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ABSTRACT

Distinguishing cell states based only on gene ex-
pression data remains a challenging task. This is
true even for analyses within a species. In cross-
species comparisons, the results obtained by dif-
ferent groups have varied widely. Here, we integrate
RNA-seq data from more than 40 cell and tissue types
of four mammalian species to identify sets of asso-
ciated genes as indicators for specific cell states in
each species. We employ a statistical method, TROM,
to identify both protein-coding and non-coding in-
dicators. Next, we map the cell states within each
species and also between species using these indi-
cator genes. We recapitulate known phenotypic simi-
larity between related cell and tissue types and reveal
molecular basis for their similarity. We also report
novel associations between several tissues and cell
types with functional support. Moreover, our identi-
fied conserved associated genes are found to be a
good resource for studying cell differentiation and
reprogramming. Lastly, long non-coding RNAs can
serve well as associated genes to indicate cell states.
We further infer the biological functions of those
non-coding associated genes based on their co-
expressed protein-coding genes. This study demon-
strates that combining statistical modeling with pub-
lic RNA-seq data can be powerful for improving our
understanding of cell identity control.

INTRODUCTION

Cell states or cell identities (e.g. embryonic stem cells
(ESCs), heart tissues and the HeLa cell line) are maintained
and controlled by a set of key regulators and epigenomic
modifications (1–3). Previous studies have revealed crucial
roles of some key regulators in controlling gene expression
during cell differentiation and developmental processes, in-
cluding transcription factors (TFs) (3,4), chromatin regula-
tors (5,6), RNA-binding proteins (RBPs) (7,8), microRNAs
(9,10) and long non-coding RNAs (lncRNAs) (11,12). In
developmental biology and genomics, an important ques-
tion is to understand how individual biological molecules
and their interactions determine cell states, including ESCs,
progenitor cells, terminally differentiated tissues and cul-
tured cell lines. Although several regulatory circuits have
been found evolutionarily conserved in mammals (13,14),
it remains challenging to systematically identify conserved
protein-coding genes and lncRNAs that function in vari-
ous cell states across multiple mammalian species. Given
the vast transcriptomic data produced in recent years, com-
parative analysis of mammalian transcriptomes has become
feasible to define the similarities or differences between var-
ious mammalian cell states and further identify conserved
genes and so reveal molecular mechanisms underlying cell
identity control.

More recent high-throughput RNA sequencing (RNA-
seq) studies, though, have been able to comprehensively
characterize protein-coding genes’ expression patterns in
a genome-wide manner across multiple species, providing
new insights into the evolution of gene expression (15–19).
Recently, it was found that unlike protein-coding genes,
the number of non-coding genes increases consistently with
the phenotypic complexity of species, suggesting that non-
coding RNAs might play critical roles in the evolution of
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eukaryotes (20,21). However, most RNA-seq-based studies
emphasized on the expression patterns of protein-coding
genes and did not investigate the expression programs of
lncRNAs, though recent studies have revealed that lncR-
NAs exert critical functions in cell fate regulation (12). Also
few efforts have been made to decipher the relationship be-
tween expression and evolutionarily conserved programs of
lncRNAs (22,23). Nor did previous studies aim to identify
conserved key lncRNAs for different cell states.

In addition to characterizing and comparing the tran-
scriptomes within a species and across multiple species,
great efforts have been put into the identification of impor-
tant regulatory factors using high-throughput data. For ex-
ample, a small set of key TFs that can control cell identity
has been identified using a large cohort of existing transcrip-
tomic data sets (24–26). In a recent study, 503 different TFs
as candidate core TFs for more than 200 human tissues and
cell types have been systematically identified (25). Increas-
ing lines of evidence suggest that RBPs play important and
diverse roles in controlling cell states, such as ESCs (2,27).
However, post-transcriptional mechanisms of cell identity
control by RBPs remain much unexplored.

In this study, we aim to systematically identify conserved
genes that could putatively define cell states in multiple
mammalian species, as well as to find possible correspon-
dences between cell identities across different species. We
collected and processed 307 publicly available polyadeny-
lated RNA-seq data sets for more than 40 tissues and cell
types (including ESCs, iPSCs, in vivo tissues and cultured
cell lines) from four mammalian species (human, chim-
panzee, bonobo and mouse). In order to quantitatively
characterize the lineage relationships of those tissues and
cell types, we used a statistical method TROM (Transcrip-
tome Overlap Measure) (28,44) to find their correspon-
dence via a comprehensive transcriptome mapping. The re-
sults also provide a catalog of protein-coding and long non-
coding associated genes, which well capture transcriptome
characteristics of various cell identities in different species.
Moreover, our analyses revealed that the conserved protein-
coding associated genes are highly enriched in biological
functions and cellular pathways, which are closely related to
the physiology of their associated cell states. Among these
conserved protein-coding associated genes, there is also en-
richment of master TFs and RBPs, which have been re-
ported to determine cell identities. These results suggest that
our identified conserved protein-coding associated genes
are good markers of cell identities. In addition to protein-
coding genes, we found that lncRNAs also serve well as as-
sociated genes for establishing a good correspondence of
cell identities across species. We inferred the potential func-
tions of those lncRNAs from the known biological func-
tions of protein-coding genes by constructing a gene co-
expression network. We found that the conserved associated
lncRNAs exhibit significant enrichment of biological func-
tions related to cell identities, suggesting that these lncR-
NAs have conserved functions in evolution and are also
good markers of cell identities. Our study demonstrates
that, by integrating and re-analyzing large-scale public tran-
scriptomic data from multiple species using proper statis-
tical methods, we are able to systematically discover un-

known markers of cell identities and provide insights into
their molecular characteristics.

MATERIALS AND METHODS

RNA-seq data collection and processing

We compiled a data resource of 307 publicly available
poly(A) RNA-seq data sets, which were profiled from four
mammalian species: Homo sapiens (human) (183 data sets),
Mus musculus (mouse) (77 data sets), Pan troglodytes (chim-
panzee) (31 data sets) and Pan paniscus (bonobo) (16 data
sets) (Supplementary Figure S1). Our data resource con-
tained ∼19 billion sequencing reads from 307 biological
samples, of which seven cell and tissue types (brain, cere-
bellum, heart, kidney, liver, testis and ESC or iPSC) existed
in all four species. In addition, our data resource covered far
more cell and tissue types in human (totally 41 tissues and
cell types) and mouse (totally 18 tissues and cell types). All
RNA-seq data sets were generated from Illumina GAII or
HiSeq2000/HiSeq2500 systems. We filtered out low quality
reads in each RNA-seq data set using PRINSEQ (29).

