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Introduction
Tissue growth and morphogenesis are often regulated by pro-
grammed cell death or apoptosis during development. Although 
all cells are poised to activate apoptotic mechanisms when 
triggered by the appropriate extracellular or intrinsic signal,  
normally, relatively few do so. Thus, cellular mechanisms must 
exist to restrain apoptosis in the context of normal development.  
Conversely, loss of the ability to undergo apoptosis is thought 
to be at the heart of abnormal tissue growth that occurs in many  
cancers. Previous studies have demonstrated that apoptosis 
can be induced by activation of the JNK signaling pathway 
in response to pathogen infection (Takeda et al., 2008), cell 
competition in imaginal discs (Moreno and Basler, 2004), 
and morphogen gradient discontinuities (Takatsu et al., 2000;  
Adachi-Yamada and O’Connor, 2002). In some contexts, JNK 
is known to be activated downstream of the TNF homologue 
Eiger (Egr) and its receptor Wengen (Wgn) via a conserved sig-
naling cascade that includes Tak1 (TGF-–activating kinase 1;  
a JNK kinase kinase [JNKKK]), Hemipterous (Hep; a JNK kinase),  

and Basket (Bsk; the sole Jun kinase in Drosophila melano-
gaster; Igaki et al., 2002; Moreno et al., 2002). Downstream 
of JNK, the core apoptotic machinery, including Hid and cas-
pases, is activated to cause an apoptotic response (Takatsu et al., 
2000; Luo et al., 2007).

Although the downstream mechanisms controlling apo
ptosis are well understood, in many contexts, we understand less  
about the mechanisms that control activation of the JNK path-
way upstream of the apoptotic response. Recent studies sug-
gest that the Rho family GTPases RhoA, Rac, and Cdc42 are 
important components in JNK signaling during both morpho-
genesis and apoptosis (for review see Mathew et al., 2009). In 
epithelial cells, RhoA is known to promote assembly of actin 
filaments and regulate apical tension via its effectors, including 
formins and Rho kinase (Rok). Rac and Cdc42 can similarly 
regulate the cytoskeleton but have more diverse functions such 
as regulation of epithelial polarity and junctional stability. In 
addition, Rac is known to regulate apoptosis through activation 
of the upstream mixed lineage kinases (MLKs). MLKs contain 
a CRIB (Cdc42 and Rac interactive binding) domain that binds 
with activated Rac and Cdc42, resulting in kinase activation 

Precisely controlled growth and morphogenesis of 
developing epithelial tissues require coordination 
of multiple factors, including proliferation, adhesion, 

cell shape, and apoptosis. RhoA, a small GTPase, is 
known to control epithelial morphogenesis and integrity 
through its ability to regulate the cytoskeleton. In this study, 
we examine a less well-characterized RhoA function in 
cell survival. We demonstrate that the Drosophila mela-
nogaster RhoA, Rho1, promotes apoptosis independently 

of Rho kinase through its effects on c-Jun NH2-terminal 
kinase (JNK) signaling. In addition, Rho1 forms a com-
plex with Slipper (Slpr), an upstream activator of the JNK 
pathway. Loss of Moesin (Moe), an upstream regulator 
of Rho1 activity, results in increased levels of Rho1 at the 
plasma membrane and cortical accumulation of Slpr. 
Together, these results suggest that Rho1 functions at the 
cell cortex to regulate JNK activity and implicate Rho1 
and Moe in epithelial cell survival.
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promote Slpr activation via accumulation at the cell cortex. 
Collectively, these results suggest that Rho1 promotes JNK path-
way activity and therefore apoptosis through an interaction 
with Slpr, an upstream component of the JNK pathway.

Results
Moe mutant cells undergo apoptosis
Our previous work has shown that Moe imaginal disc cells lose 
epithelial integrity and reside basal to the epithelium (Speck 
et al., 2003). Further examination showed that many of these 
cells had pyknotic nuclei, which is reminiscent of cells un-
dergoing apoptosis. In addition, imaginal discs from MoeG0323 
animals were much smaller than those of wild-type animals 
(Fig. 1, A and B). As noted previously (Molnar and de Celis, 
2006), we found that these imaginal discs displayed abundant 
activated caspase staining (Fig. 1, A and B), indicating apo
ptotic cells, a phenotype which is suppressed by the expression 
of a wild-type Moe transgene (not depicted). Elevated caspase 
activity was also observed in cells coexpressing a Moe RNAi 
transgene (Karagiosis and Ready, 2004) and UAS-GFP under 
the control of a dppblnk-Gal4 driver (dpp>MoeRNAi; Fig. 1 D). 
This effect was cell autonomous, although we noted that some 
GFP-negative cells were caspase positive (Fig. 1 D, arrow-
head), likely because of the perdurance of Moe RNAi as 
dividing cells move out of the dpp expression domain (not 
depicted). Additionally, we observed cells within the ima-
ginal epithelium that were caspase positive (Fig. S1 A), in-
dicating that apoptosis was not a secondary effect of loss of 
epithelial integrity.

