
Citation: Piechnik, M.; Amendum,

P.C.; Sawamoto, K.; Stapleton, M.;

Khan, S.; Fnu, N.; Álvarez, V.; Pachon,

A.M.H.; Danos, O.; Bruder, J.T.; et al.

Sex Difference Leads to Differential

Gene Expression Patterns and

Therapeutic Efficacy in

Mucopolysaccharidosis IVA Murine

Model Receiving AAV8 Gene

Therapy. Int. J. Mol. Sci. 2022, 23,

12693. https://doi.org/10.3390/

ijms232012693

Academic Editor: Alessandro

Di Minno

Received: 23 September 2022

Accepted: 19 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Sex Difference Leads to Differential Gene Expression Patterns
and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine
Model Receiving AAV8 Gene Therapy
Matthew Piechnik 1,2,†, Paige C. Amendum 1,†, Kazuki Sawamoto 1, Molly Stapleton 1,2,3, Shaukat Khan 1,
Nidhi Fnu 1, Victor Álvarez 1, Angelica Maria Herreño Pachon 1, Olivier Danos 4, Joseph T. Bruder 4,
Subha Karumuthil-Melethil 4,* and Shunji Tomatsu 1,2,5,*

1 Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
2 Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
3 Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
4 REGENXBIO Inc., Rockville, MD 20850, USA
5 Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
* Correspondence: subhakm@regenxbio.com (S.K.-M.); shunji.tomatsu@nemours.com or

stomatsu@nemours.org (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.);
Fax: +1-302-651-6888 (S.T.)

† These authors contributed equally to this work.

Abstract: Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease
pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit
therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy
products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female
immune response can significantly impact AAV gene transfer. We aim to investigate sex differences
in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS
IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine
6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting
in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology
relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in
female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity
levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed
pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as
determined by contrasting differences in pathology scores compared to females. Cardiac histology
revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male
mice. These findings promote the need for further determination of sex-based differences in response
to AAV-mediated gene therapy related to developing treatments for MPS IVA.

Keywords: adeno-associated virus; mucopolysaccharidoses; immune response

1. Introduction

Mucopolysaccharidosis IVA (MPS IVA), or Morquio A Syndrome, is an autosomal
recessive metabolic lysosomal disorder caused by a deficiency of the lysosomal
N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, which leads to the accumula-
tion of keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in bone and cartilage [1].
Over time, the accumulation of KS and C6S in bone and cartilage leads to progressive hall-
mark clinical manifestations: short neck and stature, waddling gate, tendency to fall, spinal
cord compression, pectus carinatum, kyphoscoliosis, hip dysplasia, and genu valgum. In
general, patients with MPS IVA are diagnosed before 3 years of age with the initial signs
(kyphosis, prominent chest, and forehead, short stature); however, some abnormalities
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(beaking sign at the lumbar vertebral body) on skeletal x-ray images appear at birth [2].
Phenotypic manifestation of the disease exists on a broad spectrum, and severe patients
exhibit significant bone dysplasia and difficulty with the activities of daily living [3]. The
mean age of death in MPS IVA patients is in the third decade, with respiratory failure
causing two-thirds of patient deaths [4]. Current treatment for MPS IVA includes enzyme
replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), both of
which have a limited impact on the characteristic skeletal dysplasia [5,6]. ERT, approved for
clinical use for MPS IVA by the Food and Drug Administration in 2014, requires weekly in-
fusions at a high cost [6], demonstrates a short half-life [7], and has not shown a significant
impact in correcting growth and skeletal pathology [8]. HSCT has demonstrated practical
clinical application in improving respiratory function and joint mobility while reducing
surgical interventions [9–11]. Even though HSCT shows some impact on the improvement
of bone and cartilage pathology, the approach is associated with other limitations such as
the risk of graft versus host disease (GVHD), challenges in donor matching, graft rejection,
and the need for well-trained staff and suitably equipped clinical facility for successful
transplantation [5]. Given the limitations of available treatments, the focus of current
research primarily involves novel therapeutic options such as gene therapy to potentially
achieve therapeutic enzyme activity levels and bioavailability.

Gene therapy for MPS is a promising approach, with around 20 active or recruit-
ing clinical trials investigating primarily viral-mediated gene therapy approaches (www.
clinicaltrials.gov accessed on 11 November 2021) for MPS diseases. Viral gene therapy uti-
lizes the transduction mechanism of a modified virus, most commonly the adeno-associated
virus (AAV), to introduce corrected forms of the defective genetic sequence. AAV vectors
have great potential due to their low pathogenicity, inability to self-replicate without a
secondary viral infection, primarily episomal viral genome, and sufficient genetic payload
(~4.7 kb) [12–15]. In addition, there are several serotypes of AAV with different transduc-
tion efficacies in particular tissue types, allowing for specificity in organ targeting. AAV
has been shown to efficiently transduce target cells, induce high enzyme activity levels
in target tissues, and achieve sustainable long-term enzyme expression [12,13]. However,
AAV is limited by the immune responses generated against the AAV capsid, the trans-
duced cells, and the transgene product. Innate and adaptive immune responses present
a pronged response that reduces transduction rates and transgene product expression
leading to lower enzyme activity levels and therapeutic efficacy [16]. Several strategies
have been employed to overcome the immune response, including liver targeting to in-
duce immune tolerance [17,18] and the use of steroids to inhibit T cell responses against
the capsid to provide durable transgene expression [18,19] being the most well-known
methods in clinical and preclinical models [20,21]. Liver-directed vector design permits
AAV to utilize the tolerogenic nature of the liver microenvironment to ameliorate the
immune response mounted by the body. AAV8 is the serotype of choice in developing a
liver-targeting approach, given its high transduction efficacy for hepatocytes compared to
other AAV serotypes, with dose-dependent transduction rates in murine models ranging
from 90–95% [22]. Additionally, incorporating liver-specific promoters can increase hepato-
cyte specificity and reduce off-target transgene production [22]. These methods, taken in
combination, have shown the potential for AAV-mediated gene therapy in treating MPS
IVA and other inherited metabolic disorders.

