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Abstract

Motivation: Segmentation and genome annotation (SAGA) algorithms are widely used to understand genome activ-
ity and gene regulation. These methods take as input a set of sequencing-based assays of epigenomic activity, such
as ChIP-seq measurements of histone modification and transcription factor binding. They output an annotation of
the genome that assigns a chromatin state label to each genomic position. Existing SAGA methods have several lim-
itations caused by the discrete annotation framework: such annotations cannot easily represent varying strengths of
genomic elements, and they cannot easily represent combinatorial elements that simultaneously exhibit multiple
types of activity. To remedy these limitations, we propose an annotation strategy that instead outputs a vector of
chromatin state features at each position rather than a single discrete label. Continuous modeling is common in
other fields, such as in topic modeling of text documents. We propose a method, epigenome-ssm-nonneg, that uses
a non-negative state space model to efficiently annotate the genome with chromatin state features. We also propose
several measures of the quality of a chromatin state feature annotation and we compare the performance of several
alternative methods according to these quality measures.

Results: We show that chromatin state features from epigenome-ssm-nonneg are more useful for several down-
stream applications than both continuous and discrete alternatives, including their ability to identify expressed
genes and enhancers. Therefore, we expect that these continuous chromatin state features will be valuable refer-
ence annotations to be used in visualization and downstream analysis.

Availability and implementation: Source code for epigenome-ssm is available at https://github.com/habibdanesh/
epigenome-ssm and Zenodo (DOI: 10.5281/zenodo.6507585).

Contact: maxwl@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing-based genomic assays can measure many types of gen-
omic biochemical activity, including transcription factor binding,
chromatin accessibility, transcription and histone modifications.
Data from sequencing-based genomic assays are now available from
hundreds of human cellular conditions, including varying tissues,
individuals, disease states and drug perturbations.

Segmentation and genome annotation (SAGA) methods are
widely used to understand genome activity and gene regulation
(Libbrecht et al., 2021). These algorithms take as input a collection
of sequencing-based genomic datasets from a particular tissue. They
output an annotation of the genome that assigns a label to each gen-
omic position. They are unsupervised; they discover categories of ac-
tivity (such as promoters, enhancers, genes, etc.) without any prior

knowledge of known genomic elements and a human interprets
these categories, similar to a clustering algorithm. Many SAGA
methods have been proposed, including HMMSeg (Day et al.,
2007), ChromHMM (Ernst and Kellis, 2012; Ernst et al., 2011),
Segway (Hoffman et al., 2012b) and others. See below for a compre-
hensive review of previous work.

All existing SAGA methods output a discrete annotation that
assigns a single label to each position. This discrete annotation strat-
egy has several limitations. First, discrete annotations cannot repre-
sent the strength of genomic elements. Variation among genomic
elements in intensity or frequency of activity of cells in the sample is
captured in variation in the intensity of the associated marks. Such
variation is lost if all such elements are assigned the same label. In
practice, SAGA methods often output several labels corresponding
to the same type of activity with different strengths, such as
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‘Promoter’ and ‘WeakPromoter’ (Ernst and Kellis, 2012; Hoffman
et al., 2012a). Second, a discrete annotation cannot represent com-
binatorial elements that simultaneously exhibit multiple types of ac-
tivity. To model combinatorial activity, a discrete annotation must
use a separate label to represent each pair (or triplet, etc.) of activity
types. For example, intronic enhancers usually exhibit marks of
both transcription and regulation (Hoffman et al., 2012a).
However, representing all possible combinations of activity types
with discrete labels would require a number of labels that grows ex-
ponentially in the number of activity types.

In this work, we propose a continuous genome annotation strat-
egy. That is, our method takes as input a set of sequencing-based
genomic data tracks and outputs a vector of real-valued chromatin
state features for each genomic position, where each chromatin state
feature putatively represents a different type of activity (Fig. 1).
Continuous chromatin state features have a number of benefits over
discrete labels. First, chromatin state features preserve the underly-
ing continuous nature of the input signal tracks, so they preserve
more of the information present in the raw data. Second, in contrast
to discrete labels, continuous features can easily capture the strength
of a given element. Third, chromatin state features can easily handle
positions with combinatorial activity by assigning a high weight to
multiple features. Fourth, chromatin state features lend themselves
to expressive visualizations because they project complex datasets
onto a small number of dimensions that can be mapped to axes of a
plot. For these reasons, in other fields, continuous modeling is often
preferred over discrete. For example, the widely used method of
topic modeling for text documents assigns a continuous weight to
each of a number of categories (such as ‘sports’ or ‘politics’) for each
document (Landauer et al., 2013).

