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Abstract

The models in statistical physics such as an Ising model offer a convenient way to character-

ize stationary activity of neural populations. Such stationary activity of neurons may be

expected for recordings from in vitro slices or anesthetized animals. However, modeling

activity of cortical circuitries of awake animals has been more challenging because both

spike-rates and interactions can change according to sensory stimulation, behavior, or an

internal state of the brain. Previous approaches modeling the dynamics of neural interac-

tions suffer from computational cost; therefore, its application was limited to only a dozen

neurons. Here by introducing multiple analytic approximation methods to a state-space

model of neural population activity, we make it possible to estimate dynamic pairwise inter-

actions of up to 60 neurons. More specifically, we applied the pseudolikelihood approxima-

tion to the state-space model, and combined it with the Bethe or TAP mean-field

approximation to make the sequential Bayesian estimation of the model parameters possi-

ble. The large-scale analysis allows us to investigate dynamics of macroscopic properties of

neural circuitries underlying stimulus processing and behavior. We show that the model

accurately estimates dynamics of network properties such as sparseness, entropy, and

heat capacity by simulated data, and demonstrate utilities of these measures by analyzing

activity of monkey V4 neurons as well as a simulated balanced network of spiking neurons.

Author Summary

Simultaneous analysis of large-scale neural populations is necessary to understand coding

principles of neurons because they concertedly process information. Methods of thermo-

dynamics and statistical mechanics are useful to understand collective phenomena of the

interacting elements, and they have been successfully used to understand diverse activity

of neurons. However, most analysis methods assume stationary data, in which activity

rates of neurons and their correlations are constant over time. This assumption is easily
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violated in the data recorded from awake animals. Neural correlations likely organize

dynamically during behavior and cognition, and this may be independent from the modu-

lated activity rates of individual neurons. Recently several methods were proposed to

simultaneously estimate dynamics of neural interactions. However, these methods are

applicable to up to about 10 neurons. Here by combining multiple analytic approximation

methods, we made it possible to estimate time-varying interactions of much larger neural

populations. The method allows us to trace dynamic macroscopic properties of neural cir-

cuitries such as sparseness, entropy, and sensitivity. Using these statistics, researchers can

now quantify to what extent neurons are correlated or de-correlated, and test if neural sys-

tems are susceptible within a specific behavioral period.

Introduction

Activity patterns of neuronal populations are constrained by biological mechanisms such as

biophysical properties of each neuron (e.g., synaptic integration and spike generation [1, 2])

and their anatomical connections [3]. The characteristic correlations among neurons imposed

by the biological mechanisms interplay with statistics of sensory inputs, and influence how the

sensory information is represented in the population activity [4–6]. Thus accurate assessment

of the neural correlations in ongoing and evoked activities is a key to understand the underly-

ing biological mechanisms and their coding principles.

The number of possible activity patterns increases combinatorially with the number of neu-

rons analyzed. The maximum entropy (ME) principle and derived ME models—known as the

pairwise ME model or the Ising model—have been used to explain neural population activities

using fewer activity features such as event rates or correlations between pairs of neurons [7, 8].

This approach has been employed to explain not only the activity of neuronal networks but

also other types of biological networks [9–11]. For large networks, however, exact inference of

these models becomes computationally infeasible. Thus researchers have employed approxi-

mation methods [12–18]. While they successfully extended the number of neurons that could

be analyzed, it was pointed out that the pairwise ME model might fail to explain large neural

populations because the effect of higher-order interactions may become prominent [19–21].

Another fundamental problem of the conventional ME models is that these models assume

temporarily constant spike rates for individual neurons. The assumption of stationary spike-

rates is invalid, e.g., when in vivo activity is recorded while an animal performs a behavioral

task. Ignoring such dynamics might result in erroneous model estimates and misleading inter-

pretations on their correlations [22–26]. Moreover neural correlations themselves likely orga-

nize dynamically during behavior and cognition, which can be independent from changes in

the spike rates of individual neurons [27–29]. The time-dependence of neural activity may be

explained by including stimulus signals in the model, e.g., for analyses of early sensory cells

[30]. However, the approach may become impractical when analyzing neurons in higher brain

areas in which receptive fields of neurons are not easily characterized. Thus it remains to be

examined how much the pairwise ME model can explain the data if the inappropriate station-

ary assumption is removed.

The state-space analysis [31] offers a general framework to model time-series data as obser-

vations driven by an unobserved latent state process. The underlying state changes are uncov-

ered by a sequential estimation method from the noisy measurements. While observations of

neuronal activity are often characterized by point events (spikes), a series of studies have estab-

lished the nonlinear recursive Bayesian estimation of the underlying state that drives the event
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activity [32–34]. The method successfully estimated an animal’s position from population

activity of hippocampal place cells [32], or estimate arm trajectories from neurons in the mon-

key motor cortex [35, 36]. Recently, this framework has been extended to the analysis of popu-

lation activity [37–39]. In addition to the point estimates of interaction parameters suggested

by earlier studies [40–42], the state-space analysis provides credible intervals of those estimates

through the recursive Bayesian fitting algorithm.

Nevertheless, as previously mentioned, the state-space model of a neural population was

restricted by its computational cost. Therefore, it could be utilized to analyze only small popu-

lations (N� 15). Recent advances in electrophysiological and optical recording techniques

from a large number of neurons in vivo under free moving or virtual reality settings challenge

these analysis methods. Thus the challenge is to make it possible to fit the exponentially com-

plex state-space model to such large-scale data. For this goal, we need to incorporate approxi-

mation methods into the sequential Bayesian algorithm. More specifically, we need good

approximations of mean and variance of the model parameters required in the approximate

Bayesian scheme. These approximation methods must be analytical to avoid impractical com-

putation time. By doing so we will be able to directly estimate all time-varying interactions of a

large neural population. Such a model will serve as benchmark for alternative unsupervised

methods that aim to capture low-dimensional, time-dependent latent structure of the pairwise

interactions [43–45] (see also [46–48] for other dimension reduction methods for neurosci-

ence data).

Here by combining the state-space model proposed in [37–39] with analytic approximation

methods, we provide a framework for estimating interactions of neuronal populations consist-

ing of up to 60 neurons. To find the mean we used the pseudolikelihood approximation

method. To approximate the variance, we provide two alternative methods: the Bethe or the

mean-field approximation. The Bayesian analysis methods for larger networks of neurons

allow us to better understand macroscopic states of a neural population, such as entropy, free

energy and sensitivity, all in a time-resolved manner and with credible intervals. Thus the

model provides a new way to investigate effects of stimuli and behavior on activity of neuronal

populations. It is expected to provide observations that give us insights into the underlying cir-

cuitry and its computation.

Materials and Methods

To clarify the problem of large-scale analysis on dynamic population activity, we first formu-

late the state-space model and its estimation method originally investigated in [37, 38] in the

next subsection. Then we describe how to introduce approximation methods to the state-space

model in order to overcome the limitation of the model and make the large-scale analysis pos-

sible. The custom-made Python programs are provided on GitHub (https://github.com/

christiando/ssll_lib).