Previously, we developed an AAV8 vector carrying thyroxine-binding globulin (TBG),
a liver-specific promoter, and human GALNS to treat MPS IVA mice. We demonstrated
partial efficacy in improving skeletal and cardiovascular pathology [23]. Disparities be-
tween male and female mice were noted concerning enzyme activity, antibody production,
and histopathology. Observed differences in AAV efficacy between sexes in mice have
been documented in the literature. In liver-targeted AAV2 and AAV5 vector adminis-
tration, Davidoff et al. reported 7-fold higher stably transduced liver cells in male mice
compared to female mice. Moreover, they reported that androgens play a critical role in
transduction efficacy, proposing that upregulation of host nuclear regulatory proteins due
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to androgen presence plays a vital role in the differences seen. Davidoff et al. state that
these sex differences were not observed in lung, kidney, or spleen [24]. In a separate study,
Maguire et al. assessed differences in sex in the nervous system with the administration
of AAV9 containing fluorescent gene products and a ubiquitous CAG (cytomegalovirus
enhancer element, chicken β-actin promoter, and rabbit β-globin splice acceptor) promoter
in endothelial cells, neurons, and astrocytes. They reported significantly higher fluores-
cence in female mice than male mice in the brain, with an inversely increased fluorescence
in the abdomen (likely in the liver) in male mice compared to females [25]. While both
mechanisms remain unknown, these reports suggest a significant relationship between sex
and vector transduction mechanism that deserves attention.

Similar to sex-specific responses to AAV vectors seen in mice, male and female immune
responses in humans also differ significantly, which may play a substantial role in viral-
mediated gene therapy [26]. In mammals, females have been shown to mount more robust
immune responses, innate and adaptive, compared to males [26]. Notably, the gender-
based differences in the immune response are generally evolutionarily conserved [27–33].
Thus, to some extent, animal models reflect the differences observed between men and
women. Sex-based biological theories suggest that the discrepancies observed are likely
due to conserving metabolic resources. Male mice utilize more resources for sexual fitness,
and female mice dedicate more resources to survival [34]. This causes women to be
less susceptible to certain infectious diseases, such as ebola, hepatitis B, and tuberculosis.
However, while heightened immunity to pathogens leads to a lower prevalence of infectious
diseases in women, it can also cause increased symptoms and severity. Women have higher
severity of several diseases, including human immunodeficiency virus (HIV), influenza,
malaria, and zika. Regarding viral response, both female rats and women elicit a more
robust innate response by demonstrating more significant cytokine upregulation induced by
TLR-MyD88 pathway activation as a primary response to AAV vectors and the production
of antibodies in response to viral challenges [35]. Furthermore, this difference in viral
response also leads to sex-based differences in vaccine responses and a much higher
incidence rate of autoimmune disease in women than men [26]. Given the importance of
the immune response as a therapeutic hurdle in MPS IVA treatment, it becomes essential to
analyze the depth of these differences to modify treatment protocols to reflect sex-based
differences better.

In this study, we have analyzed sex differences in our previous data reported for
liver-directed AAV8 gene therapy for MPS IVA murine models [23]. Furthermore, we
present novel data analyzing sex differences between liver-specific and ubiquitous pro-
moter cohorts. This novel investigation of combinatorial factors involved in the complex
interaction between sex and immune response influencing therapeutic efficacy spotlights
the importance of accounting for sex in future experimental designs.

2. Results
2.1. Sex, Promoter, and Mouse Model Comparison

In the previous study [23], MPS IVA knock-out (MKC; Galns-/-) mice were treated with
an AAV8 vector containing TBG promoter coupled with codon-optimized human GALNS
(hGALNS) with or without an N-terminal acidic amino acid (aspartic acid) octapeptide (D8)
to target the bone preferentially. This group consisted of seven male and seven female mice.
Two of seven male mice were treated with codon-optimized TBG-D8-GALNS (5 mice with
TBG-GALNS), while four female mice were treated with TBG-D8-GALNS (3 mice with
TBG-GALNS). Since the sex differences in immune responses were unexpected, vectors
were assigned randomly so that an unequal number of male and female mice received
each vector. This did not affect the goal of analyzing immune response due to AAV8
gene therapy, as all mice received uniform treatment with an unknown expectation of
immune response incurred in male and female mice. All the mice received a uniform vector
dose of 5 × 1013 GC/kg body weight at 4 weeks of age. This group of mice, treated with
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5 × 1013 GC/kg body weight of vector with a TBG promoter in the previous study, is
referred to as Group One in the results and figures.

The second study further divided mice by adding a ubiquitous CAG promoter (cy-
tomegalovirus enhancer element, chicken β-actin promoter, and rabbit β-globin splice
acceptor) cohort and also evaluating a higher dose cohort for the AAV8-TBG vectors. These
cohorts of mice are included as Group Two and Group Three, respectively, in this report.
Group Two comprised of mice treated with 5 × 1013 GC/kg body weight of AAV8 vector
with the CAG promoter, and Group Three consisted of mice receiving 2 × 1014 GC/kg
body weight of AAV8 vector with the TBG promoter.

Group Two consisted of six female mice (two received D8 appended treatment) and
four male mice (two received D8 appended treatment). Group Three consisted of four
female mice (two received D8 appended treatment) and eight male mice (five received
D8 appended treatment). Mice receiving D8-GALNS treatment showed no significant
improvement in pathology compared to those receiving the wild-type (WT) hGALNS [23].
AAV vector and study design were comparable in the data collection of the two studies
(Figure 1).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 19 
 

 

female mice received each vector. This did not affect the goal of analyzing immune re-
sponse due to AAV8 gene therapy, as all mice received uniform treatment with an un-
known expectation of immune response incurred in male and female mice. All the mice 
received a uniform vector dose of 5 × 1013 GC/kg body weight at 4 weeks of age. This group 
of mice, treated with 5 × 1013 GC/kg body weight of vector with a TBG promoter in the 
previous study, is referred to as Group One in the results and figures. 

