sets, and the negative sample sets 
consist of the same number of randomly selected pairs 
of unrelated drugs and proteins. Figure  2 shows the 
computation framework of our proposed model. In the 
results, our method was estimated under the fivefold 
cross-validation and achieved average the areas under 
the ROC curve (AUC) and the areas under the PR curve 
(AUPR) of 0.9233 and 0.9301, respectively. In addition, 
we also compared the performance of different classi-
fiers and different feature combinations of our method. 
Besides, in order to further estimate the performance 
of our model, we also conduct case studies of three 
major drugs. All these results fully demonstrate that our 
method has a good performance for drug-target inter-
action prediction in practical applications. 

Materials and methods
Combine eight kinds of associations to construct 
the heterogeneous multi‑molecular information network
The heterogeneous association network is composed 
of known relationships among protein, drug, disease, 
miRNA, and lncRNA. We download these known asso-
ciations from multiple databases and unify identifiers, 
remove redundant items, simplify and delete unrelated 

items. The final detailed data is shown in Table 1. In addi-
tion, we further counted the number of each node in the 
network. The final statistical results are shown in Table 2.

Drug molecular fingerprint
The Simplified Molecular Input Line Entry Specifi-
cation (SMILES) of drugs mainly utilizes letters and 
symbols to indicate the structure of the compound for 
computer input. It is very different from traditional 
chemical formulas and has special writing rules. We 
download the drug’s smiles from the DrugBank 3.0 [10] 
database and then convert the drug’s smile to the rel-
evant Morgan Molecular Fingerprint through using the 
RDKit python package.

Protein sequence information
The protein sequence information is derived from the 
STRING [29] database and used to represent the attrib-
ute information of the protein. After that, we choose 
the method in the article by Shen et al. [31] to encode 
them. In this paper, according to the polarity of the side 
chain, 20 amino acids are divided into four categories 
including (Arg, Lys, and His); (Gly, Cys, Ser, Gln, Thr, 
Asn, and Tyr); (Ala, Ile, Trp, Val, Leu, Phe, Pro and 
Met); (Glu and Asp). In this way, each protein sequence 

Fig. 1  The heterogeneous association information network
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can be represented as a 64-dimensional vector, and 
each dimension denotes the occurrence frequency of a 
3-mer (e.g. UCC, AGU).

Large‑scale information network embedding (LINE)
As a novel network embedding method, LINE [32] 
mainly solves the problem of embedding large informa-
tion networks into low-dimensional vector spaces. It 
can map closely connected nodes in a large network to 
similar low-dimensional vector space positions and is 

Fig. 2  Computation framework of our model

Table 1  The association information in the network

Association Database Amount

miRNA-lncRNA lncRNASNP2 [23] 8374

miRNA-disease HMDD v3.0 [24] 16,427

miRNA-protein miRTarBase:update 2018 [25] 4944

LncRNA-disease LncRNADisease [26],

lncRNASNP2 [23] 1264

Drug-disease CTD: update 2019 [27] 18,416

LncRNA-protein LncRNA2Target v2.0 [28] 690

Protein–protein STRING: in 2017 [29] 19,237

Protein-disease DisGeNET [30] 25,087

Total N/A 94,439

Table 2  The node information in the network

Node Amount

Drug 134

MiRNA 1023

Disease 2062

Protein 613

LncRNA 769

Total 4601
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fully used for visualization, node classification, and link 
prediction. The LINE method is suitable for any type 
of information network and optimizes a well-designed 
objective function to retain both local and global net-
work structure information. It not only considers the 
first-order proximity of nodes, that is, two points are 
directly connected with an edge of higher power value, 
they are considered to be more similar, but also consid-
ers the second-order proximity of nodes, that is, two 
points may not be directly connected but is considered 
similar if they have more public first-order proxim-
ity friends. Based on these two perspectives, the LINE 
model can be divided into the following two categories:

Model 1: LINE with First-order Proximity
It should be noted that this model is only applicable 

to undirected graphs. For an undirected edge (i, j), the 
joint probabilities of the two vertex vi and vj defining 
this edge is as follows:

where �ui and �uj are the low-dimensional vector repre-
sentation of vertex vi and vj . It is equivalent to describe 
the intimacy between vertices from the perspective of 
embedding. Formula (1) defines the distribution p(*,*) 
on the space V × V, and its empirical probability can be 
defined as:

where wij represents the weight of the edge between ver-
tex vi and vj , and W represents the sum of all weights of 
edges in the network. Our optimization goal is to make 
the difference between p1 and p̂1 as small as possible, so 
the objective function can be defined as follows:

where d() function is used to measure the difference 
between the two distributions. Generally, the Kullback–
Leibler (KL) divergence can be selected to replace the 
d(*,*). In this way, the KL divergence is brought into the 
above formula, and the constants can be omitted (e.g. 
W), the final optimized form can be obtained:

Therefore, we can represent each vertex in the 
d-dimensional space by finding the {�ui}i=1...|V| which 
minimizes the objective in Eq. (4).

Model 2: LINE with Second-order Proximity

(1)p1
(

vi, vj
)

=
1

1+ exp
(

−�uTi �uj
)

(2)p̂1
(

i, j
)

=
wij

W

(3)O1 = d
(

p1(∗, ∗), p̂1(∗, ∗)
)

(4)
O1 = −

∑

(i,j)∈E

wijlogp1
(

vi, vj
)

This model considers the effects of second-order rela-
tionships between nodes and is suitable for both directed 
and undirected graphs. For a directed edge (i, j) (from i to 
j), the probability that vertex vj is a neighbor of vi can be 
represented as follows:

where |V | represents the number of vertices. Next, in 
order to make the conditional distribution of context 
p2(·|vi) specified by the low-dimensional representation 
be closed to the empirical distribution p̂2(·|vi) , which is 
defined as follows:

where di represents the out-degree of vertex i and wij rep-
resents the weight of the edge, it is necessary to minimize 
the following formula:

where αi represents the prestige of vertex i and can be 
measured by the degree or estimated through an algo-
rithm such as PageRank [33]. In this article, for conveni-
ence, we set αi as the degree of vertex i and replace d(*,*) 
with KL-divergence. The Eq. (7) can be finally optimized 
as follows:

Therefore, we can represent each vertex vi with a 
d-dimensional vector �ui via learning {�ui}i=1...|V | and 
{

�u
′

i

}

i=1...|V |
 which minimizes this objective.

The Receiver Operating Characteristic (ROC) 
and Precision‑Recall (PR) curve
The Receiver Operating Characteristic (ROC) curve is a 
very important and common statistical analysis method. 
It sorts and predicts samples according to the prediction 
results of the classifier. In addition, it calculates the values 
of two important quantities each time: True Positive Rate 
(TPR) and False Positive Rate (FPR), which are respec-
tively plotted on the horizontal and vertical coordinates. 
The AUC value is defined as the areas under the ROC 
curve and can be used as a numerical value to intuitively 
evaluate the quality of the classifier. Generally, the larger 
the AUC value, the more accurate the prediction result 
and the better the classification effect of the model. The 
Precision-Recall (PR) curve is also a method to test the 

(5)p2
(

vj|vi
)

=
exp

(

�u
′T
j · �ui

)

∑|v|
k=1 exp

(
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)
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(
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)

=
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(7)O2 =
∑

i∈V

αid
(

p̂2(∗, ∗), p2(∗, ∗)
)

(8)
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∑

(i, j)∈E

wijlogp2
(

vj|vi
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capability of a classifier. Compared with the ROC curve, 
the PR curve can better reflect the performance of the 
classification when the proportion of positive and nega-
tive samples is large.

Node representation
Drugs and proteins are respectively represented by 
attribute information and behavior information (associa-
tion information with other molecules) in the network 
we constructed. Their attribute information is respec-
tively sequences of proteins and molecular fingerprints 
of drugs. Besides, in this article, we choose a network 
embedding model LINE to get the behavior information 
of them. In this way, the final 128-dimensional feature 
vector contains 64-dimensional attribute information 
(protein sequences information and drug molecular fin-
gerprints) and 64-dimensional behavior information 
(associations with other molecules) of drugs and targets. 
These two types of information are functionally similar 
and collaboratively provide information for the classifier 
to predict the potential associations between drugs and 
targets.