The state-space analysis of neural population activity

Spike data. To investigate how neuronal activities realize perception, cognition, and

behavior, neurophysiologists record timing of neuronal spiking activity over the course of a

behavioral paradigm designed to test specific hypotheses. Typically, these experiments are

repeated multiple times under the same experimental conditions to uncover common neu-

ronal dynamics related to the behavioral paradigm from stochastic spiking activities. We

assume that neural data is composed of repeated measurements (R times) of spike timing

recorded from N neurons simultaneously. Hereafter repetition is termed trial. To analyze

activity patterns of neurons, we discretize the parallel spike sequences into T time bins with
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bin size Δ, and represent the population activity by a set of binary variables. For neurons

n = 1, . . ., N, time bins t = 1, . . ., T, and trials r = 1, . . ., R, the neural activity is represented

by a binary variable Xr;t
n , where Xr;t

n ¼ 1 when neuron n spiked in time bin t and trial r; and

Xr;t
n ¼ 0 otherwise. Hence, we describe the whole data as a N × R × T dimensional binary

matrix. The activity pattern of N neurons at time bin t and trial r is a vector,

Xr;t ¼ ðXr;t
1 ; . . . ;Xr;t

N Þ
0
. Similarly, Xt = (X1,t, . . ., XR,t) summarizes observations for all neurons

1, . . ., N and all trials 1, . . ., R at time bin t. Finally, Xt1:t2 ¼ ðXt1 ; . . . ;Xt2Þ denotes the obser-

vations from time bin t1 to t2.

State-space model of neural population activity. We assume a state-space model of

dynamic population activity composed of two submodels; an observation model and a state

model. First, the observation model specifies the probability distribution of population activity

patterns using state variables, whereas the latter dictates how those state variables change. Here

we construct the observation model using the exponential family distribution considering up

to pairwise interactions of neurons’ activities,

pðxjθtÞ ¼ exp
XN

i¼1

y
t
ixi þ

X

j>i

y
t
ijxjxi � ctðθtÞ

" #

; ð1Þ

where ψt(θt) is a log normalization term (a.k.a. log partition function). The model contains

d = N + N(N − 1)/2 parameters fy
t
ig; fy

t
ijg known as natural or canonical parameters of an

exponential family distribution. In statistical mechanics, this model is named “Ising model”,

where the vector x represents a spin configuration (up or down). There, the natural parameters

fy
t
ig; fy

t
ijg represent external magnetic field and interactions among the spins, and may be

denoted as {hi}, {Jij} conventionally. Here we consider these parameters to be time-dependent,

and refer to them as state variables of the state-space model. By introducing the d-dimensional

state vector θt ¼ ðy
t
1
; . . . ; y

t
N ; y

t
1;2
; . . . ; y

t
N� 1;NÞ

0
, and the feature vector F(x) = (x1, . . ., xN, x1x2,

. . ., xN−1xN)0, the model of Eq 1 is written concisely as pðxjθtÞ ¼ exp ½θ0tFðxÞ � ctðθtÞ�. The

resulting log partition function is then given by

ctðθtÞ ¼ log
X

x

exp ½θ0t FðxÞ�: ð2Þ

In statistical mechanics, ψt is known as the free energy. Note that it specifies the probability

that all neurons are simultaneously silent because p(0|θt) = exp[−ψt(θt)]. This model considers

individual and pairwise activity of neurons. Hence, we will refer to it as the pairwise observa-
tion model in the following.

Next, the state model considers that dynamics of the latent state θt is described by a random

walk

θt ¼ θt� 1 þ ξtðlÞ; ð3Þ

where ξt is a random vector drawn from a multivariate normal distribution N ð0;QÞ, and Q is

a diagonal covariance matrix. Here we assume that entries of the diagonal of the inverse matrix

Q−1 are given by a scalar λ that determines precision of the noise for all elements. For the initial

time bin we set the density to pðθ1Þ ¼ N ðμ;ΣÞ.
It should be noted that here we model the neural dynamics as a quasistatic process, similarly

to the classical analysis on dynamics of a thermodynamic system, e.g., a heat engine (see also

[49]): At each time t, we presume that neural activity is sampled from the equilibrium distribu-

tion (Eq 1), which is the same across the trials (across-trial stationarity). The free energy (Eq 2)

is also defined in the same manner as in the classical thermodynamics. We emphasize that the
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PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005309 January 17, 2017 4 / 27



quasistatic process is a simplified view of the neural dynamics. See Discussion for possible

extensions of the model.

Estimating the state-space model. Given the data X1:T, our goal is to jointly estimate the

posterior density of the latent states and the optimal noise precision λ. By denoting hyperpara-

meters of the model as w = (λ, μ, Σ), the posterior density of the state process writes as

pðθ1:T jX
1:T ;wÞ ¼

pðX1:T jθ1:TÞpðθ1:T ;wÞ
pðX1:T ;wÞ

; ð4Þ

where the first component in the numerator is constructed from the observation model, and

the second component from the state model. In the next section, we provide the iterative

method to construct this posterior density by approximating it by a Gaussian distribution (the

Laplace approximation). The posterior density depends on the choice of the parameters w.

The optimal w maximizes the marginal likelihood, a.k.a. evidence, that appears in the denomi-

nator in Eq 4, given by

lðX1:T jwÞ ¼ pðX1jμ;ΣÞ
YT

t¼2

pðXtjX1:t� 1; lÞ: ð5Þ

This approach is called the empirical Bayes method. In this study, we optimize noise preci-

sion λ and mean μ of the initial distribution as described below while values for the covari-

ance Σ are fixed. For fitting in the subsequent analyses, we set initial values as λ = 100 and

Σ = 10I. For initial value of μ we computed the vector θ from time and trial averaged data,

assuming fy
t
ijg ¼ 0.

The optimization is achieved by an EM-algorithm combined with recursive Bayesian fil-

tering/smoothing algorithms [33, 50]. In this approach, we alternately perform construction

of the posterior density (Eq 4, E-step) and optimization of the hyperparameters (M-step)

until the marginal likelihood (Eq 5) saturates. In order to update the hyperparameters to

new values w� from old values w in the M-step, a lower bound of the marginal likelihood is

maximized. This lower bound is obtained by applying the Jensen’s inequality to the marginal

likelihood:

lðX1:T jw�Þ ¼ log
Z

pðX1:T ; θ1:T jw
�Þdθ1:T

¼ log
pðX1:T ; θ1:T jw�Þ
pðθ1:T jX

1:T ;wÞ

� �

θ1:T jX1:T ;w

� log
pðX1:T ; θ1:T jw�Þ
pðθ1:T jX

1:T ;wÞ

� �

θ1:T jX1:T ;w

¼ logpðX1:T ; θ1:T jw�Þh iθ1:T jX1:T ;w � logpðθ1:T jX
1:T ;wÞh iθ1:T jX1:T ;w

ð6Þ

Here h�iθ1:T jX1:T ;w is expectation by the posterior density of the state variables (Eq 4). In order

to maximize the lower bound w.r.t. the new hyperparameters w�, we only need to maximize

the first term, q(w�|w)� hlog p (X1:T, θ1:T|w�)iθ1:T|X
1:T

,w. This term is called expected com-

plete data log-likelihood, where the expectation is taken by the posterior density with the old

Macroscopic Dynamics of Neural Populations
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w. It is computed as

qðw�jwÞ ¼
XT

t¼1

XR

r¼1

hθ0tFðX
t;rÞ � cðθtÞiθ1:T jX1:T ;w

�
1

2
log j2pΣ�j �

1

2
θ1 � μ�ð Þ

0Σ�� 1 θ1 � μ�ð Þ

 �

θ1:T jX1:T ;w

�
T � 1

2
log j2pQ�j �

1

2

XT

t¼2

θt � θt� 1ð Þ
0Q�� 1 θt � θt� 1ð Þ


 �

θ1:T jX1:T ;w:

ð7Þ

By considering derivatives of this equation w.r.t. the hypermarameters, we obtain their

update rules. The precision λ?I(= Q� − 1) is updated as

l
�
¼

1

ðT � 1Þd
tr
XT

t¼2

ðθt � θt� 1Þðθt � θt� 1Þ
0


 �

θ1:T jX1:T ;w

" #

; ð8Þ

where d is the dimension of vector θt. The initial mean is optimized by μ� = hθ1iθ1:T|X
1:T

,w.

Here the key step is to develop an algorithm that constructs the posterior density of Eq 4.

This is done by the forward and backward recursive Bayesian algorithms. Below we review

this method followed by introduction of the approximations that make the method applica-

ble to larger number of neurons.