The second study further divided mice by adding a ubiquitous CAG promoter (cy-
tomegalovirus enhancer element, chicken β-actin promoter, and rabbit β-globin splice ac-
ceptor) cohort and also evaluating a higher dose cohort for the AAV8-TBG vectors. These 
cohorts of mice are included as Group Two and Group Three, respectively, in this report. 
Group Two comprised of mice treated with 5 × 1013 GC/kg body weight of AAV8 vector 
with the CAG promoter, and Group Three consisted of mice receiving 2 × 1014 GC/kg body 
weight of AAV8 vector with the TBG promoter. 

Group Two consisted of six female mice (two received D8 appended treatment) and 
four male mice (two received D8 appended treatment). Group Three consisted of four 
female mice (two received D8 appended treatment) and eight male mice (five received D8 
appended treatment). Mice receiving D8-GALNS treatment showed no significant im-
provement in pathology compared to those receiving the wild-type (WT) hGALNS [23]. 
AAV vector and study design were comparable in the data collection of the two studies 
(Figure 1). 

 
Figure 1. Cassette and study design. The experimental scheme of the first study was described by 
Sawamoto et al. [23]. AAV8: adeno-associated virus 8, ITR: inverted terminal repeat, TBG: thyrox-
ine-binding globulin, CAG: a ubiquitous promoter including a cytomegalovirus enhancer element, 
a chicken β-actin promoter, and an intron, D8: aspartic acid octapeptide, hGALNS: human N-acetyl-
galactosamine-6-sulfate sulfatase, RBG pA: rabbit β globin poly-A tail. 

2.2. Plasma Enzyme Activity, KS, and Anti-GALNS Antibodies in Males versus Females 
In comparing male and female mice from both studies, male mice demonstrated 

higher plasma enzyme activity over time (Figure 2). In Group One, during the initial 2 
weeks post AAV gene transfer, hGALNS enzyme activity levels sharply rose to su-
praphysiological levels in both male and female mice. Female mice then had decreasing 
plasma enzyme activity levels, reaching no more prolonged supraphysiological levels at 
6 weeks post-treatment. This trend continued for the next six weeks, while the plasma 
enzyme activity level remained at supraphysiological levels in male mice throughout the 
monitoring period of 12 weeks after gene therapy. Additionally, male mice demonstrated 
significantly higher hGALNS activity levels than female mice from 6 weeks to 12 weeks 
after receiving AAV gene therapy (Figure 2A). Mice in Group Two had an elevation of 

Figure 1. Cassette and study design. The experimental scheme of the first study was described
by Sawamoto et al. [23]. AAV8: adeno-associated virus 8, ITR: inverted terminal repeat, TBG:
thyroxine-binding globulin, CAG: a ubiquitous promoter including a cytomegalovirus enhancer
element, a chicken β-actin promoter, and an intron, D8: aspartic acid octapeptide, hGALNS: human
N-acetylgalactosamine-6-sulfate sulfatase, RBG pA: rabbit β globin poly-A tail.

2.2. Plasma Enzyme Activity, KS, and Anti-GALNS Antibodies in Males versus Females

In comparing male and female mice from both studies, male mice demonstrated higher
plasma enzyme activity over time (Figure 2). In Group One, during the initial 2 weeks post
AAV gene transfer, hGALNS enzyme activity levels sharply rose to supraphysiological
levels in both male and female mice. Female mice then had decreasing plasma enzyme
activity levels, reaching no more prolonged supraphysiological levels at 6 weeks post-
treatment. This trend continued for the next six weeks, while the plasma enzyme activity
level remained at supraphysiological levels in male mice throughout the monitoring period
of 12 weeks after gene therapy. Additionally, male mice demonstrated significantly higher
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hGALNS activity levels than female mice from 6 weeks to 12 weeks after receiving AAV
gene therapy (Figure 2A). Mice in Group Two had an elevation of enzyme levels shortly
after injection. Male mice sustained higher enzyme activity levels than females throughout
the remaining weeks. Female mice reduced the enzyme expression in Groups One and Two
(Figure 2). In Group Three, mice demonstrated similar enzyme activity behavior to Group
One. Female mice experienced a sharp rise, followed by a decrease in enzyme expression
after 8 weeks old. Male mice sustained higher expression levels throughout the study
(Figure 2B).
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Figure 2. Plasma hGALNS activity level of (A) Group One (mice treated with the TBG promoter;
5 × 1013 GC/kg body weight at 4 weeks old), (B) Group Two (mice treated with CAG promoter;
5 × 1013 GC/kg body weight at 4 weeks old), and Group Three (mice treated with TBG promoter;
2 × 1014 GC/kg body weight at 4 weeks old). Error bars display standard deviation. * indicates a
two-tailed t-test p-value of <0.05 compared to the WT cohort. ** indicates a two-tailed t-test p-value
of <0.05 compared to the opposite sex cohort. hGALNS: human N-acetylgalactosamine-6-sulfate
sulfatase, TBG: thyroxine-binding globulin, CAG: a ubiquitous promoter including a cytomegalovirus
enhancer element, a chicken β-actin promoter, and an intron, WT: wild-type.