We then aligned the RNA-seq data to the mammalian
genomes using Tophat v2.0.10 (30,31). Three mammalian
genomes were obtained from Ensembl (Homo sapiens hg19,
Mus musculus mm10 and Pan troglodytes panTro4). The
genome annotation of bonobo (Pan paniscus) was not avail-
able in Ensembl, and our analysis for protein-coding genes
and lncRNAs requires the annotation. Hence, we followed
the analysis strategy of Brawand et al. (16), who used the
chimpanzee genome (panTro4) and annotation for bonobo,
because of the high similarity (>95%) between bonobo and
chimpanzee genomes (32). Our detailed mapping results are
summarized in Supplementary File 1.

Gene expression estimation

We constructed mammalian reference genome annota-
tions by integrating published annotations from mul-
tiple resources. For protein-coding genes, the annota-
tions were from human Gencode v19, mouse Gencode
M2 and chimpanzee/bonobo Ensembl CHIMP2.1.4.73
(33,34). For lncRNAs, the annotations were from a recent
publication (23). We then used Cufflinks (30,35) (v2.1.1,
supplied with reference annotation, i.e. using ‘-G’ option) to
measure the expression levels for both protein-coding genes
and lncRNAs in the four mammalian species.

Due to the lack of reference genome annotations for
bonobo, following the analysis strategy from Brawand et al.
(16), we used the chimpanzee genome (panTro4) as a refer-
ence for the RNA-seq data sets from bonobo. To evaluate
the potential errors of this strategy, we conducted an addi-
tional analysis by mapping the human RNA-seq data to the
chimpanzee genome, and compared the resulting gene ex-
pression estimates (in fragments per kilobase of transcript
per million mapped reads (FPKM) units) with the origi-
nal gene expression estimates using the human genome. We
found that the two sets of gene expression estimates have al-
most identical distributions (Supplementary Figure S2) and
high correlations (Supplementary File 2).

Since RNA-seq data sets from public data repositories
were generated in different studies by different laboratories,
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we used a unified procedure to obtain gene expression es-
timates in FPKM units (30,35). By examining the repro-
ducibility of the FPKM values between replicates within the
same tissue or cell type, we found high correlation coeffi-
cients between all replicate pairs (see Supplementary Fig-
ure S3 for examples). In this study, samples from the same
cell and tissue type are referred to as ‘(biological) repli-
cates’. Specifically when comparing protein-coding genes
with lncRNAs, we observed higher correlations for the for-
mer, because protein-coding gene expression levels are gen-
erally higher and measured more accurately than those of
lncRNAs (36–39). These results show that our processed
data lay the basis for further analyses.

Orthologous gene families

To identify conserved cell-state associated genes (includ-
ing protein-coding genes and lncRNAs), we used the or-
thologous families of these genes in human, chimpanzee,
bonobo and mouse. As an example, suppose gene X is a
liver-associated gene in human. If its orthologous genes in
the three other species are also liver-associated genes, it is
defined as a conserved associated gene of liver. Overall, we
identified conserved associated genes in seven cell states:
ESC, brain, cerebellum, heart, liver, kidney and testis.

We obtained orthologous families of protein-coding
genes from TreeFam v9 (40), a database of tree-based or-
thology predictions, and orthologous families of lncRNAs
from a recent publication (23). The orthologous families are
summarized in Supplementary File 3. Notably, the conser-
vation analysis of lncRNAs is only based on the three pri-
mates, because the number of orthologous families of lncR-
NAs between primates and mouse is too small.

TF and RBP annotations

For TF analysis in our studies, we downloaded TF anno-
tations of human, mouse, chimpanzee and bonobo from
AnimalTFDB 2.0 (41), which provides TF annotations for
more than 50 animal genomes. For RBP analysis, we ob-
tained RBP annotations from a recent review, which pro-
vides a census of 1542 manually curated RBPs (42).

Identification of cell-state associated genes by TROM

One cell state (i.e. a tissue or cell type, such as ESC, liver, and
testis) can be characterized by its ‘associated genes’ that we
defined as the relatively highly expressed genes in the cell
state as compared with other cell states. We first calculated
the relative expression estimate (i.e. Z-scores) of every gene
across all cell states: subtracting a gene’s FPKM estimates
by its mean FPKM estimate of all cell states, and then di-
viding the differences by its standard deviation of FPKM
estimates across all cell states.

Zi = ei − ē
s

,

where i = 1, 2, . . . , n (the number of all cell states), ei is the
FPKM estimate in cell state i, and

ē = 1
n

n∑
i = 1

ei

and

s =
√√√√ 1

n − 1

n∑
i=1

(ei − ē)2

are the mean and standard deviation of FPKM estimates
across all cell states. Hence, the Z-scores reflect the relative
expression of a gene across all cell states.

Because the four species have different numbers of sam-
ples, the four species exhibit different Z-score distribu-
tions, making it difficult to find a consensus Z-score cutoff
to identify associated genes. Hence, we further performed
quantile normalization (43) on the Z-scores across the four
species, resulting in almost identical normalized Z-score
distributions (Supplementary Figure S4). Then for every
cell state, we selected its associated genes whose FPKMs are
above a threshold and normalized Z-scores are in a top per-
centile. The FPKM threshold is 1.0 for protein-coding genes
and 0 for lncRNAs, and the normalized Z-score percentile
is top 5%. These two criteria guarantee that in the given cell
state, the expression levels of the associated genes are distin-
guishable from background noise and are also higher than
those in some other cell states.

Another important issue is to evaluate and reduce batch
effects in data collected from multiple sources. We used
principal component analysis (PCA), a standard analysis
method to assess the potential batch effects in our normal-
ized data sets. We performed PCA on the normalized Z-
scores of all data sets and examined whether the data sets
from the same and/or similar cell and tissue types are clus-
tered together. The data sets (i.e. points) were labeled using
their cell and tissue types or batch IDs (Supplementary Fig-
ure S5).

Transcriptome mapping by TROM

We then used the TROM algorithm to map two mammalian
cell states by their transcriptome similarity (28,44). In the
within-species cell state mapping, for every two cell states,
we tested the significance of the number of their common
associated genes using an ‘overlap test’, whose null hypoth-
esis is that the two cell states’ associated genes are indepen-
dent samples from the gene population of the species. If sig-
nificant, two cell states are called mapped. The P-value of
the within-species cell state mapping is calculated as

pwi thin−species =
∑min(m,n)

i=r

(
M
i

) (
M − i
m − i

) (
M − m
n − i

)
(

M
m

) (
M
n

)

where M is the total number of protein-coding genes or
lncRNAs, and m, n and r are the numbers of genes in gene
sets A, B and A∩B (Figure 1B left).