Recursive estimation of dynamic neural interactions. The estimation of the latent pro-

cess is achieved by forward filtering and then backward smoothing algorithms. In the filtering

algorithm, we sequentially estimate the state of population activity at time bin t given the data

up to time t. This estimate is given by the recursive Bayesian formula

pðθtjX
1:t;wÞ ¼

pðXtjθtÞpðθtjX
1:t� 1;wÞ

pðXtjX1:t� 1;wÞ
: ð9Þ

where p(Xt|θt) is obtained from the observation model. The second term in the numerator p
(θt|X1:t−1, w) is called the one-step prediction density. It is computed using the state model and

the filter density at the previous time bin via the Chapman-Kolmogorov equation,

pðθtjX
1:t� 1;wÞ ¼

Z

pðθtjθt� 1;wÞpðθt� 1jX
1:t� 1;wÞdθt� 1: ð10Þ

Thus the filter density (Eq 9) can be recursively computed for t = 2, . . ., T using Eq 10, given

observation and state models as well as an initial distribution of the one-step prediction

density at time t = 1. Note that the initial one-step prediction density was specified as

pðθ1Þ ¼ N ðμ;ΣÞ. This distribution dictates the density of the state at the initial time step

without observing neural activity.

The approximate nonlinear recursive formulae were developed by approximating the pos-

terior density (Eq 9) with a Gaussian distribution [32, 51]. Let us assume that the filter den-

sity at time t − 1 is given by a Gaussian distribution with mean θt−1|t−1 and the covariance

matrix Wt−1|t−1. The subscript t − 1|t − 1 means the estimate at time t − 1 (left) given the data

up to time bin t − 1 (right). Because the state model (Eq 3) is also Gaussian, the Chapman-

Kolmogorov equation yields the one-step prediction density that is a Gaussian distribution

with mean θt|t−1 = θt−1|t−1 and covariance Wt|t−1 = Wt−1|t−1 + Q. We then obtain the following

Macroscopic Dynamics of Neural Populations
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log posterior density (Eq 9),

logpðθtjX
1:t;wÞ ¼

XR

r¼1

θ0tFðX
t;rÞ � cðθtÞ

� �

�
1

2
ðθt � θtjt� 1Þ

0W� 1

tjt� 1
ðθt � θtjt� 1Þ þ const:

ð11Þ

Here we approximate the posterior density by a Gaussian distribution (the Laplace approxi-

mation). We identify the mean of this distribution with the MAP estimate:

θtjt ¼ argmaxθt logpðθtjX
1:t;wÞ: ð12Þ

This solution is called a filter mean. It may be obtained by gradient ascent algorithms such as

the conjugate gradient algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm. These algorithms use the gradient

@ logpðθtjX
1:t;wÞ

@θt
¼
XR

r¼1

FðXt;rÞ � ηt½ � � W� 1

tjt� 1
ðθt � θtjt� 1Þ: ð13Þ

Here we define the expectation parameters ηt as

ηt �
@cðθtÞ
@θt

¼ hFðxÞiθt ; ð14Þ

where hxiθt is the expectation of x with respect to p(x|θt). This expectation needs to be com-

puted repeatedly in the gradient algorithms. The covariance matrix of the approximated

Gaussian distribution is computed from the Hessian of the log posterior evaluated at the

MAP estimate:

W� 1

tjt ¼ �
@

2 logpðθtjX
1:t;wÞ

@θt@θ
0

t

�
�
�
�
θtjt

¼ RGt þW� 1

tjt� 1
:

ð15Þ

Gt is the Fisher-information matrix:

Gt �
@cðθtÞ
@θt@θ

0

t

�
�
�
�
θt¼θtjt

¼ hFðxÞFðxÞ0iθtjt � hFðxÞiθtjt hFðxÞi
0

θtjt
: ð16Þ

The expectations are taken by p(x|θt|t). Note that we initially assumed that the filter density

at previous time step is a Gaussian distribution when computing the Chapman-Kolmogorov

equation. By the Laplace approximation, this assumption is fulfilled in the next time step.

Additionally we assumed that the initial distribution of the state variables is Gaussian. Thus

we obtain an approximate nonlinear recursive filter that is consistent across the iterations.

Once the approximate filter density is constructed for t = 1, . . ., T, the backward smoothing

algorithm is applied to obtain the smoothed posterior density of the state variable at time t [32,

52],

pðθtjX
1:T ;wÞ ¼ pðθtjX

1:t;wÞ
Z
pðθtþ1jX

1:T ;wÞpðθtþ1jθt;wÞ
pðθtþ1jX

1:t;wÞ
dθtþ1: ð17Þ

for t = T, . . ., 1. In practice, the following fixed interval smoothing algorithm [32] provides the
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smoothed MAP estimate θt|T and smoothed covariance Wt|T of the posterior distribution

θtjT ¼ θtjt þ Atðθtþ1jT � θtþ1jtÞ; ð18Þ

WtjT ¼Wtjt þ AtðWtþ1jT � Wtþ1jtÞA
0

t; ð19Þ

where At ¼WtjtW
� 1

tþ1jt . In addition, the posterior covariance matrix between state variables at

time t and t − 1 is obtained as Wt−1, t|T = At−1 Wt|T [53]. This procedure constructs the

smoother posterior density of the latent process (Eq 4) by approximating it as a Gaussian pro-

cess of length N(N + 1)/2 × T with mean ðθ0
1jT ; θ

0

2jT ; . . . ; θ0TjTÞ and a block tridiagonal covari-

ance matrix whose block diagonal is given by Wt|T (for t = 1, . . ., T), and block off-diagonals

are given by Wt−1,t|T (for t = 2, . . ., T).

Approximation methods for large-scale analysis

Approximate estimate of filter mean by pseudolikelihood method. To obtain the filter

estimate using iterative gradient ascent methods, the gradient (Eq 13) needs to be evaluated at

each iteration. This requires computation of the expectations (Eq 14) by summing over all 2N

states the network can realize. This is infeasible for a large network size N. Thus the method

introduced in the previous subsection was limited to N� 15. However, the pseudolikelihood
method [40, 54, 55] has been shown to estimate with reasonable accuracy the interactions

without requiring evaluation of the expectations. Here we incorporate it into the sequential

Bayesian estimation framework.

The pseudolikelihood approximates the likelihood of the joint activity of neurons by a

product of conditional likelihoods of each neuron given the activity of the others. Let the activ-

ity of neurons except neuron n be xnn = (x1, . . ., xn−1, xn+1, . . ., xN)0; and

f nt ðxnnÞ ¼ θ0tFðxn ¼ 1; xnnÞ. Then the pseudolikelihood is given by

YR

r¼1

~pðXt;rjθtÞ ¼
YR

r¼1

YN

n¼1

p Xt;r
n jX

t;r
nn; θt

� �
¼
YR

r¼1

YN

n¼1

exp Xt;r
n f

n
t Xt;r

nn

� �� �

1þ exp f nt Xt;r
nn

� �� � : ð20Þ

Note that the log partition function does not appear in Eq 20. Replacing the likelihood in Eq 9

with Eq 20 yields

logpðθtjX
1:T ;wÞ �

XR

r¼1

XN

n¼1

Xt;r
n f

n
t Xt;r

nn

� �
� log 1þ exp f nt Xt;r

nn

� �� �� �h i

�
1

2
ðθt � θtjt� 1Þ

0W� 1

tjt� 1
ðθt � θtjt� 1Þ þ const:

ð21Þ

The derivative of this approximated filter density results in

@ logpðθtjX
1:T ;wÞ

@θt
�
XR

r¼1

XN

n¼1

Xt;r
n � ~Zt;rn

� � @f nt ðX
t;rÞ

@θt

� �

� W� 1

tjt� 1
ðθt � θtjt� 1Þ; ð22Þ

where ~Zt;rn ¼ hx
t
njX

t;r
nniθt , i.e., the expectation of xtn being 1 given the activity of the other neu-

rons. Using this gradient in the same gradient ascent algorithms as before we obtain the

approximate mean θt|t of the filter density.