In this work, we explore the utility of chromatin state feature an-
notation. We propose several measures of the quality of a chromatin
state feature annotation and we compare the performance of several
alternative methods according to these quality measures. We
propose a non-negative state space model for this problem, epige-
nome-ssm-nonneg, that produces the highest-quality continuous
annotations of the methods we compared.

2 Related work

Many methods have been proposed for discrete chromatin state
label annotation [reviewed in Libbrecht et al. (2021)] (Coetzee
et al., 2018; Day et al., 2007; Ernst and Kellis, 2012; Hoffman
et al., 2012b; Larson et al., 2013; Mammana and Chung, 2015;

Sohn et al., 2015; Zhou and Troyanskaya, 2016). The primary
model used by these methods is the hidden Markov model (HMM).
An HMM is a probabilistic model that assumes that there is a latent

(unknown) chromatin state label at each position, that the observed
genomic datasets are generated as a function of this label and that

the label at position i depends on the label at position i � 1. Later
work extended this basic approach in a number of ways. First, there
are three methods for modeling the input genomic data: one can

binarize the data and model 0/1 values with a Bernoulli distribution
(Ernst and Kellis, 2012), use a continuous measure of signal strength

such as fold enrichment over control modeled with a Gaussian dis-
tribution (Hoffman et al., 2012b; Sohn et al., 2015), or model raw
read counts with a negative Binomial distribution (Mammana and

Chung, 2015). Second, some methods (Hoffman et al., 2012b) use
statistical marginalization to handle unmappable regions. Third,

several strategies exist for modeling segment lengths or for produc-
ing annotations on multiple length scales (Hoffman et al., 2012b;
Larson et al., 2013). Finally, several strategies have been proposed

to guide the choice of the number of labels (Coetzee et al., 2018;
Sohn et al., 2015; Zhang et al., 2016; Zhou and Troyanskaya,
2016).

A related class of joint annotation methods aim to improve epi-
genome annotations by simultaneously annotating many cell types

and sharing position-specific information between the annotations
(Biesinger et al., 2013; Dsouza et al., 2021; Libbrecht et al.,
2015a,b; Zhang et al., 2016; Zhang and Hardison, 2017). Such joint
annotations can be more accurate, but have the drawback that they
may mask differences among cell types. We do not consider the joint

annotation task in this work, but adapting the continuous annota-
tion approach to this task is a promising direction for future work.

Another related task aims to take data from all available cell
types as input to produce a single pan-cell-type (as opposed to

cell-type-specific) annotation, a task sometimes known as
‘stacked’ annotation. Several methods have been proposed to pro-
duce a discrete (Hoffman et al., 2012a; Libbrecht et al., 2019)

and continuous (Dsouza et al., 2021; Durham et al., 2018;
Schreiber et al., 2020) pan-cell-type annotations. However, these
methods do not apply to the cell-type-specific case, so we do not

compare to these methods below.

3 Materials and methods

3.1 Reference genome
We performed all analyses using the human reference genome hg19.
To improve computational efficiency, following previous work
(Ernst and Kellis, 2012; Libbrecht et al., 2019), we divided the gen-

ome into 200 bp bins and performed all analysis at the bin level. In
order to reduce the computational time, we followed Segway

(Hoffman et al., 2012b) and trained our model using just the
ENCODE Pilot regions (ENCODE, 2020), which cover about 1%
of the human genome. We applied the trained model to annotate

chromatin state features across the whole genome. We also removed
the ENCODE blacklist regions from all analysis.

3.2 Epigenomic datasets
We downloaded epigenomic datasets from the Roadmap
Epigenomics data portal (Kundaje et al., 2015). See Kundaje et al.
(2015) for a full description of the data processing pipeline. Briefly,
reads were mapped to the reference genome, shifted and extended

according to the fragment length and compared to an input control.
We represented the signal at a given position as the fold-enrichment
ratio of the observed read count compared to input (Kundaje et al.,
2015). To reduce the influence of large outliers, following previous
work (Hoffman et al., 2012b), we transformed ChIP-seq values

using the transformation arcinshðxÞ ¼ log ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þ

p
Þ. We used

a representative set of data from 12 assays and eight cell types
(Supplementary Table S1).