In the between-species cell state mapping, for every two
cell states from different species, we tested the significance
of the number of ortholog pairs between their associated
genes using an overlap test. If the test was significant, two
cell states were called mapped. The P-value of the between-
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Human  Chimpanzee  Bonobo  Mouse  Total  

Number of data sets 183 31 16 77 307 

Total number of reads (million) 13 039 556 441 4632 18 668 

A 

B 

Between-species TROM 

Species X 
Cell state A 
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Cell state C 

Cell state A 
# associated genes m 
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# associated genes l 
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FPKM and normalized FPKM 

Species X-Y # ortholog pairs N 
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A and B are 
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A and B are not 
mapped 
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Hypergeometric test Species X total # genes M 

# commonon

Gene selection by thresholding on 
FPKM and normalized FPKM 

Figure 1. Overview of the RNA-seq data sets and Transcriptome Overlap Measure (TROM) approach. (A) Numbers of RNA-seq data sets and sequencing
reads for each mammalian species, including human, chimpanzee, bonobo and mouse. (B) The TROM approach. First, associated genes of each cell state
are selected using thresholds on FPKMs and Z-scores (normalized FPKMs across cell states). In the within-species TROM (left panel), the significance
of the number of the common associated genes of two cell states is established via an overlap test. In the between-species TROM (right panel), a similar
overlap test is carried out, except that orthologous genes are used to connect the two species. Two cell states are called ‘mapped’ if the test is significant.
(See Materials and Methods for details.)

species cell state mapping is calculated as

pbetween−species =
∑min(m,l)
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where N is the total number of orthologous protein-coding
genes or lncRNAs, and m, l and s are the numbers of genes
in gene sets A, C and A∩C (Figure 1B right).

The P-values of transcriptome mapping between cell
states were adjusted using Bonferroni correction. For both
within- and between-species mapping, the TROM scores
are calculated as the –log10 transformed Bonferroni cor-
rected P-values.

For details and methodological aspects of the TROM
method, please refer to Li et al. (44,45).

To visualize the transcriptome mapping patterns, we plot-
ted the resulting similarity matrices of TROM scores us-
ing the R function heatmap(), which performs hierarchi-
cal clustering on the matrix rows and columns to generate
heatmaps for better visualization. The dendrograms are re-
sulted from the default hierarchical clustering. We did not
manually alter or twist the dendrograms.

Enrichment analysis of Gene Ontology and biological path-
ways

For gene ontology (GO) analysis, we used topGO (46) to
estimate the enrichment of biological process terms for dif-
ferent cell states based on their associated genes. We calcu-
lated the significance of GO term enrichment in every cell
state using a hypergeometric test. The top three most en-
riched GO terms in every cell state were displayed. For bio-
logical pathway analysis, we used KEGGREST (47) to cal-
culate the enrichment of biological pathways, and displayed
the results in a similar fashion as in the GO analysis. The P-
values were adjusted using Bonferroni correction.

Construction of a co-expression network of protein-coding
genes and lncRNAs

We applied a previously published method (48) to recon-
structing a co-expression network of protein-coding genes
and lncRNAs across human, chimpanzee and bonobo. We
did not include mouse because there are few known con-
served lncRNAs between mouse and primates. We used the
well-established homologous gene families for both protein-
coding genes (from TreeFam v9 (40)) and lncRNAs (from
(23)) across the three species. We then computed the Pear-
son correlation coefficients of expression patterns. Given
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two homologous families, we examined whether the combi-
nation of correlation coefficients from the three species was
significantly (P-value < 0.01) higher or lower than expected
by chance.

Here, we briefly describe the algorithm to compute the
P-value of conserved co-expression between two homolo-
gous gene families. We defined a homologous gene family
as a one-to-one mapping orthologous gene group across
multiple species. For example, if gene A in species 1, gene
B in species 2 and gene C in species 3 are all orthologous
to each other, we call the genes A, B, and C a homolo-
gous gene family. Please note that we did not include one-
to-many orthologous genes between every two species. For
every pair of homologous gene families (m, m’) , we com-
puted the probability of observing their Pearson correlation
cor(Xm, Xm’), where Xm represents the expression vector of
gene family m at all the cell states in all the n species, or
even a higher correlation value, relative to those of other
gene family pairs. Under the null hypothesis that the Pear-
son correlations of all gene family pairs are ordered ran-
domly, this probability is the P-value for the pair (m,m’).
To calculate this probability, in every species s, we ranked
all the homologous gene family pairs based on their Pearson
correlations, with larger correlations having smaller ranks.
Please note that the ranks could be different in different
species, because a gene family may not have a gene in ev-
ery species. If a species has genes in fewer families, it will
have fewer gene family pairs to rank. Then in species s, we
divided the ranks of gene family pairs by the total number
of gene family pairs in that species, yielding one rank ratio
for the (m,m’) gene family pair: rs∈ [0, 1]. Consider all the
n species, we obtained n rank ratios for the (m,m’) pair, r1,
r2,. . . , rn. To find out how significant (r1, r2,. . . , rn) is com-
pared to random observation, we computed the probability
of observing a set of n rank ratios such that the ith ordered
rank ratio is no greater than r(i), the ith order value of (r1,
r2,. . . , rn), for every i = 1,. . . , n, by chance. This probability
represents the P-value of the observed rank ratios (r1, r2,. . . ,
rn) assuming that the order of the species does no matter. If
we assume the rs’s are drawn independently and uniformly,
we can compute the P-value from the joint cumulative dis-
tribution of an n-dimensional order statistic:

p (r1, r2, . . . , rn) = n! ∫r1
0 ∫r2

s1
. . . ∫rn

sn−1
ds1ds2 . . . dsn .

We can efficiently compute the above with the recursive
formula:

p (r1, r2, . . . , rn ) =
n∑

i=1

(rn−i+1 − rn−i ) p (r1, r2, . . . , rn−i , rn−i+2, . . . , rn ) ,

where r0 = 0 and the recursive call to p() supplies all of the
original arguments except the (n-i + 1)th argument. Since we
included 3 species in the analysis we used n = 3.