Result and discussion
Evaluation of our model under fivefold cross validation
Cross-validation is a statistical analysis method for veri-
fying the performance of a classifier to obtain a reliable 
and stable model. In this work, fivefold cross-validation 
is conducted to estimate the performance of our model. 
11107 known drug-target interaction pairs obtained from 
DrugBank 3.0 [10] database are used as training samples. 
In this way, we take 4/5 samples (training set) to build 
the model and leave 1/5 sample (test set) to predict the 
newly built model. We repeat this experiment 5 times 
so that the model can effectively avoid over- or under-
learning, and the results obtained are more persuasive. In 
this article, we choose the following six common param-
eters as the evaluation indicators of our model: Accuracy 
(Acc.), Specificity (Spec.), Sensitivity (Sen.), Precision 
(Prec.), Matthews Correlation Coefficient (MCC), Areas 
under the ROC Curve (AUC). The detailed results of our 
method are shown in Table 3, and the last row of Table 3 

shows the average value and their standard deviation of 
the results across 5 runs of the classifier.

Figures  3, 4 respectively show the ROC curves and 
AUC values, PR curves and AUPR values of our model 
under five-fold cross validation. It can be seen from the 
figure that the mean AUC and AUPR of our model are 

Table 3  Evaluation of our model under five-fold cross-validation

Fold ACC. (%) Spec. (%) Prec. (%) MCC (%) Sen. (%) AUC (%)

0 86.45 91.49 90.54 73.28 81.41 92.90

1 85.87 90.86 89.85 72.10 80.87 92.31

2 85.08 90.82 89.63 70.63 79.34 92.05

3 85.13 91.27 90.05 70.79 78.98 91.71

4 86.64 91.53 90.61 73.63 81.75 92.66

Average 85.83±0.72 91.19±0.34 90.14±0.43 72.09±1.38 80.47±1.24 92.33±0.47

Fig. 3  The ROC curves of our model under fivefold cross-validation

Fig. 4  The PR curves of our model under five-fold cross-validation
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0.9233 and 0.9301, respectively. The results fully demon-
strate that our proposed model has a good performance 
for potential drug-target interactions prediction. Besides, 
the variance of a model can describe the generalization 
ability of it. Generally, the larger the variance, the easier 
the model is disturbed. On the contrary, the smaller the 
variance, the more stable the model. In this work, the var-
iance of the AUC for 5 runs of our model is 0.002%. The 
small variance can also prove that our method is stable 
for the prediction of potential drug-target interactions.

Comparison of different feature combinations
As we mentioned before, our approach utilizes a combi-
nation of attribute and behavior information to represent 
known drug-protein interaction pairs. Hence, to test the 
performance of different feature combinations on the 
results, we further conducted experiments with three 
different feature combinations. More specifically, we use 
only attribute information, only behavior information, 
and the combination of attribute and behavior informa-
tion to respectively represent the drug and protein nodes. 
After that, the fivefold cross-validation experiment was 
conducted respectively. The experimental environment 
and parameters of the three modes are consistent. Table 4 
and Fig. 5 show the detailed results of three models, and 

the classification results are better when we utilize both 
the attribute and behavior information.

Comparison of different machine learning classifiers
To estimate the impact of different classifiers on the final 
results, we further respectively use Logistic, KNN, Naive 
Bayes, Decision Tree, and Random Forest classifier to 
perform fivefold cross-validation on our proposed model. 
In particular, all the variables in the experiment are the 
same for the five classifiers, and all the classifiers use 
default parameters to make the comparative results more 
fair and reliable. The detailed results can be founded in 
Table 5 and Fig. 6. As can be seen from the results, the 
Random Forest classifier is not as good as KNN in sen-
sitivity, but it has better performance for AUC and accu-
racy, which can better reflect the performance of our 
model. In conclusion, the Random Forest has a better 
performance than other classifiers and is more suitable 
for our method.

Case studies
To further estimate the performance of our model in 
practical applications, we select three common drugs 
(Caffeine, Clozapine, and Pioglitazone) for case studies. 
These three drugs are all closely related to human health 

Table 4  Comparison of different feature combinations

Feature Acc. (%) Spec. (%) Prec. (%) MCC (%) Sen. (%) AUC (%)

Attribute 80.73 ± 0.79 84.36 ± 1.05 83.14 ± 1.04 61.63 ± 1.61 77.11 ± 0.60 87.77 ± 0.83

Behavior 85.75 ± 0.59 91.12 ± 0.90 90.06 ± 0.92 71.92 ± 1.21 80.37 ± 0.68 92.18 ± 0.51

Both 85.83 ± 0.72 91.19 ± 0.34 90.14 ± 0.43 72.09 ± 1.38 80.47 ± 1.24 92.33 ± 0.47

Fig. 5  Comparison of different feature combinations under fivefold cross validation
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and are often chosen by many computational methods 
for case studies.