Moe blocks apoptosis by negatively 
regulating Rho1 activity
Previous studies have suggested that Moe negatively regulates 
Rho1 activity in imaginal disc epithelia (Speck et al., 2003; 
Hipfner et al., 2004; Molnar and de Celis, 2006). If this hypoth-
esis is correct, we would predict that Moe cells should display 
increased cortical Rho1 because active (GTP bound) Rho1 is 
primarily associated with the cell membrane. To confirm that 
this is indeed the case, we used TCA fixation to extract soluble 
(inactive, GDP bound) Rho, thereby enhancing cortical (active, 
GTP bound) Rho staining (Yonemura et al., 2004; Piekny et al., 
2005). Using MoeG0323 wing discs that expressed a UAS-Moe+ 
transgene in the posterior compartment under the control of an 
engrailed-Gal4 (enGal4) driver (half-rescued discs), we found 
that cortical Rho1 staining was increased in Moe cells com-
pared with wild-type cells (Fig. 1 G). Pixel intensities across 
the boundary between wild-type and mutant cells within the 
wing epithelium were quantified to confirm this observation 
(Fig. S2 A). Conversely, overexpression of an activated Moe 
transgene (MoeT559D; Speck et al., 2003) reduced levels of api-
cal, cortical Rho1 (Fig. 1 H and Fig. S2 B). These results are 
consistent with an effect of Moe on localization or stability of 
Rho1 at the cell cortex, although we cannot exclude the pos-
sibility of changes in levels of Rho1 expression.

Our observation that cortical Rho1 staining is up- 
regulated in Moe epithelial cells suggests that the ability of 

(Burbelo et al., 1995; Böck et al., 2000). RhoA is also activated 
in apoptotic cells, although its precise role in the apoptotic 
process is not well understood (Vidal et al., 2006; for review 
see Mathew et al., 2009). Interestingly, at least some upstream 
kinases, including Slipper (Slpr; Polaski et al., 2006), appear 
to be localized to the plasma membrane. This observation sug-
gests that many of the upstream events in JNK pathway activa-
tion occur at the cell cortex, although the functional relevance 
of this localization has not been elucidated.

The ERM (ezrin/radixin/moesin) proteins function as key  
organizers of the cell cortex through their ability to interact with 
the plasma membrane, transmembrane proteins, membrane-
associated cytoplasmic proteins, and the underlying cytoskeleton 
(Bretscher et al., 2002). Recent genetic studies indicate that 
ERM mutations in a variety of model systems disrupt epithelial 
integrity, lumen morphogenesis, the apical cytoskeleton, recep-
tor trafficking, and cell survival (Gautreau et al., 1999; Speck 
et al., 2003; Göbel et al., 2004; Karagiosis and Ready, 2004; 
Saotome et al., 2004; Chorna-Ornan et al., 2005). Although 
many of the functions described for ERM proteins involve 
regulation of the cortical actin cytoskeleton, not all pheno-
types seem directly related to this process. For example, in  
Drosophila, the sole ERM protein, Moesin (Moe), has been 
shown recently to specifically regulate Hedgehog signaling 
(Molnar and de Celis, 2006). Furthermore, studies indicate that 
ERM proteins regulate RhoA activity in a variety of cellular 
contexts (Takahashi et al., 1997; Speck et al., 2003; Molnar and 
de Celis, 2006).

Of the known ERM functions, perhaps the least well 
understood is their role in cell survival and apoptosis. A previous  
study in mammalian cells demonstrated that ectopic expression 
of a mutation in ezrin Tyr-353, a known substrate for the epi-
dermal growth factor receptor, to a nonphosphorylatable form  
results in apoptosis (Gautreau et al., 1999). This effect is appar-
ently mediated through the protein kinase Akt, downstream of 
phosphatidylinositol 3-kinase. Subsequent studies have also im-
plicated ezrin in promoting cell survival, possibly by negatively 
regulating proapoptotic Fas signaling (Monni et al., 2008; Kuo 
et al., 2010). However, other studies have suggested that ezrin is 
proapoptotic in some cells (Parlato et al., 2000; Chakrabandhu 
et al., 2007). Studies in Drosophila have shown that reduction 
in ERM function results in apoptosis in a Rho1- and JNK-
dependent manner (Hipfner and Cohen, 2003; Hipfner et al., 
2004; Molnar and de Celis, 2006), although the relationships 
between these different pathways has not been explored.