Regarding plasma KS levels, male mice generally exhibited lower plasma KS values
than female mice across all factors, including age, promoter, and strain-matched cohorts
post-treatment (Figure 3). In Group One, treated mice demonstrated normalized KS
values from 2 weeks post-treatment. The females demonstrated a general higher plasma
KS concentration throughout the study, with levels differing significantly from males at
12 weeks old (male to female, 15.9 ng/mL to 18 ng/mL [p = 0.04]) and 14 weeks old (male
to female, 14.8 to 18.3 ng/mL [p = 0.01]) (Figure 3A). In Group Two, male mice treated with
the CAG promoter construct demonstrated normalized plasma KS values, whereas female
mice showed KS levels above WT levels; however, both male and female mice significantly
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improved KS levels compared to the untreated cohort. Female mice had higher KS levels
than male mice from 6 through 16 weeks old (Figure 3B). In Group Three, male mice had
lower KS levels than female mice and achieved normalized KS values between 6 weeks
(6 weeks, female to male, 44.4 ng/mL to 27.7 ng/mL; 12 weeks, female to male, 49.1 ng/mL
to 30.8 ng/mL) and 16 weeks (female to male, 54.0 ng/mL to 37.7 ng/mL). Female mice had
decreased but not normalized KS values post-treatment throughout the study (Figure 3C).
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generated against AAV-mediated gene therapy. In Group One, both males and females 
steadily increased antibody titers, with females averaging higher titers than their male 
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Figure 3. Plasma KS concentration of (A) Group One (mice treated with the TBG promoter;
5 × 1013 GC/kg body weight), (B) Group Two (mice treated with the CAG promoter; 5 × 1013 GC/kg
body weight), and (C) Group Three (mice treated with the TBG promoter; 2 × 1014 GC/kg body
weight). Error bars display standard deviation. * indicates a two-tailed t-test p-value of <0.05 com-
pared to the WT cohort. ** indicates a two-tailed t-test p-value of <0.05 compared to the opposite
sex. # indicates a two-tailed t-test p-value of <0.05 compared to the untreated cohort. KS: keratan
sulfate, TBG: thyroxine-binding globulin, CAG: a ubiquitous promoter including a cytomegalovirus
enhancer element, a chicken β-actin promoter, and an intron, WT: wild-type.

Anti-GALNS antibody values reflected the humoral aspect of the immune response
generated against AAV-mediated gene therapy. In Group One, both males and females
steadily increased antibody titers, with females averaging higher titers than their male
counterparts (Figure 4A). Males and females in Group Two tended to exhibit similar
antibody titers until 6 weeks, and female mice had a higher antibody with age and ramped
up at 16 weeks old (Figure 4B). In Group Three, females demonstrated higher anti-GALNS
antibodies from 6 weeks old and remained higher till 16 weeks old (Figure 4C).
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Figure 4. Plasma anti-GALNS antibody concentration of (A) Group One (mice treated with the
TBG promoter; 5 × 1013 GC/kg body weight), (B) Group Two (mice treated with the CAG pro-
moter; 5 × 1013 GC/kg body weight), and (C) Group Three (mice treated with the TBG promoter;
2 × 1014 GC/kg body weight). Concentrations are displayed as optical density absorption rates at
the 405 nm wavelength. Error bars display standard deviation. * indicates a two-tailed t-test p-value
of <0.05 compared to the WT cohort. ** indicates a two-tailed t-test p-value of <0.05 compared to
the opposite sex. # indicates a two-tailed t-test p-value of <0.05 compared to the untreated cohort.
GALNS: N-acetylgalactosamine-6-sulfate sulfatase, TBG: thyroxine-binding globulin, CAG: a ubiqui-
tous promoter including a cytomegalovirus enhancer element, a chicken β-actin promoter, and an
intron, WT: wild-type.

2.3. Tissue Enzyme Activity and KS Concentration

Tissues were harvested at necropsy 12 weeks after AAV gene therapy injection, and
enzyme activity levels and KS concentrations were determined. In Group One, enzyme
activity was measured in the liver, heart, kidney, lung, spleen, and bone (Figure 5A). The
same tissues were analyzed in Groups Two and Three (Figure 5B). In Group One, male
mice generally demonstrated higher enzyme activity levels than females in all tissues,
significantly higher in heart, kidney, lung, spleen, and bone tissue (Figure 5A). Further-
more, male and female mice achieved supraphysiological hGALNS activity levels in liver
tissue (Figure 5A). In Group Two, male mice demonstrated significantly higher activity
than females in heart, spleen, and bone (Figure 5B). Despite this difference, males and
females achieved supraphysiological levels in the liver, heart, spleen, and bone (Figure 5B).
In Group Three, mice displayed activity levels similar to Group One despite the 4-fold
higher dose. Males achieved higher levels in the heart, spleen, lung, and bone (Figure 5B).
Comparing Group One to Group Two, female mice treated with the CAG promoter con-
struct demonstrated higher activity levels in kidney, lung, spleen, and bone tissue than
female mice treated with AAV vector with TBG promoter construct. In contrast, male mice
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demonstrated similar activity levels in all tissues except bone, which had increased activity.
A wide range of variability among individuals was observed in liver tissue across both
sexes and vectors (Figure 5). Additionally, analyses of the correlation between the activity
levels detected in plasma at 16 weeks and in tissues in groups treated with TBG, a liver
specific promoter showed that females in Group One have a significant correlation in the
heart while females in Group Three in spleen and lung. However, in males, there was no
correlation between activity detected in plasma and tissues.
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Figure 5. hGALNS activity in tissues for (A) Group One (mice treated with the TBG promoter;
5 × 1013 GC/kg body weight), (B) Group Two (mice treated with the CAG promoter; 5 × 1013 GC/kg
body weight), and (C) Group Three (mice treated with the TBG promoter; 2 × 1014 GC/kg body
weight). Error bars display standard deviation. * indicates a two-tailed t-test p-value of <0.05
compared to the WT cohort. ** indicates a two-tailed t-test p-value of <0.05 compared to the opposite
sex. Graphs are plotted on a logarithmic scale to better display distributions. hGALNS: human
N-acetylgalactosamine-6-sulfate sulfatase, TBG: thyroxine-binding globulin, CAG: a ubiquitous
promoter including a cytomegalovirus enhancer element, a chicken β-actin promoter, and an intron.

