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Background: Stromal cells and immune cells in tumor microenvironment (TME) have been reported 
to have significant value in the diagnosis and prognosis of cancers. We aimed to identify key biomarkers 
predicting survival in the TME of breast cancer. 
Methods: Cell type enrichment analysis was performed to estimate cell scores using the xCell method 
with gene expression data from public database. Least absolute shrinkage and selection operator (LASSO) 
regression was used to identify key signature from the cell scores. 
Results: Totally, 50 cells in TME had different scores between 1,078 breast cancer tissues and 112 adjacent 
normal tissues. We identified a 4-cell signature predicting breast cancer survival, including myocytes, natural 
killer T cell (NKT), conventional dendritic cell (cDC) and sebocytes, which was validated in the test set. 
Further analysis showed that cDC score was a key signature predicting prognosis of breast cancer. cDC score 
was significantly associated with molecular classification and stage of breast cancer, as well as expression level 
of Ki67. Spearman’s correlation analysis found that cDC score was inversely correlated with the expression 
level of HER2. High cDC score may predicate better pathological complete response rate. Mechanism analysis 
indicated high cDC score was associated with elevated immune activity; IL-2 was a key gene associated with 
high cDC score; and Breast cancer patients with high IL-2 expression had a longer survival time. 
Conclusions: In conclusion, cDC score was a key signature predicting prognosis for breast cancer. cDCs 
may exert antitumor effects by upregulating IL-2.
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Introduction

Breast cancer is commonest malignancy in women 
worldwide. Only in the United States, more than 250 
thousand new cases are diagnosed with breast cancer each 
year and 66 thousand cases die from this malignancy (1). 
In China, it is estimated 208 thousand new cases and 55.5 
thousand deaths in 2010 (2). Although significant progress 
has been made over the past decade in understanding 
of cancer biology, identification of risk factors, and new 
treatments of breast cancer, it is still insufficient in terms 
of early diagnosis, therapy, prevention and prediction of 
prognosis (3). Therefore, it is needed to find new markers for 
breast cancer.

The “seed and soil” hypothesis postulates that the tumor 
microenvironment provides fertile soil for the growth of 
tumor cells (4,5). Emerging evidence indicates that the 
cross-talk between tumor cells and tumor microenvironment 
exerts important effects on initiation, progression and 
metastasis of tumor (6). For example, tumors, as key 
drivers, control the differentiation of precursors of cancer-
associated fibroblasts by secreting factors. Once present 
in the developing tumor, cancer-associated fibroblasts 
shape the tumor microenvironment to support tumor cell 
survival, dissemination, immune suppression, angiogenesis, 
and therapy resistance (7). Tumor microenvironment is a 
complex ecosystem of stromal cells and immune cells (8). 
Stromal cells and immune cells have been reported to have 
significant value in the diagnosis and prognosis of various 
cancers including breast cancer (9).

In the present study, we used xCell to perform cell type 
enrichment analysis from gene expression data (10). xCell is 
a gene signatures-based method learned from thousands of 
pure cell types from various sources and infers 64 immune 
and stromal cell types. xCell signatures have been validated 
extensively, and were shown to outperform other methods. 
We predicted cell scores using xCell with the data from The 
Cancer Genome Atlas (TCGA), Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) and 
Gene Expression Omnibus (GEO). Then, we selected and 
validated prognostic biomarkers from cell scores for breast 
cancer using the least absolute shrinkage and selection 
operator (LASSO) (11). We present the following article in 
accordance with the TRIPOD reporting checklist (available 

at https://dx.doi.org/10.21037/tcr-21-1248).

Methods

Data acquisition

We downloaded RNA-Seq data and clinical data for 1,097 
female breast cancer patients from the data portal for 
TCGA (accessed October 2020) (12). The data of 1,904 
breast cancer patients were obtained from METABRIC 
database. Datasets of GSE96058, GSE20194, GSE22358, 
GSE25066 and GSE32646 were downloaded from 
GEO. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Cell type estimation

Cell type enrichment analysis was performed using the 
xCell (R package version 1.1) (10) with gene expression data. 
We compared the cell scores of tumors to those of adjacent 
normal tissues. Violin plot was drawn using vioplot package 
(version 0.3.5) in R software. The difference between two 
groups in cell scores was assessed using Wilcoxon test, and a 
P value less than 0.05 was considered significant.