The potential connections between epithelial morpho-
genesis, cell death, and RhoA regulation compelled us to look 
more closely at the mechanistic basis of apoptosis in Moe mu-
tant cells. In this study, we show that Moe negatively regulates 
cortical levels of Rho1, the Drosophila RhoA homologue, in 
imaginal epithelial cells. In the absence of Moe function, JNK 
signaling is activated in a Rho-dependent fashion, resulting in 
apoptosis. This effect is dependent on Slpr and Tak1 operat-
ing upstream of JNK. Furthermore, we demonstrate that Rho1 
binds to Slpr, and unlike Rac and Cdc42, this binding is inde-
pendent of the Slpr CRIB domain. Intriguingly, Rho1 interacts 
with Slpr independent of its GTP-binding state and appears to 

http://www.jcb.org/cgi/content/full/jcb.200912010/DC1
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RNAi transgene in wing discs heterozygous for a Rho1-null  
mutation. Reducing Rho1 dosage suppressed apoptosis in 
Moe-depleted cells, suggesting that Rho1 functions together 
with Moe in apoptosis (Fig. 1 E). This interaction appears spe-
cific to the Rho1 GTPase because reducing the dose of Cdc42  
(Fig. S1 O) or all three Drosophila Rac orthologues, Rac1, Rac2, 
and Mtl, simultaneously (Fig. S1 P) did not suppress Moe 
RNAi–induced apoptosis. Furthermore, as shown previously 
(Vidal et al., 2006), we found that ectopic expression of Rho1 
itself induced apoptosis (Fig. 1 F), which is consistent with the 
model that the apoptotic effects of Moe depletion are caused by 
increased Rho1 activity.

The apoptotic cascade in Drosophila involves induction 
of one or more of the proapoptotic genes reaper, hid, and grim 
(RHG). These genes are thought to act by stimulating degrada-
tion or suppressing translation of DIAP1, which in turn inhibits 
activation of the downstream caspases (Holley et al., 2002; Yoo 
et al., 2002). To determine whether RHG gene expression is 
up-regulated in Moe-deficient and Rho1-overexpressing cells, 
we examined hid transcription using a lacZ enhancer trap line  
inserted in the hid locus (hid-lacZ). We found that hid was  
transcriptionally up-regulated both in Moe-deficient cells 
(Fig. S1 B) and in those overexpressing Rho1 (Fig. 2, A and B), 
suggesting that both decreased Moe function and increased 
Rho1 function induce apoptosis via RHG gene expression.

The JNK pathway regulates apoptosis 
downstream of Rho1
JNK signaling has been shown to be an important regulator 
of the apoptotic response in imaginal epithelia (Moreno and 
Basler, 2004). The JNK pathway is a multilevel kinase cascade 
that when activated leads to phosphorylation of the transcrip-
tion factors Jra (Jun-related antigen) and Kay (Kayak), which 
form the AP1 transcriptional activator complex. To ask whether 
Rho1-dependent apoptosis involves JNK pathway activity, we 
determined whether known targets of JNK signaling are up-
regulated in Moe-deficient or Rho1-expressing cells. Puckered 
(Puc), a Jun kinase phosphatase, is a transcriptional target of 
the JNK signaling pathway and acts in a negative feedback 
loop to dampen JNK signaling (Martín-Blanco et al., 1998). To 
examine puc activity, we used the pucE69 allele, which serves as 
a lacZ reporter of puc expression and also results in modest up-
regulation of JNK signaling. Cells ectopically expressing Rho1 
strongly up-regulated the puc-lacZ reporter (Fig. 2, C and D) 
and underwent apoptosis (Fig. 2, G and H). Moe-deficient cells 
behaved similarly (Fig. S1, C–H). We also observed increased 
expression of Mmp1 (Matrix metalloproteinase 1) in Rho1-
overexpressing cells (Fig. 2, E and F), which is an independent 
readout for JNK activity (Uhlirova and Bohmann, 2006), sup-
porting the notion that JNK signaling is activated by increased 
levels of Rho1.