The chemical composition of Caffeine is 1,3,7-trimeth-
ylamine, which can be founded in tea, coffee, cocoa, 
guarana and kola [34]. Recently, many researches have 
been reported that caffeine may have an anti-cancer 
effect [35–37] and orally applied caffeine can protect the 
skin from skin cancer caused by ultraviolet (UV) rays [38, 
39]. Besides, transdermally applied caffeine can be used 
to treat skin cancer locally and systemically.

Clozapine is a second-generation psychiatric drug. In 
addition, it has been proved that clozapine is effective 
for psychotic positive and negative symptoms. Contrary 
to concerns that typical antipsychotics may aggravate 
drug abuse, recent reports indicate that clozapine has a 
reduced effect on nicotine, alcohol or other drug abuse 
in patients with schizophrenia [40, 41]. Clozapine can 
also alleviate the emotional symptoms associated with 
schizophrenia (depression, guilt, anxiety), as well as the 
excitement and illusion of treatment for mania or other 
psychotic disorders.

Pioglitazone is a hypoglycemic drug that can be used 
alone or in combination with other hypoglycemic agents 

for the treatment of type 2 diabetes. The main function 
of this medicine is to reduce the insulin resistance in the 
body and enhance the sensitivity of the cells to insulin so 
that the body can make full use of the existing insulin to 
achieve the purpose of lowering blood sugar. At the same 
time, pioglitazone can improve the blood fat and pressure 
of the patient and reduce the blood vessels of the heart 
[42]. The drug has been well-tolerated by adult patients 
of all ages in clinical studies [43].

Therefore, the identification of these three drugs’ tar-
gets is of great importance. More specifically, we utilize 
the known drug-protein interactions in the DrugBank 
3.0 database of Knox et al. [10] as the training data set in 
the case studies. One important fact that must be noted 
is that the known associations with the corresponding 
drug have been removed from the training data set to 
illustrate the applicability of our method to new drugs 
(drugs with no known related proteins). For the test 
data set, it contains proteins and corresponding drug 
interaction pairs in the heterogeneous association infor-
mation network. After the prediction is complete, we 
rank all the proteins based on the predicted association 
scores and select the top 10 predicted targets to validate 

Table 5  Comparison of different machine learning classifiers

Classifier ACC. (%) Spec. (%) Prec. (%) MCC (%) Sen. (%) AUC (%)

Logistic 77.63 ± 1.03 81.19 ± 0.75 79.74 ± 0.91 55.40 ± 2.04 74.06 ± 1.41 84.27 ± 1.30

KNN 82.04 ± 1.19 79.83 ± 2.26 80.72 ± 1.74 64.15 ± 2.32 84.24 ± 0.78 88.99 ± 0.81

Naive Bayes 72.57 ± 1.16 73.74 ± 1.09 73.11 ± 1.04 45.15 ± 2.31 71.39 ± 1.91 77.30 ± 1.57

DecisionTree 79.81 ± 0.66 79.73 ± 1.29 79.78 ± 1.01 59.63 ± 1.32 79.89 ± 0.60 79.81 ± 0.66

RandomForest 85.83 ± 0.72 91.19 ± 0.34 90.14 ± 0.43 72.09 ± 1.38 80.47 ± 1.24 92.33 ± 0.47

Fig. 6  Comparison of different machine learning classifiers under fivefold cross-validation
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them using two databases on the relationship between 
drug and target, SuperTarget [44] and DrugBank 5.0 
[45].

Table  6 shows the prediction result of the top 10 tar-
gets associated with caffeine, and 8 of which were suc-
cessfully confirmed by the database. For example, the 
interaction between cytochrome P450 1A2 (CYP1A2) 
and caffeine has been confirmed by previous experiments 
[46]. The experiment proves that there is an interaction 
between caffeine and CYP1A2 by studying the expression 
of CYP1A2 in mouse striatum.

Table  7 shows the prediction result of our method of 
the top 10 targets associated with clozapine, 7 of which 
were successfully confirmed by the database. For exam-
ple, the interaction between cytochrome P450 1A2 and 
clozapine has been confirmed by previous experiments 
[47].