We computed correlations for the homologous gene fam-
ilies involving the protein-coding genes and lncRNAs ex-
pressed in at least two samples of human, chimpanzee, and
bonobo each. Genes were defined as expressed in a cell state
if their expression estimates were in the top 90% among all
the genes at that cell state. We allowed for both positive and
negative correlations in the co-expression network, which is
visualized by Cytoscape (49).

GO enrichment in the co-expression network

We identified clusters of highly inter-connected homolo-
gous gene families in the co-expression network via the
Markov Cluster algorithm (50). Each cluster contains both
protein-coding genes and lncRNAs. Then we detected en-
riched GO (Biological processes) terms in the protein-
coding genes of each cluster. We also used the hypergeomet-
ric test to evaluate whether the conserved associated lncR-
NAs of each cell state are enriched in each cluster. The re-
sults were visualized using radar plots. The P-values were
adjusted using Bonferroni correction.

Code availability

The TROM software is available as an R package with man-
uals and source codes available at http://www.stat.ucla.edu/
~jingyi.li/software-and-data/trom.html and https://cran.r-
project.org/web/packages/TROM/index.html.

RESULTS

Identification of associated genes for different cell states

We first collected and uniformly processed 307 publicly
available polyA RNA-seq data sets (∼19 billion sequenc-
ing reads) of various tissues and cell types from four mam-
malian species (mouse and three primates including human,
bonobo and chimpanzee) (Figure 1A and Supplementary
Figure S1). Among them, the 183 human and 77 mouse
data sets span a wide range of developmental stages and lin-
eages. The chimpanzee and bonobo data sets include iPSC
and several in vivo tissues (brain/cortex, cerebellum, heart,
kidney, liver and testis) (Supplementary File 1).

To capture the transcriptome characteristics of different
cell states, we define the ‘associated genes’ of a cell state as
the protein-coding and long non-coding genes whose ex-
pression is relatively high in that cell state and relatively low
in some other cell states. To identify the associated genes
of different cell states and subsequently use them to com-
pare the cell states from different species, we adapted a sta-
tistical method TROM, which were recently developed for
comparing developmental stages of D. melanogaster and C.
elegans (28,44). We first identified the associated genes of
cell states by the following criterion: in a given cell state, its
associated genes must have (i) FPKM (35) above a positive
constant c (c = 1 for protein-coding genes and c = 0 for
lncRNAs, because lncRNAs are generally more lowly ex-
pressed than protein-coding genes); (ii) normalized Z-score
in the top 5% among its normalized Z-scores in all cell states
(see Material and Methods for details, Supplementary Fig-
ure S4). The cell state mapping patterns are largely robust to
different FPKM cutoffs (Figure 2A and B) and normalized
Z-score thresholds (Figure 2C and D). The numbers of as-
sociated genes identified by TROM vary across different cell
states in each species (Supplementary File 3). In addition to
our TROM method, we also used PCA to assess the poten-
tial batch effects in our normalized data sets. We found that
the normalized data sets are better clustered by tissue and
cell types rather than by batches in the first three principal
component directions (Supplementary Figure S5). Hence,
we concluded that the batch effects are not strong in the

http://www.stat.ucla.edu/~jingyi.li/software-and-data/trom.html
https://cran.r-project.org/web/packages/TROM/index.html
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Figure 2. Robust transcriptome mapping patterns. (A) A correspondence map of human cell states by TROM using associated protein-coding genes and
lncRNAs under expression cutoff c = 1. (B) A correspondence map of human cell states by TROM using associated protein-coding genes and lncRNAs
under expression cutoff c = 0. (C) A correspondence map of human cell states by TROM using associated protein-coding genes under a series of Z-score
thresholds. (D) A correspondence map of human cell states by TROM using associated lncRNAs under a series of Z-score thresholds. Columns and rows
correspond to biological samples of various cell states. Higher TROM scores (defined as –log10 transformed Bonferroni-corrected P-values from the overlap
test) are shown in darker colors.

normalized data sets and would only have negligible effects
on our analyses.

We then used those identified associated genes to com-
pare the cell states within and between mammalian species
(Figure 1B). Specifically, for every pair of cell states, we
tested if there is significant overlap between their associ-
ated genes. If so, the two cell states are called ‘mapped’. In
within-species comparisons, the common associated genes
shared by two cell states is considered the overlap; in
between-species comparisons, the overlap is defined as the
orthologous genes pairs between the associated genes of the
two cell states, each from a different species (Supplemen-
tary File 4). In our study, protein-coding genes were used
to compare all the four species, while lncRNAs were only
used in the comparisons of the three primate species because
orthologous lncRNAs are largely unavailable between pri-
mates and mouse. Like other comparative genomic studies,
we also used correlation analyses to compare different cell
states based on measured gene expression levels. However,
in contrast to TROM, these correlation analyses failed to
find clear or informative correspondence patterns among
the mammalian cell states (Supplementary Figure S6). This
was expected and consistent with our previous findings

(28,44), because correlation values depend heavily on the
accuracy of gene expression estimates. On the other hand,
TROM finds correspondence between cell states based on
their associated genes and is more robust to noise and biases
in gene expression estimates. More detailed comparison and
power analysis of TROM and Pearson and Spearman cor-
relation coefficients can be found in Li et al. (44).

Within-species cell state mapping

Lineage relationships rediscovered by within-species cell state
correspondence maps. We first applied TROM to map
transcriptomes of human cell states (i.e. tissues and cell
types) using their associated protein-coding genes, result-
ing in a clear correspondence map (Figure 3A). As ex-
pected, transcriptomes of the same or similar tissue types
form prominent mapping blocks, including (i) ESCs and iP-
SCs, (ii) cultured cell lines, (iii) immune cells and tissues, (iv)
neural tissues, (v) liver tissues and (vi) testis tissues. These
blocks are consistent with the known physiology of tissues
and cells. For example, similar to ESCs, iPSCs are capable
of generating all types of differentiated tissues and cells.
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Figure 3. Cell states encoded by associated genes in human. (A) A correspondence map of human cell states by TROM using associated protein-coding
genes. Columns and rows correspond to biological samples of various cell states. Higher TROM scores (defined as –log10 transformed Bonferroni-corrected
P-values from the overlap test) are shown in darker colors. Axis colors represent cell states, and colored boxes mark the prominent mapping patterns. (B) The
number of protein-coding genes (top) and lncRNAs (bottom) associated with different number of human cell states. For associated protein-coding genes,
the proportion of housekeeping genes in each group are shown. (C) Enriched gene ontology (GO) (biological processes) terms of 19 human tissues. More
significant enrichment scores (defined as –log10 transformed Bonferroni-corrected P-values) are shown in darker colors. (D) Enriched KEGG cellular
pathways of 19 human tissues. More significant enrichment scores (defined as –log10 transformed Bonferroni-corrected P-values) are shown in darker
colors.
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Next we compared those cell states again by TROM using
only associated TFs or associated lncRNAs (Supplemen-
tary Figure S7). Interestingly, the resulting mapping pat-
terns are similar to Figure 3A but have smaller mapping
blocks, confirming the higher tissue specificity of TFs (51)
and lncRNAs (36) than protein-coding genes. For example,
placenta, trophoblast-like cells and mesenchymal stem cells
form a clear mapping block when compared using TFs. This
observation can be explained by the fact that trophoblasts
develop into a large part of the placenta, and placenta-
derived cells have mesenchymal stem cell potentials (52).
These results suggest that the identified associated TFs and
lncRNAs serve as good representatives of cell identities,
consistent with previous findings on their context specific
activations and regulatory roles (36,51).