Approximation of the filter covariance. The pseudolikelihood can provide the approxi-

mate mode of the filter density (Eq 12). However, to perform the sequential estimation, we

need in addition the filter covariance matrix (Eq 15). This requires to compute the Fisher
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information matrix (Eq 16, i.e., the Hessian of the observation model at the filter mean θt|t). To

compute the Fisher information matrix, not only the first and second order but also the third

and fourth order expectation parameters need to be evaluated at the filter mean parameters. In

order to avoid computing the higher-order expectation parameters and to reduce the compu-

tational cost of the matrix inversion, we approximate it by a diagonal matrix. The diagonal is

composed of the first and second order expectation parameters fZ
tjt
i g; fZ

tjt
ij g, where the expec-

tations parameters are defined as Z
tjt
i � hxiiθtjt and Z

tjt
ij � hxixjiθtjt . Here we test two different

approximation methods to obtain these marginals. One is the Bethe approximation [56] and

the other the mean-field Thouless-Anderson-Palmer (TAP) approach [57].

Bethe approximation. The Bethe approach approximates a probability distribution by

assuming that it factorizes into its pairwise marginals. Hence, the approximated joint distribu-

tion writes as

pðxjθtjtÞ �
Q

i;j>iqtðxi; xjÞ
Q

iqtðxiÞ
ðN� 1Þ� 1

:¼ qtðxÞ; ð23Þ

where q are so-called beliefs [58] that approximate the marginals of the underlying distribu-

tion p. Note that for any acyclic graph this yields the true joint distribution. However, here

the observation model (Eq 1) is a fully connected graph and hence the Bethe approximation

ignores all cycles. Realizing that the beliefs have to fulfill constraints (∑xj qt(xi, xj) = qt(xi) and

∑xi qt(xi) = 1) one can write the problem as a Lagrangian that has to be minimized. This

allows to derive a dual representation of the marginals (in terms of the Lagrangian multipli-

ers), which in turn allows to derive messages that are sent from one belief to another. Propa-

gating this beliefs through the Markov field yields the belief propagation algorithm (BP)

[56]. While BP is relatively fast in obtaining the expectation values, it is not guaranteed to

converge to an unique solution. This guarantee is provided by the alternative concave-con-

vex procedure (CCCP) [59]. CCCP also starts from the same Lagrangian, but updates the

beliefs and Lagrangian multipliers in an alternating manner. This more strict procedure

comes with the disadvantage that it is much slower than BP. Therefore, here the two algo-

rithms are combined to a hybrid method, where BP is utilized primarily and the algorithm

falls back to CCCP, when BP does not converge. For more details on the Bethe approxima-

tion, see S1 Text.

The estimation of the log partition function for the Bethe approximation is simply com-

puted by the negative logarithm of the approximated probability (Eq 23) that all neurons are

silent, i.e.,

ct � � logqtð0Þ: ð24Þ

TAP approximation. The TAP approximation of the expectation parameters ηt|t given the natu-

ral parameters θt|t (forward-problem) can be derived in multiple ways [13, 60], but here we fol-

low [61, 62] that use the so-called “Plefka expansion”. The following formulae and their

derivation are revised for binary variables xi 2 {0, 1} instead of {−1, 1}. See S2 Text for more

details. The method constructs a new free energy as a function of the mixture coordinates

ðfZ
tjt
i g; fy

tjt
ij gÞ by the Legendre transformation of the log partition function ψt as

PN
i¼1

y
tjt
i Z

tjt
i � ct . Then this function is approximated by a second-order expansion around the

independent model assuming weak pairwise interactions. This results in the approximate log
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partition function,

ct �
XN

i¼1

y
tjt
i Ztjti �

XN

i¼1

Ztjti log Ztjti þ ð1 � Ztjti Þ log ð1 � Ztjti Þ
� �

þ
1

2

X

j6¼i

y
tjt
ij Ztjti Ztjtj

þ
1

8

X

j6¼i

y
tjt
ij

� �2

Ztjti � ðZ
tjt
i Þ

2
� �

Ztjtj � ðZ
tjt
j Þ

2
� �

:

ð25Þ

Here we extended the definition of interaction parameters as y
tjt
ii ¼ 0 and y

tjt
ij ¼ y

tjt
ji . At the

independent model, the values for the expectations can be computed and the expansion yields

correction terms for the non-zero y
tjt
ij . Since derivatives of the new free energy based on the

mixture coordinates w.r.t. fZ
tjt
i g yield the first order parameters fy

tjt
i g, we obtain the following

self-consistent equations:

y
tjt
i ¼ log

Z
tjt
i

1 � Z
tjt
i

 !

�
X

j6¼i

y
tjt
ij Zj �

1

2

X

j6¼i

y
tjt
ij

� �2 1

2
� Ztjti

� �

Ztjtj � ðZ
tjt
j Þ

2
� �

; ð26Þ

for i, j = 1, . . ., N. Solving this equations yields the first order expectations which can be used

to estimate the log partition function (Eq 25).

Furthermore, from the relation
@y
tjt
i

@Z
tjt
j
¼ ½G� 1

t �ij we obtain

½G� 1

t �ij ¼
1

Z
tjt
i ð1 � Z

tjt
i Þ

dij � y
tjt
ij � y

tjt
ij

� �2 1

2
� Ztjti

� �
1

2
� Ztjtj

� �

: ð27Þ

Here δij is the Kronecker delta function, which is 1 for i = j and 0 otherwise. To obtain the sec-

ond order expectation parameters, we calculate and then invert the N ×Nmatrix obtained by

Eq 27, and approximate it as the Fisher information matrix for {θi} given in Eq 16 to obtain the

second order expectation parameters by Z
tjt
ij ¼ ½Gt�ij þ Z

tjt
i Z

tjt
j [61].

Approximate marginal likelihood. Because the TAP and Bethe approximations provide esti-

mates of the log partition function ψt, we are able to evaluate the approximation of the mar-

ginal likelihood (Eq 7), and the EM-algorithm for the state-space model can be run until it

converges. The approximate marginal likelihood is obtained as (see also [38])

lðX1:T jwÞ ¼
XT

t¼1

log
Z

pðXtjθtÞpðθtjX
1:t� 1;wÞdθt

�
XT

t¼1

XR

r¼1

θ0tjtFðX
t;rÞ � ct θtjt

� �h i

�
1

2

XT

t¼1

θtjt � θtjt� 1

� �0
W� 1

tjt� 1
θtjt � θtjt� 1

� �

þ
1

2

XT

t¼1

log detWtjt � log detWtjt� 1

� �
;

ð28Þ

where p(θt|X1:0, w) indicates a prior of the initial distribution N ðμ;ΣÞ. Similarly, we use

θ1|0 = μ and W1|0 = Σ. Here the integral with respect to θt at the first equality is approximated

as an integral of a Gaussian function, using up to the quadratic information around its mode

(the Laplace approximation). From Eqs 11 and 12, it turns out that the mean and covariance

of the filter density provide this information.
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Results

Model fit to simulated data

In the following subsections, we demonstrate the fit of the state-space model of neural popula-

tion activity to artificially generated data of 40 neurons with dynamic couplings for T = 500

time bins. To be able to compare it to the ground truth we construct 4 populations each con-

sisting of 10 neurons. Individual parameters θ1:T of the underlying submodels are generated as

smooth independent Gaussian processes, where the mean for the first order parameters y
t
i

increases at t = 100 and then decreases more slowly shortly after that. The interaction parame-

ters y
t
ij are generated as Gaussian processes whose mean is fixed at 0. In total, 500 trials of spike

data are sampled from this generative model. Note that the sampled individual parameters dif-

fer and vary over time although we use homogeneous means. The increase of the mean for y
t
i

increases spiking probability followed by a decrease back to baseline (Fig 1A). In the resulting

data neurons spike with time averaged probabilities ranging from 0.10 up to 0.21. Supposing

bin width Δ = 10 ms these are in a physiologically reasonable range. This exemplary scenario

may mimic a population that independently receives an external input elicited by e.g., a sen-

sory stimulus. For details of the generation of the data see S3 Text.