To ask whether JNK pathway activity is involved in 
Rho1-induced apoptosis, we conducted genetic interaction 
experiments by reducing the dosage of different components 
of the JNK pathway in tissues expressing a UAS-Moe RNAi  
or UAS-Rho1+ transgene. Initially the genetic interaction ex-
periments were conducted in tissues expressing the UAS-Moe 

Moe to promote cell survival might be related to its ability to  
negatively regulate Rho1. As an initial test, we examined ge-
netic interactions between Moe and Rho1 by expressing the Moe 

Figure 1.  Moe suppresses apoptosis and the canonical apoptotic cascade. 
(A and B) Hemizygous MoeG0323 wing discs have increased activated cas-
pase staining (A) compared with wild-type wing discs (B). (C) The wing 
disc expression domain of dpp-Gal4, a driver used throughout this 
study, is illustrated. (D) Expression of a UAS-Moe RNAi transgene under 
a dpp-Gal4 driver (expression region is marked by UAS-GFP; D and D) 
also induces apoptosis (merged images shown in D). Arrowhead in  
D indicates caspase-positive, GFP-negative cells, presumably caused by the 
perdurance of Moe RNAi. Reducing the dosage of Rho1 (Rho172R/+) in a 
background expressing the UAS-Moe RNAi transgene with the dpp-Gal4 
driver suppresses apoptosis (compare cells in the GFP stripe in E with D). 
(F) Expression of a UAS-Rho1+ transgene under the dpp-Gal4 driver also 
induces apoptosis. Note that in D and F, the GFP-positive stripe of cells 
is wider than in wild type because cells that lose epithelial integrity move 
basally and out of the stripe of dpp-Gal4 expression. (G) In MoeG0323 
wing cells fixed using TCA, cortical Rho1 protein levels are increased 
compared with adjacent posterior cells rescued by a UAS-Moe+ transgene 
driven by enGal4 (en>Moe+). The morphology of this imaginal disc is 
distorted because of the Moe mutation. (H) In contrast, similar expression 
of two copies of an activated Moe transgene (en>2X MoeT559D) results in  
decreased levels of cortical Rho1 protein. Arrowheads indicate the 
anterior–posterior compartment boundary, and posterior is to the right 
in all panels. (I) The wing expression domain of enGal4 is shown. For 
all genotypes, examples shown are representative of ≥20 imaginal discs 
examined. Bar, 25 µm.
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bskDN transgene (not depicted) as well as by overexpressing 
Puc (Fig. S1 J). These results suggest that Bsk functions to-
gether with Rho1 in regulating apoptosis.

To further define how JNK signaling is activated, we 
looked at upstream JNK pathway components. Two proteins, 
Hep and Mkk4 (Map kinase kinase 4), function at the level 
of JNK kinase in Drosophila. Hep is involved in dorsal clo-
sure, cell shape changes, and epithelial morphogenesis (Glise 
et al., 1995; Agnès et al., 1999). In contrast, little is known 
about how Mkk4 functions. Expression of a hep RNAi trans-
gene suppressed Rho1-induced apoptosis (Fig. 2 K). A simi-
lar suppression was seen with the hep RNAi transgene and the 
hepR75 hypomorphic allele in Moe-deficient cells (Fig. S1 L, 
and not depicted). In contrast, reducing the levels of Mkk4 in 
Moe-deficient cells by RNAi or an insertional mutation had no 
effect on apoptosis (unpublished data).

Upstream of Hep in the JNK pathway are five Drosophila 
JNKKKs: Mekk1, Tak1, Slpr, Ask1 (Apoptotic signal-regulating 
kinase 1), and Wallenda (Wnd). JNK signaling is activated for 
diverse cellular processes, and the JNKKK level of the path-
way is thought to be where specificity is achieved. Mekk1 is 
activated in stress response (Ryabinina et al., 2006), Slpr is  
required for dorsal closure and morphogenesis (Stronach  
and Perrimon, 2002; Polaski et al., 2006), Wnd regulates synap-
tic growth (Collins et al., 2006), Tak1 is involved in innate 
immunity and apoptosis (Takatsu et al., 2000; Igaki et al., 2002;  
Park et al., 2004; Geuking et al., 2005), and Ask1 is involved 
in apoptosis (Kuranaga et al., 2002; Ryabinina et al., 2006). 
All five JNKKKs are transcribed in wing discs (unpublished 
data). However, knockdown of any of these kinases singly 
using RNAi or dominant-negative (DN) transgenes has no vis-
ible effect on apoptosis in Moe-deficient wing discs (unpub-
lished data), raising the possibility of functional redundancy at 
the JNKKK level. We note that with the exception of the wnd 
RNAi line, all of these JNKKK RNAi or DN lines have been 
tested for efficacy by us (UAS-slpr RNAi; unpublished data) or 
by others (Mekk1 RNAi [Brun et al., 2006], Tak1 DN [Takatsu 
et al., 2000], Tak1 RNAi [Igaki et al., 2006], and Ask1 DN 
[Kuranaga et al., 2002; Kuranaga and Miura, 2005]).