Analysis of the cell score according to breast cancer 
pathological features  

We investigated the relationships between cell scores and 
pathological features of breast cancer, including molecular 
classification [luminal (HER2−/ER+), HER2+(HR+), 
HER2+(HR−), and HER2−/HR−], stage (stage 1, stage 2, 
stage 3 and stage 4) and expression level of Ki67. R package 
of “beeswarm” (version 0.2.3) was used to illustrate the 
distribution of cell score in different groups. 

Integration of protein-protein interaction (PPI) network

The PPI network was  constructed as  previous ly  
described (13). Briefly, we mapped a set of genes to Search 
Tool for the Retrieval of Interacting Genes (STRING) (14). 
Then, cytoscape software (version 3.8) was used to construct 
the network (15). The hub gene was the gene with highest 
connectivity.
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Figure 1 Cell score difference between breast cancer tissues and adjacent normal tissues in the TCGA cohort. Only the cells with a median 
score larger than the median of all the cell score are presented. Red, breast cancer tissues; and Green, adjacent normal tissues. aDC, activated 
dendritic cell; cDC, conventional dendritic cell; CLP, common lymphoid progenitor; mv, microvascular; ly, lymphatic; HSC, hematopoietic 
stem cell; iDC, immature dendritic cell; MEP, megakaryocyte-erythroid progenitor; NKT, natural killer T cell; MSC, mesenchymal stem 
cell; TCGA, The Cancer Genome Atlas.

Statistical analysis

We performed all the analyses using R software (version 
4.0). For LASSO penalized regression analysis, we firstly 
calculated the cell scores using HTSeq-FPKM data from 
TCGA with the xCell. Only 1,063 breast cancer patients 
with a survival time longer than 0 day were included in 
the present analysis. Then the patients were randomly 
separated into two sets, training set and test set. We 
performed LASSO Cox regression with cell scores of the 
training-set patients. Depending on the regulation weight 
λ, all regression coefficients are shrunken to towards zero 
in LASSO, and the irrelevant features are set exactly to 
zero. Risk scores were calculated by as our previously study 
(3,16). We used “glmnet” package (R package version 
4.0-2) to conduct the LASSO analysis and a P value 
<0.05 was considered statistically significance. Receiver 
operating characteristic (ROC) curve was drawn and the 
corresponding area under the ROC curve (AUC) was 
calculated to evaluate the prognostic value of the risk score 
by using ROCR package (R package version 1.0-11).

Regarding survival analysis, the patients were separated 
into two groups according to the expression level of a gene 

or the risk scores, and the median was used as cut-off. Then, 
the log-rank test was used to assess the overall survival 
(OS) with survival package (R package version 3.1-7). We 
calculated hazard ratios (HRs) and their 95% confidence 
intervals (CIs) using Cox proportional hazards. 

We performed enrichment analyses using Gene Set 
Enrichment Analyses (GSEA) software (version 4.1). False 
discovery rate (FDR) <0.05, nominal P value <0.05 and 
normalized enrichment score >1 were used as criteria of 
statistical significance.

Results

Assessment of cell scores in tumor microenvironment

To identify signature predicting breast cancer survival 
in tumor microenvironment, we investigated the gene 
expression profile of 1,097 female breast cancer patients 
from TCGA. We firstly estimated the cell scores for each 
sample, and then compared the scores between tumors and 
adjacent normal tissues. Figure S1 presents the scores of 
all the cells. Figure 1 presents the cells with a median score 
larger than the median of all the cell scores.

https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf


4358 Zhong et al. TME and breast cancer

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(10):4355-4364 | https://dx.doi.org/ 10.21037/tcr-21-1248