Next we fit the state-space model of neural population activity to the generated data with

the combination of pseudolikelihood and Bethe approximation. This combination is chosen

for the demonstration because it provides the best estimates of the underlying model as we will

assess later in this section. Top panel of Fig 1B shows snapshots of the smoothed estimates of

the inferred network at different time points (t = 50, 150, 300). The color of the nodes indicate

the smoothed estimates of the first order parameters y
tjT
i and the one of the edges interactions

y
tjT
ij . Visual inspection of the fitted network suffices to identify that there are 4 independent

subpopulations of correlated neurons (one in each quadrant). To check whether the inferred

changes over time match those of the underlying generative model, credible intervals of three

fitted couplings are compared with their underlying values (Fig 1B Bottom). The fit follows the

dynamics, and correctly identifies the parameter that is constantly 0 (the lowest panel).

Estimating macroscopic properties of the network

One of the main motives to model joint activities of a large population of neurons is to assess

macroscopic properties of the network in a time-dependent manner with credible intervals.

The macroscopic measures obtained for this example are shown in Fig 1C, and in the following

we introduce them one by one.

The first and simplest macroscopic property shown in the top left panel of Fig 1C is the

probability of spiking in a network (population spike rate). We define it as

pspikeðtÞ ¼
1

N

XN

i¼1

Zti ; ð29Þ

where Zti is the spike rate of ith neuron at time t. Considering the smoothed estimate Zti ¼ Z
tjT
i ,

the method recovers correctly the empirical rate obtained from the data (Fig 1A Bottom). The

shaded area in the panel indicates the 98% credible interval of the population spike rate

obtained by resampling the natural parameters from the smoothed posterior density 100 times

at each bin. The underlying spike probability for N = 40 neurons is obtained by calculating the

marginals Zti independently for each subpopulation and averaging over all neurons.

Next from the state-space model of neural population activity one can estimate the proba-

bility of simultaneous silence (i.e., the probability that no neuron elicits a spike, Fig 1C
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bottom left)

psilenceðtÞ ¼ exp ð� ctÞ: ð30Þ

The approximation methods allow us to evaluate the log partition function ψt (Eqs 24 and

25). Here we use smoothed estimates to compute the log partition function. Thus we imme-

diately obtain the probability of simultaneous silence. The expected simultaneous silence for

N = 40 neurons is obtained as multiplication of the silence probabilities of the 4

subpopulations.

Fig 1. Approximate inference of dynamic neural interactions and macroscopic network properties.

Analysis on simulated spike data of 40 neurons. A Top: Simultaneous spiking activity of 40 neurons that are

repeatedly simulated 500 times (here only 3 trials are visualized). The data is sampled from a time-dependent

model of a neural population (Eq 1). The time-varying parameters are chosen such that neurons’ spike probability

resembles evoked activity in response to stimulus presentation to an animal. The neural interactions are assumed

to smoothly change irrespective of the firing rates. See the main text for details. Bottom: Empirical spike probability

over time, averaged over trials and neurons. B Top: Estimated network states at t = 50, 150, 300 by the

pseudolikelihood-Bethe approximation method. Neurons are represented by nodes whose colors respectively

indicate a value of the smoothed estimate of y
t
i (for i = 1, . . ., 40). Links are color-coded according to estimated

strength of the interaction y
t
ij between connected nodes (positive or negative interactions are marked in red or blue,

respectively). Only significant edges are displayed, where the corresponding y
t
ij has a 98% credible interval that

does not include 0. Bottom: Dynamics of 3 exemplary interaction parameters, y
t
ij. The lines denote the ground truth

from which the binary data are sampled. The shaded areas are 98% credible intervals. C Estimated population

rate (top left). Probability that all neurons are silent (bottom left). Entropy (top right) and heat capacity (bottom

right) of the neural population. In all panels, shaded areas indicate 1% and 99% quantiles obtained by resampling

the natural parameters from the fitted smoothed distribution. Solid lines represent ground truth computed from the

underlying network model.

doi:10.1371/journal.pcbi.1005309.g001
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The entropy of the network (i.e., expectation of the information content, h−log p(x|θt)iθt)
can be also calculated from the model as

SðtÞ ¼ � θ0tηt þ ct: ð31Þ

Estimation of this information theoretic measure allows us to quantify the amount of interac-

tions in the network by comparing the pairwise model to the independent one (see following

analyses and Eq 36). Since it is an extensive quantity, the entropy of N = 40 neurons is obtained

by addition of the entropies from the 4 independent subpopulations. The entropy increases

while the individual activity rates of neurons also increases (Fig 1C top right).

The last measure shown in the bottom right panel of Fig 1C is the heat capacity, or sensitiv-

ity, of the system. It is the variance of information content: C(t) = h{−log p(x|θt)}2iθt − {h−log p
(x|θt)iθt}

2, where the brackets indicate expectation by p(x|θt). It is also the variance of the Ham-

iltonian � θ0tFðxÞ. Thus we can obtain it by introducing a nominal dual parameter β to the

Hamiltonian in the model, assuming that it is 1 for real data. The log partition function of the

augmented model is

ctðbÞ ¼ log
X

x

exp ðb θ0tFðxÞÞ: ð32Þ

The variance of Hamiltonian is given as the Fisher information w.r.t. β, i.e., the second deriva-

tive of the log partition function. This allows us to use the approximate ψt to assess the heat

capacity. Then we further approximate the second derivative by its discrete version

CðtÞ ¼
@

2
ct

@b
2

�
�
�
�

b¼1

�
ctð1þ �Þ � 2ctð1Þ þ ctð1 � �Þ

�2
; ð33Þ

and � is chosen to be 10−3. The heat capacity measures sensitivity of the network, namely how

much the network activity changes due to subtle changes in its network configuration (i.e., to

changes of the θt parameters). Networks with higher sensitivity are more responsive to changes

than those with lower sensitivity. Similarly to the entropy, the heat capacity is an extensive

quantity. For the simulated data, the heat capacity decreases while activity rates of neurons are

increased (Fig 1C bottom right).

Assessment of fitting error with different network sizes and amount of

data

Next we examine the goodness-of-fit of the model fitted by the pseudolikelihood and Bethe

approximation methods. In particular, we ask how the fitting performance changes with

increasing network size. For this reason we generated 6 dynamic models for populations of 10

neurons as described previously (500 time bins, 500 trials). Then we construct smaller or larger

populations by concatenating the independent groups. The model is fitted by the pseudolikeli-

hood and Bethe approximation methods to the first subnetwork, then two subnetworks, and

so on, until we fit the model to a network containing 60 neurons composed of 6 independent

groups. We obtain estimates of the macroscopic measures from the smoothed estimates of the

model parameters at each time bin. Fig 2A shows values of these measures averaged over time.