To examine the possibility of functional redundancy 
between JNKKKs, we first depleted Tak1 and Ask1 in Moe 
mutant cells because both have been shown to be involved in 
apoptosis, but found no effect (unpublished data). Recently, 
Polaski et al. (2006) reported that reducing the level of Tak1 
in slpr mutants increases the percentage of embryos with dor-
sal closure defects, suggesting partial functional redundancy 
between these genes. Additionally, they found that slpr-null 
mutants have misoriented male genitalia, which is a phenotype 
observed in animals with apoptotic defects (Macías et al., 2004; 
McEwen and Peifer, 2005; Polaski et al., 2006). To ask whether 
Slpr and Tak1 might function redundantly, we depleted both by 
RNAi in Rho1-expressing cells. We found that this treatment 
significantly suppressed apoptosis (Fig. 2 L), as it did in Moe-
depleted cells (Fig. S1 M), which is consistent with the idea 
that Slpr and Tak1 function downstream of Rho1.

Further upstream of the JNK pathway in some tissues are 
the TNF ligand Egr and its receptor Wgn. Transcripts from both 

RNAi transgene because a recombinant chromosome of  
dpp-Gal4blnk, UAS-Moe RNAi can be maintained as a viable 
stock (making the genetics simpler), whereas dpp-Gal4blnk, 
UAS-Rho1+ cannot be maintained as a stock because of higher 
levels of Rho1 expression. Each positive genetic interaction 
found in the Moe RNAi background was confirmed in the 
UAS-Rho1+ background. We first examined Bsk, the sole Jun 
kinase in Drosophila. We found that reducing Bsk levels, using 
a bskDN transgene, suppressed apoptosis in Rho1-expressing 
cells (Fig. 2 I). Similarly, overexpression of Puc, which nega-
tively regulates Bsk, strongly suppressed apoptosis in Rho1- 
expressing cells (Fig. 2 J). Similar results were observed in cells 
lacking Moe function using either a bsk RNAi (Fig. S1 I) or 

Figure 2.  Ectopic Rho1 expression induces JNK pathway activation and 
apoptosis. (A and B) Compared with wild-type discs (A), a reporter for 
hid, a proapoptotic gene and canonical apoptotic pathway component,  
is strongly up-regulated in cells that express a UAS-Rho1+ transgene (B).  
(C and D) puc-lacZ, a reporter for JNK signaling, is increased in dpp-Gal4; 
UAS-Rho1+–expressing cells. (E and F) Mmp1, an additional downstream 
target of JNK signaling, is also up-regulated in cells expressing the Rho1 
transgene (compare E with F). (G and H) Apoptosis, caused by expression 
of dpp-Gal4; UAS-Rho1+ (dpp>Rho1; G) is increased by reducing the dos-
age of puc (H) and thereby increasing JNK signaling. (I–K) Conversely, 
apoptosis induced by dpp>Rho1+ is suppressed by blocking JNK signal-
ing at the level of Bsk (UAS-bskDN [I] or UAS-puc [J]), the sole Jun kinase, 
or Hep (UAS-hepRNAi; K), a JNK kinase. (L) Knockdown of both Slpr and 
Tak1, two JNKKKs, together in dpp>Rho1+-expressing cells suppresses 
apoptosis to a large extent. For all genotypes, examples shown are repre-
sentative of ≥20 imaginal discs examined. Bar, 25 µm.
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pathway components involved with Moe in regulating apopto-
sis. Consistent with this idea, we found that removing one copy 
of Rho1 strongly suppressed the dpp>MoeRNAi, pucE69/+ 
phenotype (Fig. 3 E). Similarly, reducing Hep, Slpr, or Tak1 
activity suppressed this phenotype, which is consistent with 
our results in imaginal discs (Fig. 2, K and L). In contrast, re-
ducing the level of Ask1 had no effect (Fig. 3 E), and Wnd and 
Mekk1 knockdown gave an intermediate result (not depicted), 
suggesting that either these JNK pathway components are not 
involved downstream of Rho1 or that these transgenes do not 
reduce gene function efficiently enough to observe an effect.