In addition to human, we compared the transcriptomes
of cell states within every other mammalian species using
(i) all the associated protein-coding genes, (ii) the associ-
ated TFs only and (iii) the associated lncRNAs only (Sup-
plementary Figure S8). The mapping patterns are largely
consistent with what we observed in human. These within-
species mapping results demonstrate that our approach is
powerful and robust in revealing cell state similarity in mul-
tiple mammalian species, and verify our identified associ-
ated genes as good markers of cell identities.

We further examined the number of associated cell states
for the associated genes we identified in human and mouse
(Figure 3B and Supplementary Figure S9). Among 41 hu-
man cell states, the highest proportion (about 28%) of
the union of associated protein-coding genes are associ-
ated with three cell states. By contrast, a great proportion
(about 33%) of the associated lncRNAs are only associ-
ated with one cell state, confirming the stronger cell type-
specificity of lncRNAs (36). In addition, we investigated the
expression broadness and dynamics of housekeeping genes.
Housekeeping genes are defined as the genes that are ex-
pressed in all cell types and are required for the maintenance
of basic cellular functions. However, previous studies sug-
gest that expression levels of some housekeeping genes vary
across tissue types and experimental conditions (53,54). We
found that housekeeping genes (55) are more enriched in the
protein-coding genes associated with more cell states (Fig-
ure 3B). This observation is consistent with the definition
of housekeeping gene and also suggests that our TROM
method can identify the housekeeping genes expressed at
higher levels in specific cell types.

Biological functions of cell-state associated protein-coding
genes. To investigate the biological functions of our identi-
fied associated genes, we started with the associated protein-
coding genes, which have more complete functional an-
notations than lncRNAs have. We first identified the GO
terms enriched in the associated protein-coding genes for
various cell states in human (Figure 3C) and mouse (Sup-
plementary Figure S10). The results revealed that the as-
sociated protein-coding genes are enriched with biological
processes that largely define the identities of the respective
cell states. For example, kidney and liver are enriched with
metabolic processes (including organic acid metabolic pro-
cess, carboxylic acid metabolic process, oxoacid metabolic
process and small molecule metabolic process), and testis is

enriched with spermatogenesis and sexual reproduction. In-
terestingly, although kidney and liver share some metabolic
processes, liver is additionally enriched with processes re-
lated to lipid and fatty acid metabolism. In addition, we
found great similarity between the GO terms enriched
in associated genes and the ‘tissue-specifically enriched
GO terms’ identified using super-enhancer-associated genes
found by Hnisz et al. (56). For example, GO terms such
as ‘muscle contraction’, ‘muscle system process’ and ‘heart
contraction’ are enriched in the associated genes of heart
and skeletal muscle in our study and the super-enhancer-
associated genes found by Hnisz et al. (56). This observation
suggests that our identified associated genes have a strong
association with the super-enhancers and possibly other cis-
regulatory elements.

We next identified the KEGG cellular pathways en-
riched in the associated protein-coding genes of different
cell states in human (Figure 3D) and mouse (Supplemen-
tary Figure S11). The resulting enriched cellular pathways
are biologically meaningful. For example, heart-associated
genes are highly enriched with pathways related to oxidative
phosphorylation and hypertrophic cardiomyopathy. Inter-
estingly, we also found that these genes have obvious enrich-
ment with pathways related to neurodegenerative diseases
(e.g. Alzheimer’s disease, Parkinson’s disease and Hunting-
ton’s disease). One reason for this phenomenon could be
that a number of heart-associated genes encode NADH de-
hydrogenase subunits and Cytochrome C oxidase subunits,
which are involved in Alzheimer’s disease (57), Parkinson’s
disease (58,59) and Huntington’s disease (60) based on pre-
vious biochemical evidence. This observation is also sup-
ported by previous studies, which suggest that heart failure
is linked to neurodegenerative diseases, such as Alzheimer’s
disease (61,62).

Given those identified enriched GO terms and cellular
pathways, we further characterized their dynamics during
the differentiation process from stem cells to differentiated
neural cells. We selected the following tissues and cell types
to represent this differentiation progress: (i) ESC/iPSC, (ii)
embryonic germ layers (including mesendoderm, ectoderm,
mesoderm and endoderm), (iii) neuroectodermal spheres
and neural progenitor cells, (iv) differentiated neural tissues
(including brain and cerebellum). By investigating the en-
riched biological functions at each of these cell states, we
observed a clear shift in biological processes as the differ-
entiation goes on: cell states closer to the stem cell end,
such as the embryonic germ layers, are enriched with basic
metabolic processes; on the other hand, fully differentiated
neural tissues contain enriched functions of neuronal devel-
opment and signaling (Supplementary Figure S12), consis-
tent with previous studies (63).

Between-species cell state mapping

Conserved expression patterns revealed by between-species
cell state correspondence maps. As the within-species re-
sults have shown the effectiveness of our approach in map-
ping cell states and finding cell state markers, we fur-
ther extended this approach to comparing cell states be-
tween different mammalian species. We evaluated the sim-
ilarity of two cell states from different species by adopt-
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ing TROM, which is based on the number of orthologous
gene pairs in the associated genes of two cell states, each
from a different species (see Materials and Methods for
details). We first performed a comprehensive mapping be-
tween human and mouse cell states based on their associ-
ated protein-coding genes (Figure 4A). Several prominent
mapping blocks emerged between corresponding tissues in
human and mouse, including neural tissues, heart and skele-
tal muscle tissues, and testis tissues.