In Group One, tissue KS concentrations were measured in the liver and lung, while
concentrations were only measured in the liver for Groups Two and Three. In Group One,
female mice had higher KS levels than male mice in both lung and liver (Figure 6A). AAV
gene transfer reduced the KS concentration in the liver of both males and females but were
still higher than normal levels, whereas the lung KS levels were normalized in males. In
Groups Two and Three, treated with the same doses, liver KS levels were not different
between male and female mice (Figure 6B).
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Figure 6. (A) KS concentrations in liver and lung tissue for Group One (mice treated with the TBG
promoter) and (B) KS concentrations in liver for Groups Two and Three (mice treated with the CAG
and TBG promoter, respectively). Error bars display standard deviation. * indicates a two-tailed t-test
p-value of <0.05 compared to the WT cohort. ** indicates a two-tailed t-test p-value of <0.05 compared
to the opposite sex. # indicates a two-tailed t-test p-value of <0.05 compared to the untreated cohort.
KS: keratan sulfate, TBG: thyroxine-binding globulin, CAG: a ubiquitous promoter including a
cytomegalovirus enhancer element, a chicken β-actin promoter, and an intron., F: female, M: male,
WT: wild-type.

2.4. Bone and Heart Histopathology

In evaluating tibial and femoral growth plates, articular cartilage, ligament, and
menisci, mice were assessed for vacuolation severity (all tissues) and columnar structure
(growth plate) using a pathology scoring system [23] (see Materials and Methods). In
Group One, male mice generally demonstrated a higher level of vacuolation and more
disorganized columnar structure than female mice in the femoral and tibial growth plates
(Figure 7A). In Group Two, both male and female mice demonstrated improvement in
femoral growth plate pathology, whereas only males showed significant improvement
in the tibial growth plate (Figure 7B). Compared to Group One, males treated with CAG
promoter construct (Group Two) demonstrated more normalized tissue structure than
females. This tendency was also observed in Group Three. Males significantly improved
from the untreated group, while females did not (Figure 7C). Histopathological Analysis by
toluidine blue staining showed that the vacuolation in the growth plate of the femoral and
tibia bone was more profound in females treated with either the CAG or TBG promoter
vector than in males (Figure 8A,B). In Groups Two and Three, male mice significantly
improved more than females (Figure 7B,C).
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Figure 7. Histopathology severity ratings for (A) femoral and tibial growth plates of Group One (mice
treated with the TBG promoter; 5 × 1013 GC/kg body weight), (B) femoral and tibial growth plates
of Group Two (mice treated with the CAG promoter; 5 × 1013 GC/kg body weight), (C) femoral
and tibial growth plates of Group Three (mice treated with the TBG promoter; 2 × 1014 GC/kg
body weight), (D) femoral and tibial articular cartilage of Group One (mice treated with the TBG
promoter; 5 × 1013 GC/kg body weight), (E) femoral and tibial articular cartilage of Group Two
(mice treated with the CAG promoter; 5 × 1013 GC/kg body weight), (F) femoral and tibial articular
cartilage of Group Three (mice treated with the TBG promoter; 2 × 1014 GC/kg body weight), (G)
femoral ligament and meniscus of Group One (mice treated with the TBG promoter; 5 × 1013 GC/kg
body weight), (H) femoral and tibial ligaments of Group Two (mice treated with the CAG promoter;
5 × 1013 GC/kg body weight), and (I) femoral and tibial ligaments of Group Three (mice treated
with the TBG promoter; 2 × 1014 GC/kg body weight). All WT severity scores were zero. * indicates
a two-tailed t-test p-value of <0.05 compared to the WT cohort. ** indicates a two-tailed t-test p-value
of <0.05 compared to the opposite sex. # indicates a two-tailed t-test p-value of <0.05 compared to
the untreated cohort. TBG: thyroxine-binding globulin, CAG: a ubiquitous promoter including a
cytomegalovirus enhancer element, a chicken β-actin promoter, and an intron.
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In Group One, the femoral articular cartilage in both male and female mice exhibited
score improvement compared to the untreated group, and in the tibial articular cartilage,
only females showed an improvement, although not significant in both cases(Figure 7D).
In Group Two, both male and female mice showed significant improvement in articular
cartilage pathology in both the femur and the tibia compared to the untreated cohort
(Figure 7E). In Group Three, female mice showed no improvement compared to the
untreated group, while males demonstrated significant corrected pathology (Figure 7F).

Femoral and tibial ligament analysis revealed a similar trend in improving pathology
scores. In Group One, male mice experienced higher pathology scores in the femoral liga-
ment than female mice. Meniscus evaluation also displayed a stark contrast between males
and females, with females presenting with significantly lower pathology scores than males,
further demonstrating a prevalent dichotomy in the treatment efficacies (Figure 7G). Both
males and females in Group Two exhibited similar levels of femoral ligament pathology
severity to untreated mice. In contrast, the tibial ligament showed similar improvement
in both males and females compared to the untreated group (Figure 7H). In Group Three,
ligament pathology was less severe in males than in females. Both the femoral and tibial
ligaments were partially rescued in the males, while females exhibited no significant differ-
ence from the untreated cohort (Figure 7I). Ligament vacuolation was worse in females than
males across both vector groups. In addition, in the growth plate and articular cartilage,
males demonstrated better outcomes when treated with CAG promoter than with TBG
promoter vectors (Figure 7A–F).

Heart tissue analysis of mice was performed for Group One, and tissues from the base,
valves, and myocardium were analyzed for severity rating. Males demonstrated basal,
valvular, and myocardial tissue correction with complete normalization in all individuals.
Female mice exhibited partial correction in all individuals for basal and valvular tissues and
complete normalization in myocardial tissue compared to the untreated group (Figure 9).
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Figure 9. Heart pathology scoring of Group One (mice treated with the TBG promoter;
5 × 1013 GC/kg body weight) ranged from normal (0) to severe (1). Error bars display standard
deviation. * indicates a two-tailed t-test p-value of <0.05 compared to the opposite sex. # indicates a
two-tailed t-test p-value of <0.05 compared to the untreated cohort.