Rho1 forms a complex with Slpr
To address how Rho1 regulates JNK activity upstream of apo
ptosis, we first looked at downstream effectors of Rho1. We 
examined a possible role for the two major Rho1 effectors, 
Diaphanous (Dia) and Rok. Expression of a constitutively active 
(CA) dia transgene results in apoptosis (Janody and Treisman, 
2006), but expression of a dia RNAi transgene did not affect 
apoptosis in Moe-deficient cells (Fig. S3 B), even though it did 
strongly reduce Dia protein (Fig. S3 C). Similarly, expression 
of a previously characterized CA rok transgene (rokCA; Winter  
et al., 2001) failed to induce apoptosis (Fig. S3 D). The effective-
ness of this transgene was confirmed because it caused the for-
mation of a furrow in the expressing cells similar to that formed 
by the expression of UAS-Rho1+ (Fig. 2 I). The phenotypic 

of these genes are present in wing discs (unpublished data). 
However, knockdown of either egr or wgn had no visible effect 
on apoptosis in Moe mutant cells (unpublished data), suggest-
ing that Rho1 interacts with JNK signaling independently of 
these components.

The data presented so far support a model in which ele
vated Rho1 activity in Moe cells results in activation of JNK 
signaling and induction of apoptosis. To provide a quantitative 
assay for interactions between Moe, Rho1, and members of the 
JNK pathway, we examined phenotypic interactions between 
these genes in the adult wing. Wings from dpp>MoeRNAi adults 
had a reduced area between veins 3 and 4, where the Gal4 driver 
is expressed (Fig. 3, compare A with B). Although reducing the 
dosage of puc alone had no wing phenotype (Fig. 3 C), when 
combined with dpp>MoeRNAi, it caused a severely reduced 
or rudimentary wing phenotype (Fig. 3, D and E). An identical 
phenotype was seen when dpp>Rho1 was expressed in combi-
nation with reducing puc dosage (Fig. 3 E). Similar phenotypes 
have been described for dpp regulatory alleles (Masucci et al., 
1990; Bangi and Wharton, 2006), suggesting that the rudimen-
tary wing phenotype is caused by apoptosis-induced ablation 
of the Dpp-expressing cells, resulting in severe disruption of 
the Dpp-patterning gradient.

In light of these results, we reasoned that the adult wing 
phenotype of dpp>MoeRNAi, pucE69/+ animals might provide 
a highly sensitive background in which to study the effects of 

Figure 3.  Hep, Tak1, and Slpr function together with Moe and Rho1 in the adult wing. (A and B) Expression of dpp>MoeRNAi on its own slightly 
reduces the area in the region of expression between wing veins L3 and L4 (marked by asterisks; compare A with B) but does not otherwise affect wing 
morphology. (C) Reducing puc dosage alone has no phenotype. However, reducing puc dosage in the dpp>MoeRNAi background or in a dpp>Rho1 
background severely reduces the wing blade (quantifications in E; example of phenotype in dpp>MoeRNAi background in D). (E) This phenotype is 
suppressed by reducing the level of Rho1, slpr, hep, Tak1, or POSH but not by reducing the activity of Ask1. For quantification, n > 400 wings for each 
genotype. (F–I) Wing phenotypes scored were rudimentary (F), serrated (G), vein defect (H), and normal (I), which has a reduction in the area between 
wing veins L3 and L4. Bars, 475 µm.

http://www.jcb.org/cgi/content/full/jcb.200912010/DC1
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As an alternative model, we considered the possibility that 
Rho1 activates JNK signaling through binding to an upstream 
component of the pathway. Previous studies have shown that 
the Rho family GTPases Cdc42 and Rac1 bind to and activate 

difference between ectopic Rho1 and RokCA expression sug-
gests that increased actin–myosin contractility alone is not 
sufficient to cause apoptosis and that Rho1-mediated apopto-
sis does not involve either Dia or Rok.