The results show extensive properties of macroscopic measures (except for the population

spike rate), and that the estimates may slightly deviate for larger number of neurons.
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To assess quality of the fit, first the root mean squared error (RMSE) for the natural param-

eters averaged across time bins is calculated

RMSEðθtjTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

kθtjT � θt k2

s

; ð34Þ

where θt|T is the smoothed estimate of the underlying model θt. kvk denotes the L2-norm of

vector v. For the data sets with 500 trials, the RMSE increases linearly with network size (Fig

2B Left). Furthermore, the error for the macroscopic measures is assessed by

Error½f ðθtjTÞ� ¼
RMSEðf ðθtjTÞÞ

1

T

PT
t¼1
f ðθtÞ

; ð35Þ

where f(θt|T) is any function of the macroscopic measures. The RMSE is defined similarly to

Eq 34 while substituting the parameters θt|T by the function f(θt|T). Besides the population rate

these errors also increase as the network size increases (Fig 2B). We observe non-monotonic

behavior in some of the macroscopic properties (e.g., average spike rate and the entropy’s

error), which can be explained by fluctuations from the data generation process.

To understand whether these errors increase primarily due to the approximation methods

used for the fit or because of the finite amount of data, the fit is repeated but now to spiking

data with 1000 trials. The error of the fit is reduced particularly for larger network size (Fig 2B

dashed lines), suggesting that the limited amount of data is mainly responsible for the estima-

tion error.

In general, the estimation error is largest at time points where the parameters θt change rap-

idly. This is a general problem of smoothing algorithms, including spike rate estimation,

which depend on fixed smoothness parameter(s) (i.e., here λ) optimized for an entire observa-

tion period (see e.g., [63] for optimizing a variable smoothness parameter to cope with such

abrupt changes).

Fig 2. Approximation error and network size. Error analysis on networks consisting of subpopulations with 10

neurons, constructed by the same procedure as in Fig 1. A: The average value of the macroscopic properties over time

as a function of network size. Black line is the true value, while colored lines show the estimated ones (solid line fit with

500 trials and dashed with 1000 trials) B: The corresponding errors (only for θt the RMSE is shown) for 500 trials (solid)

and 1000 trials (dashed).

doi:10.1371/journal.pcbi.1005309.g002
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Comparison between Bethe and TAP approximation

To this end, only the Bethe approximation was used in combination with the pseudolikelihood

to fit the model approximately. However, as discussed previously, the TAP approximation

constitutes a potential alternative. To assess the quality of both approximations, we investi-

gated a small network (15 neurons, 500 time bins, 1000 trials). The data was generated as

described for Fig 1. The smaller network is considered because it allows to fit the model by an

exact method without the Bethe or TAP approximations. Here the exact method refers to the

method in which the expectation parameters are calculated exactly at the gradient search for

the MAP estimates of model parameters (Eq 13). It should be noted that we approximate the

posterior density by the Gaussian distribution even for the “exact method” in the recursive

Bayesian algorithm. Comparison of the approximation methods with the exact method deter-

mines the error that is caused by the approximation methods and not by the finite amount of

data.

First, investigation of three exemplary time points (Fig 3A) reveals that both the pseudolike-

lihood-Bethe and the pseudolikelihood-TAP approximation recover the underlying parame-

ters. We examine the error across time bins by the RMSE. Comparing RMSE of the

approximation results with the exact fit (Fig 3B) demonstrates that the both approximations

perform worse in the same range. To examine the approximations also for large networks

(N = 60) we sampled 1000 trials (as for Fig 2). In Fig 3C we observe that errors of the approxi-

mations are comparable. Furthermore, we compare running times required for fitting the net-

work of the two methods (Fig 3D). The pseudolikelihood-TAP approximation turns out to be

faster than Bethe. We observed that the EM algorithm required more iterations for the Bethe

approximation. Furthermore, the occasional use of the CCCP contributed to the long fitting

time of the pseudolikelihood-Bethe procedure.

Since both, Bethe and TAP, provide an approximation for the log partition function ψt (Eqs

25 and 24), we assess their performance for the same data as in Fig 3. The time evolution of

simultaneous silence (directly linked to ψ by Eq 30) is recovered by exact, Bethe, and TAP (Fig

4A). The results show that the TAP approximation slightly overestimated the probability in

Fig 3. Comparison of the Bethe and TAP approximation. Simulated neural activity composed of 500 time bins, and

1000 trials are used to compare the two approximation methods. The underlying model parameters follow Fig 1. A Top:

Ground truth θt of a network of 15 neurons vs. its smoothed estimate by pseudolikelihood-Bethe approximation at three

different time points (t = 50, 150, 300). Bottom: The same as above obtained with pseudolikelihood-TAP approximation.

B The RMSE between the true model parameter θt and its smoothed estimate by the exact inference, pseudolikelihood-

Bethe, or pseudolikelihood-TAP approximation. The bar height and error bars indicate the mean and standard deviation

from 10 realizations of data, each sampled from the same underlying parameters (generated as in Fig 1). C As in B the

RMSE of the estimated model parameters for a network of 60 neurons, composed of 6 equally sized subnetworks. D

Running time as function of network size for the two different approximation methods.

doi:10.1371/journal.pcbi.1005309.g003
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this example. This is also reflected in the Error½cðfθ̂ tjTgtÞ� (Fig 4B), where the Bethe approxi-

mation performs better than the TAP method. However, the error for the Bethe approxima-

tion increases compared to the exact method. The relation between the two approximation

methods persists also for large networks (Fig 4C). Another disadvantage of the TAP approxi-

mation is that the system of non-linear equations occasionally could not be solved. This hap-

pens more frequently when fitting larger networks and/or networks with stronger

interactions. Therefore, it seems that the pseudolikelihood-Bethe approximation exhibits more

accurate estimates; hence we will use it again for the following analysis. However the faster fit-

ting of pesudolikelihood-TAP can be advantageous elsewhere.

Dynamic network inference from V4 spiking data of behaving monkey

We now apply the approximate inference method to analyze activity of monkey V4 neurons

recorded while the animal performed repeatedly (1004 trials) the following behavioral task.

Each trial began when the monkey fixated its gaze within 1 degree of a centrally-positioned dot

on a computer screen. After 150 ms, a drifting sinusoidal grating was presented for 2 s in the

receptive field area of the neuronal population that was recorded, at which time the grating

stimulus disappeared and the fixation point moved to a new, randomly chosen location on the

screen, and the animal made an eye movement to fixate on the new location. Data epochs

from 500 ms prior to grating stimulus onset until 500 ms after stimulus offset were extracted

from the continuous recording for analysis. The spiking data obtained by micro-electrode

recordings includes 112 single and multi units identified by their distinct wave forms. The

experiment was performed at the University of Pittsburgh. All experimental procedures were

approved by the University of Pittsburgh Institutional Animal Care and Use Committee, and

were performed in accordance with the United States’ National Institutes of Health (NIH)

Guide for the Care and Use of Laboratory Animals. For details on experimental setup, recording

and unit identification see [64]. The recorded units are tested for across-trial stationarity

(which is the assumption of the model): The mean firing rates for each trial are standardized

and if more than 5% of the trials were outside the 95% confidence interval the unit is excluded.

After this preprocessing 45 units remained. To obtain the binary data, the spike trains are dis-

critized into time bins with Δ = 10 ms resulting into 300 time bins over the course of the trial.

Fig 4. Time-varying probability of simultaneous silence. Results of different approximation methods. The

underlying model parameters are the same as in Fig 3. A The probability of simultaneous silence (psilence(t) = exp(−ψt))

for a network of 15 neurons as a function of time. The pseudolikelihood-Bethe (orange) and pseudolikelihood-TAP

(lavender) method estimate the underlying value with sufficient accuracy (dashed black). For comparison, an estimate

by the exact method (green) is shown. B The error between the approximate and true free energyψt. C The error of free

energyψt for large networks (N = 60, data same as in Fig 3C).

doi:10.1371/journal.pcbi.1005309.g004
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Exemplary data are displayed in Fig 5A Top. We note that the following conclusions of this

analysis do not change even if we use smaller and larger bin size (Δ = 5 and 20 ms).