3. Discussion

This study identified sex differences in plasma enzyme activity, blood KS concentration,
and anti-GALNS antibody levels in MPS IVA knock-out (MKC; Galns-/-) mice treated
with AAV8 gene therapy. Overall, female mice demonstrated less treatment efficacy as
determined by higher levels of antibody production, lower levels of GALNS activity, and a
greater concentration of KS in the blood than male mice. These results were maintained
across promoter and/or dose design cohorts, suggesting that sex plays a critical role in
determining therapeutic efficacy in this animal model. Moreover, the untreated cohort
had no significant difference between male and female mice in KS levels and pathological
scores. The interplay of increased enzyme activity, reduced storage substrate concentration,
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and decreased antibody formation improved histopathology in both male and female mice
compared to the untreated cohorts, although with a more limited effect in females.

The mechanism of AAV transduction is multifaceted, with several critical steps, in-
cluding endocytosis of the viral particle, endosomal escape, uncoating of the capsid, and
second-strand synthesis from the single-stranded DNA vector genome [36–39]. Davidoff
et al. demonstrated that the binding of host nuclear proteins in hepatocytes, crucial for
the transcription of vector mRNA, is androgen-dependent and that this relationship is not
observed in other non-hepatic tissues [24]. Our results fit this theory, with observable differ-
ences between the male and female cohorts. Notably, Dodge et al. completed similar work
with an analysis of acid sphingomyelinase enzyme activity after AAV2/1 and AAV2/2
delivery in the brain between male and female mice, explicitly looking at variability in
enzyme activity of females in different stages of the estrous cycle. Their findings suggest a
negative correlation between circulating female hormone levels and enzyme activity [40].
While we injected the AAV vector into mice at the earlier end of the puberty spectrum, it
remains possible that female hormones in circulation played a role in reducing enzyme
activity over time.

The immune response disparity between male and female mice in this study was
similar to the pattern of immunogenic sex differences previously demonstrated [24,25]. Both
innate and adaptive immune responses are crucial in limiting successful AAV transduction.
The most prominent innate immune response to AAV is mediated by the TLR9-MyD88
pathway, which initiates inflammatory cytokine production via the NF-κB pathway, and
the adaptive immune response begins [35]. In evaluating sex-based differences, Torcia et al.
reported that stimulation of TLR9 induced higher production of the immunosuppressive
cytokine IL10 in males, which reduced the overall strength of the male innate immune
response [41]. This compounded effect permits male mice to exhibit a weaker immune
defense allowing a more significant opportunity for successful transduction.

The humoral responses to the vector capsid and transgene products are the most
significant in limiting therapeutic efficacy and preventing long-term gene expression and
recurrent treatments. In our study, female mice showed higher anti-GALNS antibody titers
than males, consistent with the expected more robust humoral response in females. Likely,
the differences observed between males and females link back to the interactions between
sex-specific hormones and their propensity for immune-modulatory receptors such as the
NF-κB, cJun, and interferon regulatory factor 1 pathways [42,43]. The immune response to
anti-AAV antibodies were not measured in this study. The humoral immune response to
AAV shows that anti-capsid antibodies raised impact AAV transduction inefficiency [44].
The clinical significance of the immune response is reported in the recent CHAMPIONS
clinical trial of SB-913, an AAV/zinc finger nuclease (ZFN)-mediated gene therapy for MPS
II. Diminishing efficacy was shown in plasma iduronate-2-sulfate (IDS) activity with a
correlating increase in the liver enzyme ALT, due to a cytotoxic response against transduced
liver cells [45]. Because of shortage of samples, we could not measure AST and ALT liver
enzymes; however, it would be important to know whether there is some sex difference in
AST and ALT levels.

The impact of sex hormone regulation on viral entry mechanism and the immune
response manifests in the sex-dependent difference in the therapeutic efficacy of correcting
the MPS IVA phenotype in our mouse model. Reduced vacuolation and organized columnar
structure are critical in developing normal bone growth, and adequate correction early
in life can ameliorate the severity of bone dysplasia experienced by MPS IVA patients.
Although the differences between males and females were insignificant, the averages
reflect better outcomes in males than females. Greater sample size may further clarify any
differences. However, bone pathology correction is a multifactorial problem arising from
the poor vascularization of cartilaginous tissue.

Based on the plasma hGALNS activity and anti-GALNS antibody levels in female
mice, we demonstrated declining hGALNS activity over time which directly correlated with
increasing anti-GALNS antibody titers (Figures 2–4). Male mice provided better outcomes
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with lower antibodies and higher stable enzyme activities during the treatment period
than female mice despite the difference in the promoter or dose. Furthermore, male mice
had higher enzyme activities in heart, lung, spleen, and bone. Male mice in Groups Two
and Three demonstrated lower pathology scores for tibial and femoral growth plates and
articular cartilage. On the other hand, the activity reported in tissues in groups 1 and 3
treated with TBG promoter, specifically expressed in hepatocytes, is due to the re-captured
from circulating enzyme as the results of the correlation shown.

There were some discrepancies in our data, particularly in the pathology scoring of
Groups One and Three, while both groups received the TBG promoter (Figure 7). There
is an increase in hGALNS activity in bone when comparing Group Three to Group One
(Figure 5), and males have higher activity in both groups. Female mice in Group One
had lower pathology scores than male mice, and female mice in Group Three had higher
pathology scores than male mice in tibial and femoral growth plates and articular cartilage.
These differences are likely related to the difference in doses between the two groups or
could arise due to small sample sizes or variations in disease presentation or progression
in individual mice. The exact mechanism of pathology improvement remains unknown,
requiring further large cohort study.

Identifying the differences in male and female interactions with AAV-mediated gene
therapy is important because many preclinical studies do not consider this intrinsic factor in
their study design. In 2015, the United States Government Accountability Office (USGAO)
reported that the National Institutes of Health (NIH) did not make readily available data on
women enrolled in human clinical trials and did not ensure that women were adequately
represented in clinical trials. By failing to account for the variable of biological sex, these
studies may have misrepresented the corresponding effects of sex [46]. Incorporating this
issue begins at the preclinical level, where adequate reporting and/or selection of sex and
evaluating sex differences is essential for discerning accurate results. Many preclinical
studies do not report sex or control for sex-based effects [47–49]. Therefore, the inclusion
of sex as a critical variable in developing sound scientific processes will permit improved
therapeutic efficacy for all patients, a necessity demonstrated by our results in this study.