Table  8 shows the prediction result of the top 10 tar-
gets associated with pioglitazone using our method, 6 of 
which were successfully confirmed by the database. For 

example, the interaction between cytochrome P450 3A4 
and pioglitazone has been confirmed by previous experi-
ments [48]. This study evaluated the effect of pioglitazone 
on the activity of cytochrome P450 3A4 (CYP3A4), dem-
onstrating that pioglitazone has a concentration-depend-
ent inhibitory effect on CYP3A4 enzyme activity.

Conclusion
The prediction of drug-target (protein) interactions is 
an important part of understanding the biological pro-
cess and detecting new drugs. In this work, we put for-
ward a novel network embedding-based heterogeneous 
information integration model for drug-target interac-
tion prediction. More specifically, we utilize the network 
representation method LINE to obtain the behavior 
information (associations with other nodes) of drug and 
protein node in the network and then combine it with 
the intrinsic attribute information of them to represent 
the known drug-protein interaction pairs. Finally, the 
Random Forest classifier is selected to train and predict 
the transformed feature vectors. As a result, our pro-
posed method has good performance for the potential 
drug-target interactions prediction under the five-fold 
cross-validation, and the prediction results are better 
than the model of using only behavior information or 
attribute information. Besides, to further estimate the 
performance of our model, we also conduct case stud-
ies of three common drugs (Caffeine, Clozapine, and 
Pioglitazone). The results of case studies further indicate 
that our model performs well in predicting the potential 
drug-target interactions and targets associated with a 
given drug. Generally speaking, our proposed model can 
be an efficient tool for the prediction of potential drug-
target interactions in the future.

Table 6  Prediction of  the  top 10 targets associated 
with Caffeine

UniProt ID Target Evidence

9606.ensp00000342007 Cytochrome P450 1A2 SuperTarget

9606.ensp00000360372 Cytochrome P450 2C19 Unconfirmed

9606.ensp00000337915 Cytochrome P450 3A4 SuperTarget

9606.ensp00000478255 ATP-dependent translocase 
ABCB1

DrugBank

9606.ensp00000360317 Cytochrome P450 2C8 SuperTarget

9606.ensp00000260682 Cytochrome P450 2C9 SuperTarget

9606.ensp00000324648 Cytochrome P450 2B6 Unconfirmed

9606.ensp00000440689 Cytochrome P450 2E1 SuperTarget

9606.ensp00000353820 Cytochrome P450 2D6 SuperTarget

9606.ensp00000222982 Cytochrome P450 3A5 SuperTarget

Table 7  Prediction of  the  top 10 targets associated 
with Clozapine

UniProt ID Target Evidence

9606.ensp00000478255 ATP-dependent translocase 
ABCB1

DrugBank

9606.ensp00000342007 Cytochrome P450 1A2 SuperTarget

9606.ensp00000360372 Cytochrome P450 2C19 SuperTarget

9606.ensp00000260682 Cytochrome P450 2C9 SuperTarget

9606.ensp00000337915 Cytochrome P450 3A4 SuperTarget

9606.ensp00000324648 Cytochrome P450 2B6 Unconfirmed

9606.ensp00000353820 Cytochrome P450 2D6 SuperTarget

9606.ensp00000222982 Cytochrome P450 3A5 SuperTarget

9606.ensp00000295897 Serum albumin Unconfirmed

9606.ensp00000480571 Cytochrome P450 3A7 Unconfirmed

Table 8  Prediction of  the  top 10 targets associated 
with Pioglitazone

UniProt ID Target Evidence

9606.ensp00000337915 Cytochrome P450 3A4 SuperTarget

9606.ensp00000478255 ATP-dependent translocase 
ABCB1

Unconfirmed

9606.ensp00000353820 Cytochrome P450 2D6 SuperTarget

9606.ensp00000367102 Solute carrier family 22 member 
6

Unconfirmed

9606.ensp00000222982 Cytochrome P450 3A5 Unconfirmed

9606.ensp00000260682 Cytochrome P450 2C9 SuperTarget

9606.ensp00000360372 Cytochrome P450 2C19 DrugBank

9606.ensp00000369050 Cytochrome P450 1A1 Unconfirmed

9606.ensp00000360317 Cytochrome P450 2C8 SuperTarget

9606.ensp00000256958 Solute carrier organic anion 
transporter family member 
1B1

DrugBank
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