After the data are preprocessed, we analyze the network dynamics of the 45 units during

the task period by the state-space model for the neural population activity. Inference is done

by using the pseudolikelihood-Bethe approximation. The results of fitting the state-space

model are displayed in Fig 5B. Before presenting detailed results, we note that considering

dynamics in activity rates and neural correlations better explains the population activity while

avoiding overfitting, compared to assuming that they are stationary. To assess this, we com-

pared the predictive ability of the state-space model with that of the stationary model, using

the Aikake (Bayesian) Information Criterion (AIC) [65] defined as −2l(X1:T|w) + 2k, where k is

the number of free parameters in w. To obtain the latter, we fitted the state-space model once

more but now fixing λ−1 = 0, which results in a stationary model since the state model in Eq 3

no longer contains variability. The result confirms that the dynamic model better predicts the

data (AICdyn = 4467026 for the dynamic model and AICstat = 4576544 for the stationary

model).

We observe stimulus locked oscillations in the population firing rate that are also captured

by the model (Fig 5A Bottom). The average of the estimated natural parameters (Fig 5B Bot-

tom) show that these oscillations are explained by the first order parameters y
tjT
i . We note that

these oscillations are mainly caused by two units with high firing rates and they should not be

considered as a homogeneous property of the network. Investigation of the network states

before, during, and after the stimulus (Fig 5B Top) reveals that the interactions y
tjT
ij are altered

over time. This is also reflected in an average over the all pairwise interactions (Fig 5B Center),

where the mean decreases during the stimulus presentation as well as the standard deviation.

Fig 5. Dynamic network inference from monkey V4 data. In this experiment, a 90˚ grating on a screen was presented to the

monkey for 2s (light gray shaded areas). 1004 trials were recorded, and binary spike trains were constructed with bin width of 10

ms. A Top: Exemplary spiking data (N = 45). Bottom: Empirical probability (black) of observing a spike over time and spike

probability of the fitted model (green). B Top: The fitted network at three different time points, before, during, and after

stimulation. Edges with significantly non-zero y
t
ij are displayed (as in Fig 1). Bottom: The mean of smoothed MAP estimates for

y
t
i and y

t
ij (dark gray line). The shaded area is the mean ± standard deviation. C Credible intervals of macroscopic measures of

the network over time obtained from the smoothed estimates of the model (light color). Dark shaded area corresponds to the

credible intervals of the estimates for trial shuffled data.

doi:10.1371/journal.pcbi.1005309.g005
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Thus neurons are likely to decorrelate during the stimulus presentation whereas the popula-

tion rate increases and oscillates at the same time.

Similarly to the analysis of artificial data (Fig 1), we measure the macroscopic properties of

the fitted model over the task period (see Fig 5C for credible intervals). To test the contribution

of interactions in the recorded data, the model is once again fitted to trial shuffled data [23],

which should destroy all correlations among units that do not occur due to chance. Compari-

son of the macroscopic measures between the models fitted to the original data and to the trial

shuffled data shows how interactions among units alter the results. In the following, we will

refer to the two models as “actual” and “trial shuffled” model.

The probability of simultaneous silence shows again the stimulus locked oscillations, and

decreases during the stimulus period. The difference between the actual and trial shuffled

model before the stimulus is larger than during and after the stimulus, suggesting that the

observed positive interactions contributed to increasing the silence probability in particular

before and after the stimulus period. The entropy reflects the oscillations and shows a strong

increase (*1/3) during the stimulus period. This is reasonable because we observe an increase

in activity rates and a decrease in correlations—both effects should result in an increase in

entropy. Next, we examine how much of the entropy is explained by the interactions among

the neurons. To do so, at each time point we calculate the corresponding independent model

by projecting the fitted interaction model to the independent model (i.e., the model with the

same individual firing rates Zti but with all y
t
ij ¼ 0). The entropy of the independent model Sind

should always be larger than Spair, the entropy of the model with interactions. Hence, a fraction

of entropy explained by the interactions can be calculated as

Sind � Spair

Sind
: ð36Þ

In general, contribution of interactions to the entropy is small for these data (� 2%). However,

the contribution is less during stimulus presentation, compared to the period before the stimu-

lus. Only in the beginning of the stimulus presentation, two peaks of correlated activity can be

observed. The observed reduction of the fractional entropy for interactions could be caused by

the increase of the first order parameters y
t
i and/or by the decrease of the interactions y

t
ij during

the stimulus period. The decorrelation observed during the stimulus period is successfully dis-

sociated from the oscillatory activity: Previously observed oscillations are absent in this mea-

sure of interactions. This result is important because ignoring such firing rate dynamics often

leads to erroneous detection of positive correlations among neurons. A clear exception is the

first peak appeared during the stimulus presentation, which was also observed in the trial-shuf-

fled model. Indeed, the first sharp increase of the spike rates was not faithfully captured by the

models, which caused spurious interactions in the trial-shuffled model. Last, the sensitivity

(heat capacity) of the network over time is obtained. While for the artificial data in Fig 1 the

sensitivity showed a drastic decrease, such reduction is not observed in the V4 data. The sensi-

tivity of the network is maintained at approximately the same value before and during the

stimulus period. This is interesting since we already observed that before and during the stim-

ulus the network seems to be in two qualitatively different states (low vs. high firing rate and

strong vs. weak interactions). After stimulus presentation the sensitivity drops. Overall, neural

interactions contribute to have higher sensitivity (see light vs. dark credible intervals).

Dynamic network inference from simulated balanced network data

Networks with balanced excitation and inhibition have been used to describe cortical activity

[66, 67]. To see whether the balanced network model can reproduce the findings from the
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recorded V4, we simulate spiking data using the balanced spiking network following [24], and

analyze these data with the state-space model. The network consists of 1000 leaky integrate-

and-fire neurons (800 excitatory, 200 inhibitory) (For details see S4 Text). Connection proba-

bility is 20%, between all neurons. The network receives input from 800 Poisson neurons.

Each input neuron has a Gaussian tuning curve, where the preferred direction is randomly

assigned. We choose an experimental paradigm which resembles one of the V4 data. 1000 tri-

als of 3 s duration are simulated. Before each trial, the simulation runs for 500 ms under ran-

dom Poisson inputs such that the network state at the beginning of each trial is independent.

Then the trial starts at −500 ms. At 0 ms a 90˚ is shown for 2 s followed again by a 500 ms

period of stimulus absence. The activity of 140 neurons are recorded for investigation. From

the recorded subpopulation, we further selected 40 excitatory and 20 inhibitory neurons with

the highest firing rates for the following analysis. Binary spike trains were obtained by binning

with Δ = 10 ms. Exemplary data are shown in Fig 6A (top spike trains are from excitatory, and

bottom spike trains from inhibitory neurons). We then fitted the state-space model to these

data.

As for the V4 data, we show in Fig 6B 3 snapshots of the network (N = 60) (Top), as well as

mean and standard deviation of y
tjT
i and y

tjT
ij (Bottom). In contrast to the V4 network there are

numerous significant non-zero couplings. However, similarly to the monkey data, we observe

an increase for y
t
i and a decrease of y

t
ij during the stimulus period. We also assess the macro-

scopic states for the balanced network (Fig 6C). As in the V4 data the probability of silence

decreases during the stimulus period. Furthermore, compared to the trial shuffled result, the

difference is larger before and after the stimulus than during the stimulus, suggesting a larger

contribution of the couplings to silence when no stimulus is present. The entropy increases

during the stimulus period. The credible interval for the trial shuffled data is narrower than for

actual model and the entropy tends to be larger. Up to this point we did not find, in the macro-

scopic properties, significant qualitative differences between the V4 data and the simulated

data from the balanced network. However, the entropy that is explained by the couplings

Fig 6. Dynamic network inference from simulated balanced network data. 60 neurons (40 excitatory, 20 inhibitory) are

recorded from a simulated balanced network of 1000 leaky integrate-and-fire neurons that receive inputs from 800 excitatory

orientation selective Poisson neurons (mean firing rate 7.5 Hz when no stimulus present). See main text for the details. Stimulus

was presented for 2 s, and 1000 trials are generated. Bin width is 10 ms. The structure of this figure is the same as in Fig 5.

doi:10.1371/journal.pcbi.1005309.g006
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increases during the stimulus, while in the V4 data a decrease is observed (Fig 6C, third panel).