Fig. 1. Overview of continuous chromatin state feature annotation and epigenome-ssm.

epigenome-ssm takes as input a set of genomic assays, each represented as a real-valued

track over the genome (12 tracks). It outputs a set of real-valued chromatin state

features for each position in the genome (five tracks), using a state space model. Each

chromatin state feature putatively represents a different type of activity. These

continuous features can represent multiple types of activities. For example, feature 1

marks gene bodies and feature 5 marks general regulatory activity which includes both

promoters and enhancers (Section 4).
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3.3 State space model
We developed a state space model (SSM) (Durbin and Koopman,
2012) for annotating the genome with chromatin state features.
This model takes as input a vector of E observed genomic datasets
for each position, yg 2 RE, for g 2 1 . . . G where G is the length of
the genome. This model assumes that at position g there is a latent
vector ag 2 RK that encodes the chromatin state features of that
position. It assumes that the observed data vector at that position
yg is generated as a linear function of ag parameterized by the emis-
sion matrix Z plus Gaussian noise, yg ¼ Zag þ �g �g � Nð0; IÞ. It
further assumes that the latent vector agþ1 is generated as a linear
function of ag parameterized by the transition matrix T plus
Gaussian noise, agþ1 ¼ Tag þ vg vg � Nð0; IÞ. To learn the SSM
model, we use the expectation–maximization (EM) algorithm to
maximize the log likelihood of the model as a function of its
parameters, Z 2 RE�K and T 2 RK�K. Briefly, this algorithm alter-
nates two steps, the E step and the M step. In the E step, we hold Z
and T fixed and use a message-passing algorithm to efficiently esti-
mate a1:g and compute sufficient statistics for updates to Z and T.
In the M step, we use these sufficient statistics to update Z and T.
We initialized Z � Uniformð0; 1ÞE�K and T ¼ IK.

To limit the model’s capacity to overfit and its sensitivity
to local optima, we additionally add two L2 regularization
terms to the optimization’s objective function J(Z, T), which
encourage Z and T to have small values: minimize
JðZ;TÞ ¼ log Pða;Z;TjYÞ þ k1jjZjjF þ k2jjTjjF.

3.4 Non-negativity constraint
We developed a version of our model, epigenome-ssm-nonneg, in
which the chromatin state features ag and the emission parameters Z
are both constrained to be non-negative. To optimize Z under this
constraint, we used an active set method of Lagrange multipliers to
enforce the non-negativity constraint (Gupta and Hauser, 2007).
Specifically, we add a Lagrange multiplier term to our objective func-
tion minimize JKðZ;T;KZ;KaÞ ¼ JðZ;TÞ þ trðKT

ZZÞ. The active set
method takes advantage of the property of complementary slackness:
KZe;mZe;m ¼ 0. At each iteration, we maintain a list of parameters
with non-negative Lagrange multipliers. Parameters are added or
removed from the active set when the optimization assigns them a
zero or non-zero value respectively. At each iteration, we update the
Lagrange multipliers associated with each parameter in the active set
in order to stop the parameters from becoming negative.

For a, we enforce the non-negativity constraint by projecting the
optimized state to lie in the constraint space

âP
gjg ¼ argminafða� âgjgÞTða� âgjgÞ : Aa ¼ 0g

Aij ¼ 1 iff i ¼ j and âgjg < 0 otherwise Aij ¼ 0
; (1)

where âP
gjg is the constrained value, and âgjg is the unconstrained

update estimate at time g. Given the optimized state âP
gjg, we con-

struct the constraint matrix A as Equation (1) and make b as a zero
vector. Then, the best constrained estimate is given by

âP
gjg ¼ ^agjg � ATðAATÞ�1ðAâgjg � bÞ. To apply the non-negativity

constraint on the emission matrix Z, we similarly used a Lagrange
multiplier active set method as follows. Each update has two steps:
(i) an update to Z given fixed Lagrange multipliers and (ii) an update
to the Lagrange multipliers given a fixed Z. First, we find the uncon-

strained optimum Ẑ
�
:;j using the algorithm described above. This

value may not satisfy the non-negativity constraint. We compute the

direction toward the optimum s ¼ Ẑ
�
:;j � Z:;j. We find the largest

value of smax such that H:;j þ smaxs satisfies the non-negativity con-
straint, and perform the update Z�:;j  Z:;j þ smaxs. Second, we up-

date the Lagrange multipliers. To do this, we maintain an active set
a of the parameters with associated non-zero Lagrange multipliers.
We update these Lagrange multipliers as follows.

Za;j ¼ 0 ¼
X

g

aga
T
g

� ��1

a;a

X
g

ag;aYT
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KT
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Then, we start the next iteration with updated Lagrange
multipliers.