Figure 4.  Rho1 interacts with Slpr independent of its GTP-binding state. (A) A schematic diagram of the structure of the Slpr indicating different domains 
and their amino acids coordinates. Lines below indicate constructs used to determine regions required for interactions with Rho1. LZ, Leu zipper domain. 
(B and C) S2 cells were cotransfected with expression constructs for the indicated forms of Slpr, Rho1, Cdc42, and Rac1. (B) Wild-type, CA (Rho1V14), 
and DN (Rho1N19) forms of Rho1 all coimmunoprecipitate with full-length Slpr protein, although Rho1N19 is consistently the strongest. (C) Deletion of the 
CRIB domain greatly diminishes interaction between Slpr and the CA forms of Cdc42 (Cdc42V12) and Rac1 (Rac1V12) but does not affect interaction with 
Rho1. (D) In vitro–translated Slpr containing the SH3, kinase, Leu zipper, and CRIB domains preferentially binds to GTP-loaded Rac1 and Cdc42-GST 
fusion proteins. In contrast, this domain shows no preference for GTP- versus GDP-loaded Rho1. (E–G) The kinase domain of Slpr is required for co-IP 
with Rho1 (E) but not for co-IP with Cdc42 (F) or Rac1 (G). (H) Endogenous Slpr from cultured S2 cells coimmunoprecipitates with DN Rho1 (Rho1N19).  
IB, immunoblot.
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and Cdc42 bound to Slpr preferentially, whereas Rho1 bound 
to Slpr regardless of its GDP/GTP-binding state (Fig. 4 D). 
Although these data strongly suggest that Slpr and Rho1 in-
teract directly, we note the possibility that other proteins nec-
essary for complex formation may be present in the in vitro 
translation mixture.

Because both Slpr and Tak1 act redundantly in apoptosis 
in Rho1-expressing cells in the wing disc, we asked whether 
Tak1 is also in a complex with Rho1 or Slpr. We found that 
Tak1 coimmunoprecipitated with both Slpr and Rho1 in cul-
tured cells (Fig. S4 A), which is consistent with the possibility 
that a larger protein complex may form for activation of the 
JNK pathway, although we have not yet tested this directly.

Rho1 regulates Slpr subcellular localization
Our results suggest that Rho1 binding to Slpr activates JNK 
signaling and that in this context, the nucleotide-binding state 
of Rho1 is unimportant. Because both Rho1 and Slpr localize  
cortically in cells, we wondered whether Rho1 subcellular local
ization is important for JNK activation. If cortically localized 
Rho1 promotes JNK pathway activation, a mutation that dis-
rupts Rho1 localization should be incapable of activating JNK 
signaling. To test this idea, we generated a UAS-Rho1C189S 

the MLK subfamily of Ser/Thr kinases (for review see Gallo 
and Johnson, 2002). Activation of MLKs occurs by binding of 
the GTPase to the CRIB domain, which is thought to relieve  
autoinhibition of the protein for kinase activation (Burbelo 
et al., 1995; Böck et al., 2000). Although Rho itself has not 
been previously implicated in this role, we wondered whether 
Rho1 might bind to the Drosophila MLK homologue, Slpr, 
thereby activating JNK signaling. In accordance with previous 
studies (Teramoto et al., 1996; Böck et al., 2000), we found 
that in Drosophila cultured cells, Slpr preferentially coimmuno
precipitated with the constitutively GTP-bound form of Cdc42 
(Cdc42V12). Preference for the CA (Rac1V12) versus DN forms 
(Rac1N17) of Rac1 was less obvious but still apparent (unpub-
lished data). We also found that Rho1 coimmunoprecipitated 
with Slpr, but to our surprise, the DN, GDP-bound form of 
Rho1 (Rho1N19) coimmunoprecipitated most strongly (Fig. 4,  
A and B). Reciprocal coimmunoprecipitations (co-IPs) gave sim-
ilar results (not depicted), and we observed that endogenously 
expressed Slpr protein in cultured cells coimmunoprecipitated 
with Rho1N19 (Fig. 4 H). Consistent with the observation 
that Rho1N19 forms a complex with Slpr, expression of the  
UAS-Rho1N19 transgene in wing discs induced apoptosis through 
JNK signaling (Fig. 5, A and B).

Because activated Cdc42 and Rac1 are thought to directly 
bind to MLKs through an interaction with the CRIB domain, we 
assessed whether the co-IP of Rho1 with Slpr is also dependent 
on this domain. We compared the ability of activated Cdc42 
and Rac1 or DN Rho1 to coimmunoprecipitate with a form of 
Slpr from which the CRIB domain was deleted (SlprCRIB). As 
expected, SlprCRIB coimmunoprecipitated only weakly with 
Cdc42 and Rac1 (Fig. 4 C). Surprisingly, co-IPs between the 
DN form of Rho1 and Slpr were unaffected by the CRIB dele-
tion, demonstrating that the ability of Rho1 to form a complex 
with Slpr is independent of the CRIB domain (Fig. 4 C).