Conventional dendritic cell (cDC) predicts survival of 
breast cancer patients

The patients were randomly allocated to two sets, training 
set and test set. The characteristics of the two set patients 
were similar (Table S1). Key biomarkers associated breast 
cancer survival were screened from cell scores in training 
cohort using LASSO regression. We obtained four 
biomarkers including myocytes, natural killer T cell (NKT), 
cDC and sebocytes, and their coefficients were 0.098, 
−0.131, −0.021 and 0.012. The constructed risk score model 
divided patients into low- and high-risk groups according 
to their risk scores. Low-risk group had longer survival 
and less deaths (Figure 2A). Survival analysis indicated that 
high risk patients had a HR of 1.75 (95% CI: 1.08−2.83; 
P=0.022) (Figure 2B). ROC curve analysis indicated that the 
AUC was 0.90, 0.63 and 0.58 for 3-, 5- and 10-year survival 
(Figure 2C). 

The analysis of the test cohort corroborated the findings 
in training cohort (Figure 2D). The HR of high-risk 
patients was 1.68 (95% CI: 1.07−2.66, P=0.024; Figure 2E) 
compared to low-risk score patients; The AUC was 0.71, 
0.66 and 0.65 for 3-, 5- and 10-year survival (Figure 2F). 

LASSO bootstrapping showed that cDC was a promising 
biomarker surpassing more than 4,000 counterparts 
covering the memory B-cells, keratinocytes and NKT 
(Figure 2G). Kaplan-Meier survival analysis indicated that 
higher cDC score was associated with longer OS in overall 
TCGA cohort (HR =0.61, 95% CI: 0.44−0.85; P=0.0033) 
(Figure 2H). We further validated it in the other two larger 
datasets, METABRIC (n=1,904) and GSE96058 (n=3,409). 
Breast cancer patients with high cDC score in METABRIC 
had a HR of 0.65 (95% CI: 0.58−0.73; P<0.001), and a 
similar result was found in GSE96058 (HR =0.70, 95% CI: 
0.57−0.87; P<0.001) (Figure S2).

cDC score is associated with pathological features in breast 
cancer

We investigated the relationships between cDC score and 
pathological features of breast cancer with the data from 
TCGA and METABRIC (Figure 3). Regarding TCGA, 
cDC score had a significant association with the molecular 
classification (P<0.001; Figure 3A) and stage (P=0.004; 
Figure 3B), but not the expression level of Ki67 (P=0.254; 
Figure 3C). With respect to METABRIC, cDC score was 
significantly associated with stage (P<0.001; Figure 3E) and 
the expression level of Ki67 (P<0.001; Figure 3F) but not 

the molecular classification (P=0.348; Figure 3D). From 
Figure 3A,3D, we noted that HER2-positive breast cancer 
had lower cDC score than HER2-negative breast cancer. 
Therefore, we explored whether a difference in cDC score 
exists between HER2-positive and HER2-negative breast 
cancer. TCGA (P<0.001) but not METABRIC (P=0.712) 
showed a significant association (Figure S3A,S3B). 
Spearman’s correlation analysis found that cDC score was 
inversely correlated with the expression level of HER2 
(also known as ERBB2) in both TCGA (P<0.001) and 
METABRIC (P<0.001) (Figure S3C,S3D). After adjusted 
for ERBB2 in the survival analysis, cDC score still had a 
significant association with breast cancer survival (TCGA: 
HR =0.61, 95% CI: 0.44−0.86, P=0.004; METABRIC: HR 
=0.67, 95% CI: 0.59−0.75, P<0.001).

High cDC score may predicate better pathological complete 
response (pCR) rate

We also explored the association between cDC score and 
pCR rate using datasets from GEO including GSE20194, 
GSE22358, GSE25066 and GSE32646 (Figure 4) . 
GSE25066 indicated that high cDC score was significantly 
associated with pCR (P=0.008) (Figure 4C). GSE22358 
(P=0.173) and GSE32646 (P=0.170) showed a borderline 
association (Figure 4B,4D). However, we failed to find a 
significant association between cDC score and pCR using 
GSE20194 (Figure 4A).