4. Materials and Methods

Materials and Methods for the first study data followed the methods described in
Sawamoto et al. [23]. Similar or identical materials and methods were used to develop the
second study experiments.

4.1. AAV Vector and Cassette Design

AAV cassettes were designed with either D8-hGALNS or native hGALNS downstream
of a TBG promoter or a ubiquitous CAG promoter, including a cytomegalovirus enhancer
element, a chicken β-actin promoter, and an intron incorporated into a single promoter
sequence (Figure 1). All the hGALNS sequences were codon-optimized. The D8-hGALNS
region contained codon-optimized hGALNS preceded by a bone-targeting aspartic acid
octapeptide (GACGACGATGATGACGATGACGAC). The hGALNS sequences (GenScript,
Piscataway, NJ) were incorporated into the vector upstream of a rabbit β-globin polyadeny-
lation tail. Our previous study demonstrated successful in vitro enzymatic activity in Huh7
cells [23].

Proprietary protocols developed at REGENXBIO (REGENXBIO Inc. Rockville, MD,
USA) were followed to produce all research-grade AAV vectors used in the studies de-
scribed here. Briefly, triple transfection of HEK293 cells was performed with the AAV8
capsid plasmid, helper plasmid, and the respective transgene plasmid. Affinity chromatog-
raphy was performed on cell culture supernatant, and the purified vectors were titered
utilizing Digital Droplet PCR (Biorad, Hercules, CA, USA).
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4.2. Murine Models

As previously described, the MPS IVA knock-out mouse (MKC; Galns-/-) was de-
veloped via targeted disruption of exon 2 of GALNS [23,50]. All the studies described
in this manuscript used this mouse model. Like MPS IVA patients, this mouse model
demonstrated minimal to no hGALNS enzyme activity in circulation, higher blood KS
concentration, and vacuolation in various cells due to glycosaminoglycan accumulation.
At two weeks old, mice were genotyped via PCR and selected for homozygous Galns-/-. In
the first study (Group One), male and female mice were administered 5 × 1013 GC/kg of
either AAV8 TBG-D8-hGALNS or AAV8 TBG-hGALNS via tail-vein injection at 4 weeks of
age. The second study separated male and female mice into CAG or TBG promoter cohorts.
The mice treated with either the AAV8-CAG-D8-hGALNS or the AAV8-CAG-hGALNS
vector received 5 × 1013 GC/kg via tail-vein injection at 4 weeks of age (Group Two). The
mice treated with the AAV8-TBG-D8-hGALNS or the AAV8-TBG-hGALNS vector received
2 × 1014 GC/kg via tail-vein injection at 4 weeks old (Group Three). The untreated and WT
mice in both studies received phosphate-buffered saline (PBS) as a control. All injections
were approximately 100 µL in total dose volume. The Institutional Animal Care and Use
Committee of Nemours/Alfred I. duPont Hospital for Children approved our animal care
and experimentation.

4.3. Blood and Tissue Collection

Following the blood and tissue collection timeline (Figure 1), approximately 100 µL of
blood was collected from all cohorts in EDTA tubes (Becton Dickinson, Franklin Lakes, NJ,
USA). Blood tubes were then centrifuged at 8000 rpm for 10 min, at which point plasma
was extracted and stored at −20 ◦C for GALNS activity assays and KS measurements.
Tissue collection occurred at 16 weeks of age when mice were euthanized via CO2 chamber
and perfused with 20 mL of 0.9% normal saline. Liver, kidney, lung, spleen, heart, trachea
(in the first study only), femur, tibia, and knee joint were collected, snap-frozen, and stored
at −80 ◦C until KS and GALNS activity assays. Some bone and heart tissues were collected
and stored in 10% neutral buffered formalin and then transferred to 2% glutaraldehyde/4%
paraformaldehyde solution for histopathological analysis.

4.4. Plasma and Tissue GALNS Activity Assay

The previously described protocols [51] determined activity levels of GALNS. Frozen
tissues were homogenized with 25 mmol/L Tris-HCl (pH 7.2) and 1 mmol/L phenylmethyl-
sulfonyl fluoride homogenization buffer. The tissue lysate or previously collected plasma
was combined with 22 mM 4-methylumbelliferyl-β-galactopyranoside-6-sulfate (Research
Products International, Mount Prospect, IL, USA) in 0.1 M NaCl/0.1 M sodium acetate (pH
4.3) in a 96-well plate and incubated at 37 ◦C for 16 h. 10 mg/mL β-galactosidase from
Aspergillus oryzae (Sigma-Aldrich, St. Louis, MO, USA) in 0.1 M NaCl/0.1 M sodium
acetate (pH 4.3) was added to the reaction mixture and incubated at 37 ◦C for an additional
1 h. 1 M glycine, NaOH (pH 10.5) was then added to arrest the reaction. Plates were
transferred to a PerkinElmer Victor X4 plate reader (PerkinElmer, Waltham, MA, USA) and
excited at 366 nm with an emission read at 450 nm. Results were recorded in nanomoles of
4-methylumbelliferone released per hour per microliter of plasma or milligram of protein.
Conversion of plasma to protein concentration was determined by a bicinchoninic acid
(BCA) protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA).