We also developed a version of our model, epigenome-ssm-
sumone, which incorporates a constraint that requires the chromatin
state feature vector to sum to one (analogous to a probability vec-
tor). This model is the same as epigenome-ssm-nonneg, except that
it includes an additional constraint, a � 1. We optimize this object-
ive using the same active set method of Lagrange multipliers.

3.5 Alternative models
We compared epigenome-ssm with two well-known SAGA methods,
ChromHMM and Segway. For ChromHMM, we used alignment
files (.bam) from the Roadmap epigenomics portal (Roadmap-
Epigenomics, 2020c) and used the BinarizeBed command provided
in the ChromHMM package to binarize the data. We used
ChromHMM v1.22 (Ernst and Kellis, 2020) with the default param-
eters and the printposterior flag to save the posterior probabilities,
which we used for the ChromHMM-con model (described below).
As the name suggests, ChromHMM is based on HMM which gener-
ates a vector of K posterior probabilities for each genomic position
and assigns the label with the highest probability to that position—a
model which we call ChromHMM-dis in our evaluations. To adapt
ChromHMM to produce continuous features, we also considered a
variant of ChromHMM (which we term ChromHMM-con) that
outputs the vector of continuous posterior probabilities to each gen-
omic position. In practice, ChromHMM is extremely confident in
its predictions, so ChromHMM-con’s features are mostly close to
zero or one.

For Segway, we used the fold-change signal data from the
Roadmap epigenomics portal (Roadmap-Epigenomics, 2020a). We
used genomedata v1.4.4 (Hoffman et al., 2010) to create a genome-
data archive for input to Segway. We used Segway v3.0.2 with de-
fault parameters. We do not have Segway’s posterior probabilities to
be used as continuous annotations in our evaluations because there
was an issue with the posterior output in concatenated mode at the
time that we performed our experiments.

3.6 Gene expression evaluation
We evaluated annotations according to their association with gene
expression. In a high-quality annotation, highly expressed genes
should be annotated in a distinct way from the rest of the genome.
In other words, there should be a strong correlation between the an-
notation within the gene’s body and the gene’s expression level, as
measured by RNA-seq.

Following previous work (Libbrecht et al., 2019; Zhang et al.,
2016; Zhang and Hardison, 2017), we evaluated an annotation
according to the strength of correlation between the labels (or fea-
tures, in the case of continuous annotation) within the body of a
given gene and that gene’s expression. We downloaded RNA-seq
data from the Roadmap Epigenomics data portal (Roadmap-
Epigenomics, 2020b). The dataset contains information including
location and expression level of 19 802 genes for 57 epigenomes.
We included seven epigenomes in our evaluations (see
Supplementary Table S1 for details) which gave us a total of
138 614 gene expression data points. We used a linear regression
model to evaluate the degree to which annotations at a gene’s body
are predictive of gene expression (Fig. 2A). We trained two types of
prediction models: region-specific models and a whole-gene model.

Continuous annotation of the human epigenome 3031

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac283#supplementary-data


The region-specific model evaluates the correlation between a
gene’s expression and the chromatin state features at a given pos-
ition relative to that gene. For each gene, we extracted annotations
for the region between the following two positions: 5 kb upstream
of transcription start site (TSS-5kb) and 5 kb downstream of tran-
scription termination site (TTSþ5kb). We divided the [TSS-5kb,
TSS], [TSS, TTS] and [TTS, TTSþ5kb] regions into 5, 10 and 5
evenly spaced bins respectively, for a total of 20 bins. For each bin,
we trained a linear regression model. As the regression feature vec-
tor, we used the average feature vector in the respective bin. For dis-
crete annotations, we used a one-hot encoding—that is, the feature
vector has a 1 in the position corresponding to the label and 0’s else-
where. As the regression response value, we used the RNA-seq
RPKM (reads per kb per million mapped reads) values. We also
transformed RPKM values with an arcsinh transformation. We used
the fraction of variance explained (R2, also known as the coefficient
of determination) to measure the predictive power of a regressor. To
control for the complexity of the regressor, we used the standard ad-
justment R2 ¼ 1� ð1� r2Þðn� 1Þ=ðn� p� 1Þ (Dodge, 2008),
where n and p are the number of examples and regressor parameters
respectively.

For the whole-gene model, we applied another linear regression
model on the entire gene body region [TSS, TTS]. This model is
identical to the region-specific models, except that we take the aver-
age feature vectors only from bins within the gene body and use a
single linear regression model to predict the gene’s RNA-seq expres-
sion value. The package SigTools (Masoumi et al., 2022) was used
to create some of the figures for this evaluation.