Hence, the interactions in the balanced network become stronger during the stimulus, even

though the mean of the couplings y
tjT
ij decreases for this period. This can be explained by more

negative values in estimated couplings during the stimulus period. The sensitivity slightly

decreases when the stimulus is shown and, as for the V4 data, couplings contribute to higher

sensitivity.

Observing the dynamics in the model parameters poses the question how the actual synap-

tic connectivity structure of the network is reflected in the inferred interactions. Do positive

values correspond to excitatory synapses, and negative to inhibitory ones? While for the V4

data this is impossible to assess, we compare the values of y
tjT
ij of pairs, that are at least con-

nected by one excitatory synapse and those that are connected by at least one inhibitory syn-

apse (Fig 7A, red and blue histograms respectively). In general, excitatory connected pairs

show more positive values, while inhibiting ones tend to be negative. The most negative values

are almost exclusively explained by inhibiting pairs. However, compared to all y
tjT
ij (gray histo-

gram) many positive couplings y
tjT
ij do not represent excitatory connected pairs. Thus it is diffi-

cult to identify excitatory synapses from the inferred couplings. The result that inhibitory pairs

showed stronger negative couplings, while excitatory pairs were mostly represented by weak

positive couplings, can be explained by on average much stronger conductance of inhibitory

synapses.

Finally we compare the mean values of couplings between different network sizes (Fig 7B).

To do so networks of size N = 15, 30, 60 are fitted, where the network always consisted of one

third inhibitory and two thirds excitatory neurons. However, neither for excitatory, inhibitory

or all couplings we could identify dependency on the network sizes that can be analyzed by

our model.

Discussion

This study provides approximate inference methods for simultaneously estimating neural

interactions of a large number of neurons, and quantifying macroscopic properties of the net-

work in a time-resolved manner. We assessed performance of these methods by using simu-

lated parallel spike sequences, and demonstrated the utility of the proposed approach by

revealing dynamic decorrelation of V4 neurons and maintained susceptibility during stimulus

presentations. Furthermore we compared those findings with data from a simple balanced

Fig 7. Comparison of model interactions with synapses in the balanced network. The synaptic structure is

reflected in the inferred interactions. A Histograms of the interactions y
tjT
ij for all pairs (gray), pairs that are connected

by at least one excitatory synapse (red), and those that are connected by at least one inhibitory synapse (blue) at three

different time points. B Averages of the couplings y
tjT
ij across time and pairs as a function of a network size (always

consisting of two thirds of excitatory and one third of inhibitory neurons). Colors as in A, and error bars denote standard

deviations.

doi:10.1371/journal.pcbi.1005309.g007
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network of LIF neurons, which suggested that further refinements were necessary to reproduce

the observed network activity.

Accurate assessment of correlated population activity in ongoing and evoked activity is a

key to understand the underlying biological mechanisms and their coding principles. It is criti-

cal to model time-dependent firing rates to correctly assess neural interactions. If we apply a

stationary model of neural interactions to independent neurons with varying firing rates, we

may erroneously observe excess of correlations [22–24, 26, 68]. Such an apparent issue of a sta-

tionary model can introduce considerable confusion in search of fundamental coding princi-

ples of neurons. Several related studies accounted for the nonstationary activity by modeling

time-dependent external fields (c.f., fy
t
ig in Eq 1) while fixing pairwise interactions [26, 30]. In

addition to the external fields, however, we consider that modeling dynamics of correlations

are important particularly for analyses of neurons recorded from awake animals because neu-

ral correlations are known to appear dynamically in relation to behavioral demand to the ani-

mals [27–29, 38, 69]. Indeed, we found dynamic decorrelation of V4 neurons during stimulus

presentation (Fig 5C 3rd panel), which may reflect asynchronous neural activities under stim-

ulus processing of an alert animal [70, 71]. In general, it is important to compare the result

with that of surrogate data in which one destroys correlations to examine potentially short-

lasting time-varying interactions in relation to behavioral paradigms.

The current state-space model presumes that the neural dynamic follows a quasistatic pro-

cess. At each time t, we assumed that population activity is sampled from the equilibrium joint

distribution given by Eq 1 across trials while the state of population activity smoothly changes

within a trial. This is of course a simplified view of neuronal dynamics. Most notably, depen-

dency of the neurons’ activity on their past activity makes the system a nonequilibrium one.

Such activity is captured by models via the history effect, e.g., using the kinetic Ising model

[25, 26, 72, 73] or generalized linear models (GLM) of point and Bernoulli processes [35, 74–

76]. Given the past activities, these models construct the joint activity assuming their condi-

tional independence. The equilibrium and non-equilibrium models thus assume different gen-

erative processes, even though the pseudo-likelihood approximation for our equilibrium Ising

model used similar conditional independence given the activity of other neurons at the same

time. It is an important topic to include both modeling frameworks in the sequential Bayes

estimation to better account for dynamic and nonequilibrium properties of neural activity

[39]. The model goodness-of-fit may be additionally improved by including sparseness con-

straints on the couplings as was done in the stationary models [40, 77, 78].

In this study, we employed the classical pseudolikelihood method to perform MAP estima-

tion of interactions (i.e., natural parameters) without computing the partition function. For

the inverse problem without the prior, we may use alternative approximation methods such as

Bethe and TAP approximations, and further state-of-the-art methods such as the Sessak-Mon-

asson [12], minimum-probability-flow [15], and adaptive-cluster expansion [17] method.

However, here we chose the pseudolikelihood method because it was not trivial to apply the

other methods to the Bayesian estimation. Alternatively, the Bethe and TAP approximation

methods may be used to approximate the expectation parameters during the iterative proce-

dure of the exact MAP estimation (Eq 13) because these methods allow us to estimate the

expectation parameter from the natural parameters (the forward problem). However, as we

found in the estimation of the Fisher information, TAP may occasionally fail and Bethe

approximation by BP may not converge. Thus we rather used these methods after the MAP

estimation was found by the pseudolikelihood method. The framework, however, is not lim-

ited to these approximation methods, and new methods may be incorporated into the state-

space model to further increase the number of neurons that can be analyzed.
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It should be noted that the current model does not include higher-order interactions to

explain the population dynamics. While neural higher-order interactions are ubiquitously

observed in vivo [38, 79–81] as well as in vitro [20, 21, 82, 83] conditions, it remains to be eluci-

dated how they contribute to characterizing evoked activities. It is an important step to include

higher-order interactions in the large-scale time-dependent model. However, the proposed

method that includes up to pairwise interactions can be used as a null model for testing activity

features involving higher-order interactions. For example, both experimental and modeling

studies showed that simultaneous silence of neurons constitutes a major feature of higher-

order interactions of stationary neural activities [83, 84]. It remains to be tested, though, if

silence probability of all neurons recorded from behaving animals exceed prediction by the

pairwise model. Such sparse population activity may be expected when animals process natural

scenes, compared to artificial stimuli [85].

The limiting factor for the current model on the network size is rather the lack of data than

the performance of the approximation methods (Fig 2). Hence, the state-space or other time-

resolved methods that include dimension reduction techniques will be important approaches

to explain activity of much larger populations than analyzed here. While there is still room for

improvement, the currently proposed method already allows researchers to start testing

hypotheses of network responses under distinct task conditions or brain states. These observa-

tions will serve to construct biophysical models of neural networks by constraining them,

therefore revealing their coding principles.
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