4.5. Tissue GAG Extraction and Analysis

GAG extraction was based on the procedure outlined in Mochizuki et al. [51]. Tissue
samples were frozen in liquid nitrogen and combined with acetone as a defatting solvent
in a homogenizer. The homogenized mixture was centrifuged for 30 min at 4 ◦C, and the
pellet was dried via centrifugation vacuum, suspended in 0.5 M NaOH, and incubated
at 50 ◦C for 2 h, removing GAG chains from core proteins. The solution was neutralized
with 1 M HCl, and NaCl was added to achieve a concentration of 3 M. The sample was
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then centrifuged to remove nucleotides, and the supernatant was collected. The pH of
the supernatant was adjusted to below 1.0 with excess 1 M HCl. Centrifugation was then
repeated to remove precipitated proteins, and the supernatant was then neutralized with
excess 1 M NaOH. 2 volumes of 1.3% potassium acetate (prepared in ethanol) were added
to precipitate GAGs. Tubes with crude GAGs were centrifuged at 4 ◦C for 30 min and
washed with 80% ethanol. The GAGs were dried out and reconstituted in 50 mM Tris-HCl
pH 7.0 and stored at −20 ◦C for analysis by LC-MS/MS.

Both plasma and tissue KS concentrations were measured via liquid chromatography-
tandem mass spectrometry (LC-MS/MS) as outlined previously [52–57]. Either plasma
or homogenized tissue lysate samples were combined with 50 mM Tris-HCl (pH 7.0) and
added into a 96-well Omega 10 K MWCO (molecular weight cutoff) filter plate (Pall Corpo-
ration, Port Washington, NY) on a 96-well receiver plate. Centrifugation was performed at
2500 rpm for 15 min. The filter plate was transferred to a new receiver plate, and 50 mM
Tris-HCl (pH 7.0), 5 mg/mL chondrosine as internal standard (IS), and 1 mU keratanase II
were added. Overnight incubation was performed at 37 ◦C. Samples were then centrifuged
at 2500 rpm for 15 min. The LC-MS/MS was performed using a 1290 Infinity LC system
with a 6460 triple quad mass spectrometer (Agilent Technologies, Palo Alto, CA, USA).
Disaccharide separation was performed on a Hypercarb column (2.0 mm inner diameter
[i.d.], 50 mm long, 5-mm particles; Thermo Fisher Scientific, Waltham, MA, USA) at 60 ◦C.
The mobile phase was developed as a gradient elution of 5 mM ammonium acetate (pH
11.0) (solution A) to 100% acetonitrile (solution B). The flow rate was established at 0.7
mL/min with a gradient of 0 min, 100% solution A; 1 min, 70% solution A; 2 min, 70%
solution A; 2.20 min, 0% solution A; 2.60 min, 0% solution A; 2.61 min, 100% solution A;
5 min, 100% solution A. Electrospray ionization was set for the mass spectrometer in the
negative ion mode (Agilent Jet Stream technology) with an injection volume of 5 µL and
a sample run time of 5 min. Known m/z ratios for initial and product ions were used to
determine and quantify each disaccharide (IS, 354.3/193.1; mono-sulfated KS, 462/97).

4.6. Anti-GALNS Antibody Assay

Quantification of anti-GALNS antibodies was determined via ELISA assay as de-
scribed previously [58]. 96-well microtiter plate were coated overnight with 2 mg/mL
purified rhGALNS (R&D Systems, Minneapolis, MN, USA) in 15 mM Na2CO3, 35 mM
NaHCO3, and 0.02% NaN3 (pH 9.6). The plate was then triple-washed with Tris-buffered
saline (TBS)-T (10 mM Tris [pH 7.5], 150 mM NaCl, 0.05% Tween 20), then blocked for
1 h at 20 ◦C with 3% bovine serum albumin in PBS (pH 7.2). Mouse plasma in TBS-T
at 100 times dilution was added to the wells, and incubation was performed for 2.5 h
at 37 ◦C. Wells were then rewashed four times in TBS-T. TBS-T with a 1:1000 dilution of
peroxidase-conjugated goat anti-mouse immunoglobulin G (IgG) (ThermoFisher Scientific,
Waltham, MA, USA) was added, and incubation was performed for 1 h at 20 ◦C. Samples
were then triple-washed with TBS-T and then double-washed in TBS (10 mMTris [pH 7.5],
150 mM NaCl). Peroxidase substrate (ABTS solution, Invitrogen, Carlsbad, CA, USA) was
added at 100 µL per well, and samples were then incubated for 30 min at 20 ◦C. 1% SDS
was added to arrest the reaction. The plates were transferred to a PerkinElmer Victor X4
plate reader (PerkinElmer, Waltham, MA, USA) at 410 nm. In the first study, plates were
reported as absorbance in optical density units. In the second study, the samples were
run with known rabbit GALNS polyclonal IgG concentrations in serial dilution to develop
standards. Linear regression was performed to convert optical density to µg of IgG per mL
of plasma for cohort data.

4.7. Histopathological Analysis

Tissue staining and analysis were performed as described by Tomatsu et al. [59]. The
knee joint, mitral heart valve, and myocardium were collected 12 weeks post-treatment
to evaluate vacuolation severity via light microscopy. Tissue samples were fixed in 2%
paraformaldehyde, 4% glutaraldehyde in PBS, then post-fixed in osmium tetroxide, and
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embedded in Spurr’s resin. Toluidine blue-stained 0.5-mm-thick sections were examined
under light microscopy. Assessment of reduction of storage materials were described previ-
ously [60,61]. Briefly, tissues from treated, untreated, and wild-type mice were evaluated
for reduction in storage without knowledge of their treatment. The analysis was performed
with three blind readers to evaluate the severity of a scalar model of normal to severe
(0 to 3) for the femoral and tibial growth plate, articular cartilage, and ligaments. “No
storage or very slight” was 0, “slight but obvious” was 1, “moderate” was 2, and “marked”
was 3. In the first study, cardiac tissue pathology was evaluated similarly on a normal to
severity scale of 0 to 1. Averages of individual severity scores were calculated and reported.
Mann–Whitney U test was used to compare the score between untreated and treated mice.

4.8. Statistical Analysis

Data were reported as means with standard deviations. Comparison analysis was
performed with two-tailed t-tests assuming unequal variance. One-way ANOVA tests were
performed with Bonferroni’s post hoc test using GraphPad Prism 5.0 (GraphPad, San Diego,
CA, USA). Statistical significance of difference was determined to be p-values less than 0.05.
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