3.7 Enhancer evaluation
We additionally evaluated annotations according to their associ-
ation with enhancer activity. In a high-quality annotation, highly ac-
tive enhancers should be annotated in a distinct way from the rest of
the genome. In other words, there should be a strong correlation be-
tween the annotation at the enhancer region and the enhancer’s ac-
tivity level.

We used enhancer RNA (eRNA) as measured by Cap Analysis of
Gene Expression (CAGE) as a proxy for enhancer activity, which we
downloaded the from FANTOM5 website (FANTOM5, 2020). The
dataset contains information such as location and activity level of

65 423 enhancers. Note that, because eRNAs are transcribed from
the enhancer itself, the target gene of each enhancer is unknown. We
included seven epigenomes in our evaluations (see Supplementary
Table S1 for details) which gave us a total of 457 961 enhancer ac-
tivity data points.

Following previous work (Zhang and Hardison, 2017), we eval-
uated an annotation according to the strength of correlation be-
tween the labels (or features, in the case of continuous annotation)
within an enhancer region and the strength of activity of that enhan-
cer. The model used for this analysis is similar to the whole-gene
model for gene expression evaluation—we divide the enhancer re-
gion into 10 bins of equal size and use the average feature values
within those bins as input to a linear regression model. As the regres-
sion response value, we took the arcsinh transformation of average
TPM (tags per million mapped reads) values from the replicates that
we used for each epigenome (See Supplementary Table S1 for data
accession ids).

3.8 Prediction of genomic elements
We additionally evaluated chromatin state features according to
how predictive they are of certain genomic elements. We evaluated
according to two categories of elements: transcription start sites
(TSSs) and enhancers, defined as described above. For each target
element, we assigned a binary (0/1) response label to each position
of the genome based on whether or not that position belongs to that
particular element. We used each chromatin state feature in turn as
a prediction score, analogous to a prediction probability output
from a classifier. We defined a receiver operating characteristic
(ROC) curve for each element–feature pair by varying the threshold
on the chromatin state feature used as positive predictions.

4 Results

4.1 Chromatin state features at genes are predictive of

gene expression
To evaluate epigenome-ssm and its variants, we used the resulting
annotations to predict RNA-seq gene expression data, following
previous work (Libbrecht et al., 2019; Zhang et al., 2016) (Section
3.6). Briefly, we used a linear regression model to evaluate the

Fig. 2. Evaluation of annotations generated by each method with respect to gene expression (as described in Section 3.6) and enhancer activity (as described in Section 3.7). (A)

Schematic of gene expression evaluation. We divide each gene’s body (i.e. the region between TSS and TTS) into 10 bins of equal length. Also, we divide the regions 5 kb up-

stream of TSS and 5 kb downstream of TTS into five bins respectively. For the whole-gene model, we take the average value of features in each bin and concatenate them to

form a feature vector for that gene. For instance, if the model has three features (as in this figure), the resulting vector will have 30 elements. We use the feature vector as pre-

dictor and the gene’s RNA-seq expression value as response for linear regression. The region-specific model is similar to the whole-gene model except that we use 20 linear re-

gression models (one for each bin in the [TSS-5kb, TTSþ5kb] region) where each model takes as input the average feature values for its respective bin. (B) Evaluation of

annotations relative to gene expression using the whole-gene model. (C) Similar to (B) but the evaluation is with respect to enhancer activity. (D) Evaluation of annotations

relative to gene expression using the region-specific model
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degree to which annotations at a gene region are predictive of gene
expression. We computed the average feature vector over the entire
gene region [TSS, TTS]. As the regression response value, we used
the RNA-seq RPKM (reads per kb per million mapped reads) values.
We used the fraction of variance explained (adjusted R2, also known
as the coefficient of determination) to measure the predictive power
of a regressor.

We found that all methods are predictive of gene expression, but
SSM-based models (epigenome-ssm-*) clearly outperform alterna-
tives by this measure in all cases of K (Fig. 2B). An epigenome-ssm-
nonneg annotation with K¼5 explains more variance (Adj R2 ¼
0.64) than the discrete ChromHMM and Segway (Adj R2 ¼ 0.60
and 0.60 respectively). Part of this improvement is a result of the
greater richness of a continuous model—if we produce a continuous
annotation from the ChromHMM by using the probability of each
state (ChromHMM-con), the performance improves (Adj R2 ¼ 0.60
and 0.61 for ChromHMM-dis and ChromHMM-con respectively).
However, performance of ChromHMM-con is still worse than the
epigenome-ssm annotation, indicating the importance of using a
model that is intrinsically continuous.