Tumors with high cDC score have elevated immune 
activity

In order to uncover the mechanisms of cDC score on 
outcome of breast cancer patients, GSEA was performed to 
compare the transcriptomes of high- and low-score tumors 
at the level of Hallmarks gene sets. We noted that all the 
19 significant Hallmark gene sets enriched in high-score 
tumors (Table S2). The top six gene sets were IL-2 STAT5 
signaling, complement, inflammatory response, KRAS 
signaling up, allograft rejection, and IL-6 JAK STAT3 
signaling (Figure S4).

IL-2 was a key gene associated with high cDC score

To identify the key genes associated with high cDC score 
from Table S2, we firstly analyzed the associations between 
the genes and survival of breast cancer patients, and 
obtained 135 genes with a significant association (Table S3).  

https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1248-supplementary.pdf
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Figure 2 LASSO Cox regression of the cell scores with TCGA cohort. (A) The characteristics of the patients in training cohort order by the 
risk score calculated from the 4-cell signature. Dotted line: the median of the risk score. Top panel: the distribution of the risk score for the 
patients. Middle panel: survival time and status of the patients in the high- and low-risk groups, as defined by the risk score. Bottom panel: 
heatmap of the 4 cell scores. (B) The high-risk group has significantly shorter survival times than low-risk group in training cohort (HR 
=1.75, 95% CI: 1.08−2.83, P=0.022). (C) Receiver operating characteristic (ROC) curve of the 4-cell signature in test cohort. The area under 
the ROC curve (AUC) was 0.90, 0.63 and 0.58 for 3-, 5- and 10-year survival. (D) The characteristics of the patients in test cohort order 
by the risk score. (E) The high-risk group has significantly shorter survival times than low-risk group in test cohort (HR =1.68, 95% CI: 
1.07−2.66, P=0.024). (F) ROC curve of the 4-cell signature in test cohort. The AUC was 0.71, 0.66 and 0.65 for 3-, 5- and 10-year survival. 
(G) Frequency of gene signatures selected by Lasso-bootstrapping highlighted the prominence of cDC contributing to predictive model. 
(H) Higher cDC score associated with longer overall survival in overall cohort (HR =0.61, 95% CI: 0.44−0.85; P=0.003). cDC, conventional 
dendritic cell; CI, confidence interval; CMP, common myeloid progenitor; HR, hazard ratio; HSC, hematopoietic stem cell; LASSO, least 
absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas.
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Figure 3 cDC score is associated with pathological features in breast cancer. (A) cDC score in different molecular subtypes of breast cancer 
in TCGA. (B) cDC score in different stages of breast cancer in TCGA. (C) Distribution of cDC score according to the expression of Ki67 
in TCGA. The median was used as cut-off. (D) cDC score in different molecular subtypes of breast cancer in METABRIC. (E) cDC score 
in different stages of breast cancer in METABRIC. (F) Distribution of cDC score according to the expression of Ki67 in METABRIC. The 
median was used as cut-off. cDC, conventional dendritic cell; TCGA, The Cancer Genome Atlas.

Figure 4 High cDC score may predicate better pathological complete response (pCR) rate. (A) The pCR rate in GSE20194. (B) The pCR 
rate in GSE22358. (C) The pCR rate in GSE25066. (D) The pCR rate in GSE32646.
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expression had a HR of 0.56 (95% CI: 0.40−0.78; P<0.001) 

(Table S2 and Figure 5B). Spearman’s correlation analysis 
found that the expression level of IL-2 was positively 
correlated with cDC score (P<0.001) (Figure 5C). We 
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Figure 5 IL-2 is a key gene associated with high cDC score. (A) IL-2 is the hub gene of the protein-protein interaction (PPI) network. (B) 
High IL-2 expression is associated with a better overall survival (HR =0.56; 95% CI: 0.40–0.78; P<0.001). (C) The expression level of IL-2 
was positively correlated with cDC score. cDC, conventional dendritic cell; CI, confidence interval; HR, hazard ratio.
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cells. All the cells with a P value less than 0.05 are listed in 
Table S4. 