In addition to these expected mapping patterns, other
interesting mappings between tissues and cells of different
types are also observed. The two most prominent mapping
patterns are (i) human ESCs, iPSCs and cancer cell lines ver-
sus mouse ESCs, iPSCs, germ layers and neural progenitor
cells and (ii) human liver and kidney tissues versus mouse
liver and kidney tissues. Such mapping patterns are con-
sistent with the known physiology of those tissues and cell
lines. For (i), ESCs and cultured cancer cell lines are both
characterized by rapid cell proliferation, short cell cycles
and blocks in differentiation (64,65), which can explain our
observed transcriptome similarity between human ESCs,
iPSCs and cancer cell lines versus mouse ESCs and iPSCs.
For (ii), we observed similarity between human and mouse
liver and kidney transcriptomes, which has been reported by
previous studies using microarray (66,67), RNA-seq (16,68)
and DNase-seq data (69). These mapping patterns show
that that orthologous genes are conserved not only at the
sequence level but also at the transcription level in terms of
gene expression patterns (70,71). They also confirm that the
associated protein-coding genes are good cell state indica-
tors.

We next performed a similar human-mouse cell state
mapping using only the associated TFs (Figure 4B). Sim-
ilar to the within-species results, the mapping patterns
obtained using TFs are more sparse with smaller map-
ping blocks than their counterparts observed using protein-
coding genes. Different mapping patterns have emerged.
For example, almost no mapping is found between human
cultured cancer cell lines and mouse ESCs/iPSCs (Figure
4B). This result is also in line with our previous observa-
tions in the within-species mapping using TFs, indicating
that ESCs/iPSCs are distinct from cancer cell lines in terms
of TF expression.

We also compared the cell states of human and those
of bonobo and chimpanzee using the associated protein-
coding genes, TFs or lncRNAs (Figure 4C and Supple-
mentary Figures S13–S15). Since most lncRNAs are more
conserved between closely related species, we restricted our
study to primates when performing between-species cell
state mapping using the associated lncRNAs. Expectedly,
using the associated lncRNAs between primates leads to
clear mapping patterns, which are highly similar to the map-
ping results based on the associated TFs. In those mapping
results, tissues of the same type are mapped across primate
species.

Conserved cell-state associated protein-coding genes are po-
tentially key regulators. We hypothesized that among the
associated protein-coding genes of each cell state, the con-
served genes, which were recurrently identified across differ-
ent species, may represent more important cell-state associ-

ated functionality and higher cell-state specificity than the
non-conserved ones. In fact, we found that the conserved
associated protein-coding genes (Supplementary File 5) are
significantly enriched with known tissue-specific genes from
the TiGER database (72) (Supplementary Figure S16).
Note that our cell-state associated genes are not restricted to
the specific genes of that cell state but may include the genes
that are also associated with other cell states. Cross-species
strategy can be used to refine these complex associations to
identify the genes with stronger cell-state specificity. In ad-
dition, we found that small portions of the TiGER tissue-
specific genes were not identified as the associated genes. A
possible explanation is that the TiGER tissue-specific genes
were identified using fewer tissue types than our study has
(Supplementary Figure S17).

Gene expression programs are regulated in large part by
TFs through recognizing and binding to specific sequences
in the genome. Previous ChIP-seq-based studies revealed
that a remarkably small number of key TFs could mainly
define tissue-specific gene expression programs (3,56,73–
76). We identified conserved associated TFs for seven cell
states (Table 1 and Supplementary File 6), and reasoned
that these TFs should be functionally important based on
our above analyses and previous literature. In addition,
most of these conserved associated TFs received top speci-
ficity ranking in a recent study by Young et al. that de-
fined core TFs for over 200 human cell types and tissues
(25) (Supplementary File 6). The conserved associated TFs
have a large overlap with the core TFs, suggesting that they
are putative transcriptional regulatory factors for control-
ling cell identities.

Most of these conserved associated TFs have been re-
ported essential for tissue development and physiology (see
the references of related literatures in Supplementary File
7). For example, conserved associated TFs in ESCs in-
clude known self-renewal and pluripotency factors such
as Oct4 (Pou5f1), Nanog, Sall4, Jarid2 and Myc (64) (Ta-
ble 1). A recent study found that, compared to the com-
monly used ‘OSKM factors’ (Oct4, Sox2, Klf4 and Myc),
the ‘SNEL factors’ (Sall4, Nanog, Esrrb and Lin28) can
generate iPSCs more efficiently (77). Sall4, Nanog and
Lin28 were successfully identified as conserved associated
TFs in our analysis. Additionally, our conserved associ-
ated TFs in heart tissues significantly overlap with known
lineage reprogramming factors that directly aid the con-
version of fibroblasts to cardiomyocytes in human and
mouse (Supplementary File 8) (78): out of the six common
reprogramming factors (GATA4/Gata4, HAND2/Hand2,
MEF2C/Mef2C, MESP1/Mesp1, MYOCD/Myocd and
TBX5/Tbx5) for human/mouse cardiomyocytes, we iden-
tified GATA4/Gata4, HAND2/Hand2, MEF2C/Mef2C,
MYOCD/Myocd and TBX5/Tbx5 as conserved associated
TFs. More importantly, some of these conserved associated
TFs have not been well studied and could serve as interest-
ing candidates for further functional studies on tissue devel-
opment, physiology and cell state conversion. For example,
it still remains unclear how these conserved testis-associated
TFs function in the development and physiology of testis
tissues (Supplementary File 7).

Recent studies highlight that some RBPs might play key
roles in regulating cell homeostasis and differentiation post-
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Figure 4. Cell state correspondence maps between human and other mammalian species. (A) A correspondence map of various cell states between human
and mouse by TROM using associated protein-coding genes. Rows correspond to human cell states, and columns correspond to mouse cell states. (B) A
correspondence map of various cell states between human and mouse by TROM using associated TFs. Rows correspond to human cell states, and columns
correspond to mouse cell states. (C) A correspondence map of various cell states between human and chimpanzee by TROM using associated lncRNAs.
Rows correspond to human cell states, and columns correspond to chimpanzee cell states. In (A–C), higher TROM scores (defined as –log10 transformed
Bonferroni-corrected P-values from the overlap test) are shown in darker colors. Axis colors represent cell states, and colored boxes mark the prominent
mapping patterns.

transcriptionally (2,79). We identified conserved associated
RBPs for seven cell states (Table 1 and Supplementary File
9). The biological functions of some of these conserved as-
sociated RBPs in regulating tissue development and phys-
iology have been reported (see the references of related lit-
eratures in Supplementary File 10). For example, we suc-
cessfully identified PTBP1 and YTHDF2 as the conserved
associated RBPs of ESCs; they are well-known RBPs in
regulating ESC differentiation and development (80,81).
More importantly, we have little knowledge about most
of the conserved associated RBPs’ molecular functions in
controlling cell states, and these RBPs could be putative
post-transcriptional regulators. For example, we identified

CPSF4, an essential component of the 3′ end processing ma-
chinery (82), as one of the conserved associated RBPs of
ESCs. However, it remains to be verified whether CPSF4 is
involved in the regulation of self-renewal and pluripotency
properties of ESCs.