Moreover, the superior performance of the epigenome-ssm-* is
maintained even when ChromHMM and Segway use more labels
than the number of SSM features. Even for the largest number of
labels we tried (K¼15), the performance of ChromHMM and
Segway models were no higher than Adj R2 ¼ 0.63, which is lower
than that of epigenome-ssm-nonneg with just 5 features (AdjR2 ¼
0.64). This comparison offsets the potential disadvantage that con-
tinuous features are more complex than discrete labels. If one is
interested in obtaining a very simple annotation, according to this
analysis, it is preferable to use a continuous model with a small
number of features rather than a discrete model with many labels.
Adding the non-negativity or sum-to-one constraints to epigenome-
ssm does not significantly change prediction performance, while
improving interpretability.

To put this improvement in R2 in perspective, we found that this
improvement is comparable to the gain in performance from adding
three additional input datasets. First, take for example the gene ex-
pression evaluation using the whole-gene model (Fig. 2B). We
repeated the whole-gene expression evaluation (with epigenome-
ssm-nonneg and K¼5) 12 times, each time removing one of the 12
input tracks from training. On average, removing a single track
decreases the R2 by 0.0135 (Supplementary Fig. S8). This difference
is approximately one-third of the difference in R2 between epige-
nome-ssm-nonneg (R2 ¼ 0:64) and Segway (R2 ¼ 0:60).

We additionally tested several of alternative approaches for
defining chromatin state features (Supplementary Fig. S6): principle
component analysis (PCA), non-negative matrix factorization
(NMF) and four variants of a hidden Markov model (HMM) that
can be thought of as generalizations of Segway and ChromHMM.
We found that the increased performance of epigenome-ssm-* is
maintained relative to these alternative approaches.

To evaluate which positions relative to each gene are most pre-
dictive of expression, we divided the [TSS-5kb, TTSþ5kb] region
into multiple equal-sized bins and trained a region specific predic-
tion model for each bin (Fig. 2D). As we expected, positions within
the gene body are most predictive of expression, whereas annota-
tions at positions over 3 kb from the TSS have less predictive power.
Also, epigenome-ssm models are consistently better in predicting
gene expression throughout the [TSS-5kb, TTSþ5kb] region com-
pared to both ChromHMM and Segway.

4.2 Chromatin state features at enhancer elements are

predictive of enhancer activity
We further evaluated these annotation methods by measuring how
predictive each annotation is of experimentally validated enhancer
elements, again following previous work (Zhang et al., 2016). As
illustrated by Figure 2C, the three variants of epigenome-ssm per-
form significantly better than both ChromHMM and Segway in this
task. Similar to the gene expression evaluation, epigenome-ssm
maintained its superior performance even when ChromHMM and

Segway use more labels than the number of SSM features. Even for
the largest number of labels we tried (K¼15), the performance of
ChromHMM and Segway models were no higher than R2 ¼ 0.11,
which is lower than the performance of the epigenome-ssm model
with 8 features (R2 ¼ 0.12).

Similar to the gene expression evaluation, adding the non-
negativity and sum-to-one constraints to epigenome-ssm did not sig-
nificantly impact the performance. Overall, the performance of the
constrained models is superior to ChromHMM and Segway.

4.3 Chromatin state features are predictive of genomic

elements
We further evaluated chromatin state features according to how ac-
curately they identify genomic elements such as transcription start
sites (TSSs) and enhancer regions. To do so, we used a given feature
as a score (analogous to a prediction probability output from a clas-
sifier) and calculated the area under the resulting receiver operating
characteristic (ROC) curve (Section Prediction of genomic ele-
ments). For each genomic feature type (TSSs and enhancers), we
selected the feature from each model with the highest area under the
ROC curve (auROC).

We found that epigenome-ssm-* features achieve much superior
auROC than alternatives (Fig. 3A and B). For example, epigenome-
ssm-nonneg F5 achieves an auROC of 0.84 for identifying TSSs,
compared to an auROC of 0.80 for ChromHMM-con’s best label,
L1 (Fig. 3A). This improved performance results primarily from the
fact that a continuous feature can trace out the tradeoff between
false positives and false negatives, leading to a smooth ROC curve.
In contrast, a discrete prediction corresponds to a single point on the
ROC curve. Note that even though ChromHMM-con outputs con-
tinuous posterior probability values, these probabilities are almost
all either zero or one, resulting in the same shape of ROC curve.