Discussion

In present study, we investigated the association between 
cell enrichment in microenvironment and survival of 
breast cancer. We estimated cell scores of each sample, and 
found that 50 cells had different scores between tumors 
and adjacent normal tissues, suggesting cells in tumor 
microenvironment may have important roles in breast 
cancer. Then, we used LASSO regression analysis to 
identify signatures predicting breast cancer survival from 
cell scores, and obtained a 4-cell signature. In addition, 
cDC score was found to be a key signature associated with 
longer survival time. Further analyses showed that cDC 
score was significantly associated with stage of breast cancer 
and expression level of Ki67. Since Ki67 is a nuclear marker 
expressed in all phases of the cell cycle other than the 
G0 phase, Ki67 is usually used to assess cell proliferation 
(17,18). Our results indicated that low cDC score may be 
associated with high cell proliferation. We also found that 
cDC score was inversely correlated with the expression 
level of HER2. HER2 is a member of the epidermal growth 
factor family of receptor tyrosine kinases (19). Presence of 
HER2 protein overexpression or ERBB2 gene amplification 
has a prognostic and predictive role in breast cancer (20). 
Breast cancer with HER2 overexpression is associated with 
malignant tumor growth and poor clinical outcome (21). 
Finally, we explored the association between cDC score and 
pCR, and high cDC score may predicate better pCR rate. 
Taking together, high cDC score was associated with better 
prognosis of breast cancer.

Dendritic cells (DCs) are major antigen-presenting 
cells in tumor immune microenvironment and exert anti-
cancer activity (22,23). DCs are divided into two principal 
cell populations, including cDCs and plasmacytoid DCs 
(24,25). cDCs are subdivided into two subtypes, type 1 
cDC (cDC1) and type 2 cDC (cDC2) (23,24). Both cDC1 
and cDC2 had antitumor activities. cDC1s are involved 
in cross-presenting tumor-associated antigens to CD8+ T 
cells which are important effector cells involving tumor cell  
elimination (24). cDC2s at least exert antitumor effects by 
inducing the proliferation of antitumor CD4+ T cells (26). 
Ferris et al. reported that both CD4+ and CD8+ T cells 
are needed for tumor rejection, selective deletion of major 
histocompatibility complex (MHC) class II in cDC1s, 
and inhibition of early CD4+ T-cell priming, indicating 

that cDC1s and cDC2s are necessary for CD4+ T-cell  
priming (27). Therefore, cDCs play immunoregulatory roles 
in the tumor microenvironment. However, Oshi et al. did not 
find an association between cDC and disease-specific survival 
(DSS) with data from TCGA, but METABRIC showed 
a similar result as ours (22). Using different outcome may 
contribute to this difference. We used OS but Oshi et al. used 
DSS for TCGA. Combining the findings in our study, cDC 
score may be a key signature predicting OS of breast cancer.

We explored the potential mechanisms underlining the 
cDCs. GSEA analysis showed that tumors with high cDC 
score have elevated immune activity. We further found that 
IL-2 was a key gene associated with high cDC score. IL-2,  
the first of a series of lymphocytotrophic hormones to 
be recognized, is released from activated T lymphocytes 
and rapidly cleared from human circulation with a half-
life of 3–22 min (28). IL-2 is pivotal for the generation 
and regulation of the immune response (28,29). IL-2 
is predominately secreted by CD4+ and CD8+ T cells 
(30,31), and DCs also secret a lesser amount of IL-2 (32).  
As the first cytokine approved by the FDA to be used in 
cancer treatment, IL-2 exerts antitumor effects through 
immunomodulating T and NK cells  in the tumor 
microenvironment. 

When interpreting the results, the limitations of the 
present study need to be considered. We did not validate 
our results using experimental method. The mechanisms 
underlying cDCs are needed to further confirmed. We 
raised cDCs as a key signature, however, myocytes, NKT 
and sebocytes do indeed have their effects on breast cancer 
patients. Although our results suggested that cDC score was 
a key signature predicting prognosis for breast cancer, it is 
difficult to specifically profile cDCs from transcriptomic 
data (33).

Conclusions 

In conclusion, cDC score was a key signature predicting 
prognosis for breast cancer and high cDC score was 
associated with elevated immune activity and better 
prognosis of breast cancer. cDCs may exert antitumor 
effects by upregulating IL-2.
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