Inferring lncRNA functions using co-expression modules.
Although we have identified more conserved associated
lncRNAs than TFs and RBPs (Table 1 and Supplementary
File 11), fewer lncRNAs have known biological or molec-
ular functions. Hence, our results will provide important
new insights into the biological functions of lncRNAs. We
exemplified three conserved associated lncRNAs in Figure
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Table 1. Conserved cell-state associated TFs, RBPs and lncRNAs

Cell state

Total # of
conserved
associated TFs TFs supported by other evidence

Total # of
conserved
associated RBPs

RBPs supported by other
evidence

Total # of
conserved
associated
lncRNAs

lncRNAs supported by other
evidencea

ESC 33 APEX1, BLM, CARM1,
FOXD3, HCFC1, JARID2,
LIN28A, MYBBP1A, MYBL2,
MYCN, NANOG, POU5F1,
POU5F1B, PRDM14, PRDM5,
RARG, SALL4, TERF1, TP53,
ZFP42, ZNF281, ZSCAN10

22 EIF5A, LIN28A, PARP1,
PTBP1, RPL12, TRIM71,
YTHDF2

26 ––

Brain 7 ARNT1, BCL11A, FEZF2,
KCTD1, MAP3K10,
NEUROD6

2 –– 34 ––

Cerebellum 17 BARHL1, BARHL2, LHX1,
NEUROD1, ST18

4 ADARB1 58 TMEM161B-AS1
(ENSG00000247828,
blastnOrangutan.Locus 265345)

Heart 12 ANKRD1, EBF2, GATA4,
HAND2, HEYL, MEF2A,
MYOCD, NKX2-5, SMYD1,
TBX5, TBX20

4 RBM20, RBM24 63 H19 (ENSG00000130600)

Liver 9 CREB3L3, FOXA3, LPIN2,
MLXIPL, NR1H4, NR1l2,
NR1l3

3 ANG, AZGP1 48 ––

Kidney 12 GLIS2, HOXA9, HOXD8,
HOXD10, PAX8, SIM1

2 BICC1 69 LINC00853
(ENSG00000224805),
CYP4A22-AS1
(ENSG00000225506)

Testis 41 BRDT, CREM, FHL5,
GTF2A1L, MAK, OVOL1,
OVOL2, RFX2, SFMBT1,
SOX30, TCFL5, YBX2, ZFY

48 ADAD1, AKAP1, BOLL,
CALR3, CPEB2, DAZL,
DDX25, DDX4, DZIP1,
MEX3B, NSUN7, NXF3,
PIH1D3, PIWIL1,
PIWIL2, PLD6,
RANBP17, RBM44,
RPL10L, RPL39L,
TDRD5, YBX2

477 TUSC7 (ENSG00000243197)

This table summarizes the conserved associated TFs, RBPs and lncRNAs of seven cell states. Conservation definition: human-chimpanzee-bonobo-mouse for TFs and RBPs; human-chimpanzee-bonobo
for lncRNAs. Reported tissue-specific biological functions of some TFs, RBPs and lncRNAS are listed as ‘other evidence’ in the 3rd, 5th and 7th columns of this table. The complete list of conserved
associated TFs, RBPs and lncRNAs are provided in Supplementary Files 5, 8 and 10, respectively. Reference supports for conserved associated TFs and RBPs are summarized in Supplementary Files 6 and
9, respectively.
aAnnotated in lncRNAdb (http://www.lncrnadb.org).

5A, accompanied with their relative expression levels across
seven cell states. We identified LINC01108 as a conserved
associated lncRNA of ESCs and iPSCs, indicating that it
is a pluripotency lncRNA (83). This result is supported by
a report that knockdown of LINC01108 resulted in hu-
man ESC differentiation (83). We also identified CYP4A22-
AS1 (also known as ncRNA-a3) as a conserved associated
lncRNA of kidney. Although CYP4A22-AS1 was known to
function as an enhancer to stimulate TAL1 gene expression
in MCF7 cells (84), its regulatory mechanism in kidney re-
mains unclear. Moreover, NTM-IT was discovered as a con-
served associated lncRNA of cerebellum, but its molecular
functions are largely unknown. Same as the conserved asso-
ciated TFs, we also expect those conserved associated lncR-
NAs to be a valuable resource for future functional studies.

Although we have identified the associated cell types for
lncRNAs, we still do not clearly know their biological func-
tions, because every cell type has multiple biological func-
tions and we do not know which functions belong to each
lncRNA. Hence, we constructed a co-expression network
of lncRNAs and protein-coding genes to investigate the en-
riched biological functions of the lncRNAs. We analyzed
a set of 16 354 protein-coding gene families and 13 404

lncRNA families across the three primates (human, chim-
panzee and bonobo). We calculated Pearson correlations of
expression levels for all gene family pairs and ranked the
correlations in each species. Then we tested if the cross-
species combination of ranks was significantly (P-value <
0.01) better than expected by chance (see Materials and
Methods for details). Finally, the significant gene family
pairs formed a network with 15 333 nodes (14 369 protein-
coding and 964 lncRNAs) and 1 387 285 edges.