4.4 Chromatin state features recapitulate known

genome biology
While the results above show quantitatively that chromatin state
features are predictive of many genomic phenomena, we

Fig. 3. (A, B) Receiver operating characteristic (ROC) curves indicating accuracy

with which a given model’s best feature predicts (A) transcription start sites (TSSs)

and (B) enhancer regions. epigenome-ssm features have higher area under the curve

(AUC) for both TSSs and enhancers compared to Segway and ChromHMM fea-

tures. Also, ChromHMM-con’s curves bend sharply because this model is extremely

confident in the labels it generates which results in having the posterior probabilities

being mostly close to zero or one. (C, D) ROC curve indicating accuracy with which

each feature predicts (C) transcription start sites (TSSs) and (D) enhancer regions. A

curve that falls below the y¼x line indicates that higher values of the feature are

depleted for that particular element
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additionally found that these features qualitatively recapitulate
known genome biology (Figs 4 and 5). We focus here on an annota-
tion generated by epigenome-ssm-nonneg using five features (K¼5).
These five features summarize the chromatin state represented by 12
epigenomic tracks; characterizing such state using a discrete SAGA
annotation would require 10–20 labels.

We chose the non-negative model because it is easier to interpret
than a model with both negative and positive features. We chose
non-negative over sum-to-one because we found that the sum-to-
one model usually outputs one ‘quiescent’ feature with a zero-
valued emission vector, which essentially reduces the sum-to-one
model to a non-negative model with one fewer feature.

The epigenome-ssm-nonneg model identifies two types of regula-
tory activity specific to promoters and enhancers respectively. Feature
2 is a mark of promoter activity, characterized by the histone modifi-
cations H3K4me3 and H3K9ac (Fig. 4A). Likewise, F2 has a high
value in the regions that are labeled as promoter by Segway and
ChromHMM respectively (Fig. 4B and C). F2 is highly predictive of
transcription start sites (Fig. 3C). Note that F2 has a low emission for
general regulatory marks common at promoters, such as DNase-seq
and H3K4me1, because those are also marked by F5.

Feature 5 is a mark of general regulatory activity, characterized
by the regulation-associated histone modifications H3K4me1 and
H3K27ac (Fig. 4A). F5 is present at both promoters and enhancers;
promoters are characterized by high values of both F2 and F5
(Figs 3C, 4B, C, 5A and C), whereas enhancers are marked with just
F5 (Figs 3C, 4B, C and 5D). Characterizing promoters and
enhancers this way accurately characterizes elements into a con-
tinuum of ‘promoter-ness’ (F5), rather than as two disjoint
categories.

Features 1 and 4 mark transcribed genes. Feature 4 is character-
ized by histone modifications H3K36me3, H4K20me1 and
H3K79me2 (Fig. 4A). Hence, this feature is found downstream of
TSS, within the gene body (Fig. 5A), and has high values at regions
labeled as transcribed (‘Transcribed’ or ‘TxXX’) by Segway and
ChromHMM (Fig. 4B and C). Feature 1 is characterized by the his-
tone modification H3K36me3 (Fig. 4A) and is specific to the later
parts of the gene body (Figs 4C and 5B). Both F1 and F4 over the
gene body are highly correlated with RNA-seq expression (Fig. 5E
and Supplementary Fig. S13D).

Feature 3 is a mark of repression, characterized by the repressive
histone modifications H3K27me3 and H3K9me3 (Fig. 4A). F3 at
the gene body has a strong negative correlation with gene expression
(Fig. 5F). Note that F3 encompasses both facultative (polycomb,
H3K27me3) and constitutive (H3K9me3) heterochromatin, which
usually occur in different genomic regions. These two types separate
into separate features when using a epigenome-ssm-nonneg model
with eight features (Supplementary Fig. S10).

Notably, epigenome-ssm-nonneg does not include features corre-
sponding to ‘Weak Enhancer’ or ‘Weak Transcription’ commonly
present in other SAGA methods (Fig. 4B and C). Instead, the
strength of an element is represented simply by the feature value

Fig. 4. Visualization of model parameters and chromatin state features generated by an epigenome-ssm-nonneg model with K¼5. (A) Emission matrix of the model: it shows

the relationship of features to the input assays. Color corresponds to the mean signal value of a given assay at positions annotated with a given feature. (B, C) Average value of

each SSM feature at each (B) Segway and (C) ChromHMM label

Fig. 5. Visualization of chromatin state features generated by an epigenome-ssm-

nonneg model with K¼ 5. (A, B) Averaged enrichment of features with relative

position to (A) TSS (B) TTS. Feature values are normalized by dividing them by the

genome-wide mean for each feature. (C, D) Distribution of features at enhancer and

promoter regions. Each point corresponds to either an enhancer or promoter de-

pending on its color. (E, F) Relationship of features within the gene body with gene

expression. Each point corresponds to a gene and the color of each point indicates

whether or not the corresponding gene is expressed. As a threshold for whether or

not to consider a gene as expressed, we took the median expression level of all the

genes for each epigenome and set the average of the medians as the threshold. (G,

H) Features within gene body for pairs of features. Each point corresponds to a gene

and the color of each point indicates whether or not the corresponding gene is

expressed. The complete set of plots for each evaluation can be found in the

Supplementary Material (Supplementary Figs S12–S14)
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itself. Representing element strength this way reveals trends that are
hidden by a discrete annotation. For example, the strength of
transcription-related marks (F1,4) is correlated with expression, but
with diminishing returns (Figs 5E and Supplementary Fig. S13D).
Conversely, while strong repressive marks (F3) are correlated with
low expression, moderate-strength repressive marks have no impact
on expression (Fig. 5F).

Similarly, epigenome-ssm-nonneg does not include features that
correspond to the ‘Quiescent’ label commonly present in SAGA
methods. Such regions are represented simply by an absence of the
other features (Fig. 4B and C).

The epigenome-ssm-nonneg model can easily represent mixtures
of activity types. For example, other SAGA methods commonly re-
port a ‘Bivalent Promoter’ label characterized by both activating
and repressive marks. Such regions are labeled by epigenome-ssm-
nonneg simply with a mixture of active (F2/5) and repressive (F3)
features (Fig. 4B and C).

4.5 Chromatin state features enable visualization
Chromatin state features easily lend themselves to expressive vis-
ualizations that can be very useful in several downstream analy-
ses. For instance, in Figure 5D, enhancers and promoters are
clearly separated in the space of feature 2 and feature 5. This fur-
ther confirms the interpretation in the previous section that fea-
ture 2 and 5 are marks of promoter and general regulatory
activity respectively. Likewise, Figure 5E illustrates the strong
positive correlation of feature 1 with gene expression, while
Figure 5F shows that feature 3 is negatively correlated with gene
expression. Moreover, the scatter plots in Figure 5G and H show
how genes are clustered in the space of features 1, 3 and 4 based
on whether or not they are expressed.

Summarizing genomic activity into a small set of chromatin
state features is particularly important for visualization because
plots have limited dimensions (e.g. x/y axes) onto which to map
features. For example, one can visualize all the variation in five
features using just ten pairwise scatterplots (Supplementary Figs
S12 and S14). In contrast, doing so with 12 tracks would require
66 such plots.

5 Discussion

In this work, we introduced continuous chromatin state features for
genome annotation. These chromatin state features are analogous to
existing discrete chromatin state labels, but continuous features
have several benefits: they can represent varying strength among ele-
ments, and they can easily represent combinatorial patterns of activ-
ity. Due to these benefits, we showed that chromatin state features
outperform existing discrete annotations at predicting gene expres-
sion and enhancer activity.

Continuous chromatin state features present an alternative repre-
sentation of genomic activity to existing SAGA labels. We expect that
both types of annotations will be used in practice. Discrete labels are
most effective when a fixed set of elements is needed. However, we
expect that continuous features will be used in applications where the
limitations of discrete labels make such labels ineffective.

In particular, chromatin state features are useful for producing ex-
pressive visualizations. We showed that visualizing chromatin state
features from epigenome-ssm correctly depicts the continua of
expressed to not-expressed genes and promoters to enhancers. Such a
continuum is impossible to express in a discrete framework, which
must use hard thresholds. Moreover, although each continuous fea-
ture is more complicated to interpret than a discrete label, we showed
that a small number of continuous features outperform even a large
number of discrete labels in all of our evaluations. Therefore, a small
number of chromatin state features can replace a much larger number
of discrete labels, decreasing the overall complexity of the annotation.

Because continuous annotations maintain much more of the in-
formation in the input data than discrete annotations do, they are
more useful for complex downstream applications. For example, a

variant effect predictor might take chromatin state features as input
in order to predict the functional impact of a given mutation. This is
preferable to using raw tracks for two reasons. First, a small number
of chromatin state features concisely summarize a large number of
input tracks and therefore a predictive model based on these features
will be less prone to overfitting. Second, chromatin state features
can be used for variant effect interpretation; that is, a model could
report that its prediction of high variant effect is due to the fact that
a specific feature is present at that position. Such interpretation is
more difficult with raw tracks because most types of activity are
associated with a combination of many marks. In the future, we
plan to apply this approach at a large scale to create reference chro-
matin state feature annotations for all tissues with sufficient avail-
able data.
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