We then inferred the potential biological functions of
the 964 lncRNAs based on the functions of their co-
expressed protein-coding genes. Using the Markov cluster-
ing algorithm (50), we identified 19 clusters of highly inter-
connected genes (Figure 5B). The protein-coding genes in
these clusters are enriched with tissue-specific functions
(Figure 5C), such as sperm chromatin condensation, male
gamete generation and spermatogenesis in clusters 3 and 15
(testis), nervous system development and neurogenesis in
cluster 8 (neural tissues), cardiac muscle tissue development
and muscle system process in cluster 2 (heart and skeletal
muscle) and immune response and immune system process
in cluster 19 (immune cells and tissues). Another interesting
finding is that the conserved associated lncRNAs of various

http://www.lncrnadb.org
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Figure 5. Inferring functions of conserved associated long non-coding RNAs (lncRNAs). (A) Three examples of conserved associated lncRNAs in em-
bryonic stem cells (ESCs) and iPSCs (LINC01108, ENSG00000226673) (top), kidney (CYP4A22-AS1, ENSG00000225506) (middle) and cerebellum
(NTM-IT, ENSG00000238262) (bottom). The expression estimates of the three lncRNAs across seven cell states in human, chimpanzee and bonobo are
shown. (B) The 19 largest clusters in the co-expression network of protein-coding genes and lncRNAs. Colors of dots distinguish protein-coding genes
(orange) and lncRNAs (blue). (C) Enriched GO terms (biological processes) of the protein-coding genes in the 19 largest clusters. Higher enrichment scores
(defined as –log10 transformed Bonferroni-corrected P-values) are shown in darker colors. (D) Radar plots illustrate the extents to which the conserved
associated lncRNAs of different cell states are enriched in different clusters. The cell states include cerebellum (top left), heart (top right), kidney (bottom
left) and testis (bottom right).

cell states are consistently more enriched in the clusters that
have corresponding tissue-specific functions (Figure 5D).
For example, the conserved associated lncRNAs in cerebel-
lum are most enriched with the protein-coding genes in clus-
ter 14, whose most enriched biological functions are regu-
lation of neurogenesis and heparin metabolic process. No-
tably, the clusters with highest lncRNA proportions (clus-
ters 1 and 3) are enriched with spermatogenesis functions,

in agreement with the predominant lncRNA specificity in
testis (23).

DISCUSSION

A central goal of developmental biology is to understand
the molecular mechanisms underlying the differentiation of
ESCs or progenitor cells into various terminally differenti-
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ated tissues and cell types. Comparison of gene expression
profiles from different cell states shed new light on decipher-
ing such mechanisms. Here, we applied a statistical method,
TROM, to perform a comprehensive transcriptome map-
ping for diverse tissues and cell types within and across
four mammalian species. We identified associated protein-
coding genes as good cell state markers, which capture tran-
scriptome characteristics and lead to reasonable correspon-
dence maps of cell states both with-species and between-
species. We also identified associated lncRNAs, which are
also found as good cell state markers and even more cell
state specific than protein-coding genes. Furthermore, we
compared the transcriptomes of various cell states across
multiple mammalian species using TROM, and identified
conserved associated protein-coding genes and lncRNAs.
Finally, we confirmed known and discovered potential bi-
ological functions for these conserved associated genes. In
addition to uncovering novel insights into mammalian tran-
scriptomes, this study also provides a useful resource of con-
served cell-state associated TFs, RBPs and lncRNAs, which
characterize transcriptomes of various cell states and enable
researchers to explore new hypotheses in developmental bi-
ology.

We realize that our current cell state mapping results
are limited in two aspects. First, our tissue samples are
heterogeneous populations of cells, such as the brain tis-
sues containing multiple types of neurons. Because of that,
our mapping results cannot well detect neuronal subtypes,
though we partially resolved this issue by using lncRNAs or
TFs, which exhibit higher tissue expression specificity than
protein-coding genes. In addition, we found that some sam-
ples have obvious within-tissue heterogeneity. For example,
some chimpanzee liver samples have a stronger mapping to
mouse spleen and kidney than to mouse liver tissues. This
result is probably due to the fact that liver tissues include fi-
broblasts, vascular tissues and many other cell types in ad-
dition to hepatocytes. We anticipate that this heterogene-
ity issue could be resolved with the availability of single-
cell RNA-seq data. Despite this limitation, our mapping
strategy performs well in assessing transcriptome similari-
ties across a wide range of mammalian tissues and cell lines,
as demonstrated by our results.

Second, lncRNA expression estimates are not as accurate
as the protein-coding gene expression estimates, because
lncRNAs have much lower expression levels than those of
protein-coding genes. Many previous studies have revealed
that the median expression level of lncRNAs is only about a
tenth of that of mRNAs (36,38,85–89). This makes accurate
estimation of lncRNA expression a generally difficult task.
Our curated RNA-seq data sets were generated over a span
of more than five years, resulting in a great variety in their
sequencing depths and read lengths. Notably, the data we
used from early studies are short read RNA-seq (<50 base
pair single-end reads) of moderate sequencing depths (∼10–
20 million reads). Advances in RNA-seq library prepara-
tion and sequencing technologies now enable the genera-
tion of hundreds of millions of paired-end reads with longer
than 100 base pairs in length. Greater sequencing depths
and increased read lengths allow more accurate abundance
assessment of lowly expression genes (90), and thus could
improve our cell state mapping results. In addition, we used

polyadenylated RNA-seq data sets in our analysis. Please
note that compared with mRNAs, lncRNAs are signifi-
cantly enriched in non-polyadenylated RNA-seq samples
(88). Since our study is based on polyadenylated RNA-seq
data sets, we did not include the non-polyadenylated lncR-
NAs in our expression analyses. However, given that most
transcribed transcripts, including both mRNAs and lncR-
NAs, are poly(A)+ or bimorphic (91), we still expect our
lncRNA results to be biologically meaningful.

Past years have seen great progress in studying cell-state
transitions. For example, fibroblasts (92) and neural pro-
genitor cells (93) have been reprogrammed into pluripo-
tent stem cells, which can again differentiate into specific
lineages under defined growth conditions and/or through
gene expression perturbation (94). Some previous studies
revealed that knocking down and/or overexpression of key
regulatory factors in the initial cell state could aid success-
ful cell state conversion (7,95–96). However, most of those
studies only focused on transcription factors. Our study for
the first time provides the repertoires of various cell states’
associated protein-coding and non-coding genes identified
based on RNA-seq technologies. We anticipate that these
genes are valuable candidates for further functional studies
to improve the efficiency and fidelity of cell-state conversion
and reprogramming (78).

In addition to the increasingly accumulation of RNA-
seq data, a large amount of microarray data sets have been
produced and deposited during the past decade. To this
end, our cell state mapping approach allows us to integrate
RNA-seq and microarray data for studying more cell states
in more species. Our method can also be extended to in-
corporate additional epigenomic data types, such as DNA
methylation, histone modification, DNA accessibility and
genome-wide transcription factor binding data. Some re-
cent studies demonstrated that cell and tissue lineages could
be well clustered based on their DNA accessibility and his-
tone modification patterns (69,97–98). Ongoing efforts to
further the knowledge of cell-state associated regulatory
genes will greatly advance our understanding of ESC state
maintenance, as well as our capability in cell reprogram-
ming and directed differentiation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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