To map more precisely the domain required for inter
action with Rho1, we constructed domain-specific Slpr deletions. 
We found that an N-terminal construct (Slpr1–432), which con-
tains just the SH3 and kinase domains, coimmunoprecipitated  
with Rho1, as did a construct with only the SH3 domain  
deleted (unpublished data). In contrast, deletion of the kinase 
domain (Slprkinase) greatly diminished the formation of a 
Slpr–Rho1 complex but did not noticeably alter the co-IP of 
Cdc42 or Rac1 (Fig. 4, E–G). These results suggest that the ki-
nase domain is specifically required for Rho1–Slpr interactions 
but not for interactions between Slpr and either Rac or Cdc42. 
Experiments designed to test whether the kinase domain is suf-
ficient for Rho1–Slpr co-IP gave ambiguous results because the 
Slpr kinase domain appeared to interact nonspecifically with 
all Rho family GTPases when expressed on its own (unpub-
lished data).

Because Rho1 has not been reported previously to bind to 
MLKs, we wished to confirm the interaction using in vitro pull-
down assays. An in vitro–translated N-terminal Slpr construct 
(Slpr14–540) containing the SH3, kinase, and CRIB domains 
bound to GST-Rho1 (Fig. 4 D), suggesting that the two proteins 
interact directly. Consistent with our co-IP experiments using S2 
cells, in vitro pull-down assays showed that GTP-bound Rac1  

Figure 5.  Rho1-induced apoptosis is dependent on its cortical localization. 
(A) Expression of a DN Rho1 (Rho1N19) transgene under the dpp-Gal4 
driver induces apoptosis. (B) This effect requires JNK signaling, as inhib-
iting Bsk by expressing a DN transgene in cells expressing Rho1N19 
suppresses apoptosis. (C) Expression of a Rho1 transgene with a mis-
sense mutation (C189S) in the CAAX box does not result in apoptosis.  
(D) Reducing the level of cortically localized Rho1 using an allele of Rho1 
(Rho1E3.10) with a missense mutation (C189Y) in the CAAX box suppresses 
apoptosis caused by expression of the UAS-Moe RNAi transgene under 
dppblnk-Gal4 (dpp>MoeRNAi). Bar, 25 µm.

http://www.jcb.org/cgi/content/full/jcb.200912010/DC1
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consisting of Slpr, POSH, and other upstream components of 
the JNK pathway, resulting in pathway activation (Fig. 7).

Discussion
Studies in Drosophila have suggested that Rho GTPases oper-
ate upstream of the JNK pathway activation in morphogenesis 
and that JNK activation in epithelial cells results in apoptosis 
(Igaki et al., 2002; Kuranaga et al., 2002; Moreno et al., 2002; 
Stronach and Perrimon, 2002; Woolner et al., 2005). However, 
to date, there has been only a single report of a role for Rho1 
in apoptosis in Drosophila (Vidal et al., 2006), and the mecha-
nistic basis for this role has not been explored. Based on obser-
vations that Moe-deficient cells undergo apoptosis and display  
increased Rho1 activity (Fig. 1; Hipfner and Cohen, 2003; Speck  
et al., 2003; Hipfner et al., 2004; Molnar and de Celis, 2006), 
we have investigated a possible role for Rho1 in apoptosis in 
the imaginal disc epithelium. We have demonstrated that in-
creased Rho1 at the cell cortex, caused either by loss of Moe 
function or ectopic Rho1 expression, triggers apoptosis via 
JNK pathway activation. Based on our results, we propose a 
model in which membrane-associated Rho1 forms a complex 
with Slpr, an MLK which functions upstream of JNK, thereby 
activating Slpr and downstream components of the JNK path-
way at the cell cortex and inducing apoptosis (Fig. 7). These 
results strongly implicate Moe and Rho1 as potential upstream 

transgene, which encodes Rho1 with a mutation in the CAAX 
box, which is the site of posttranslational lipid modifica-
tion required for membrane association. Expression of this 
transgene, at similar or greater levels than the UAS-Rho1+ 
and UAS-Rho1N19 transgenes (Fig. S5, A–D), did not induce  
apoptosis (Fig. 5 C). Importantly, Rho1C189S coimmunoprecipi-
tated with Slpr to a similar extent as the other Rho1 alleles  
(Fig. S5 E), suggesting that forming a complex with Rho1 alone 
is not sufficient to activate Slpr and instead that localization 
at the plasma membrane is important. In addition, we asked 
whether heterozygosity for the Rho1E3.10 allele, which carries a 
missense mutation (C189Y) in the CAAX box (Halsell et al., 
2000), therefore reducing the level of membrane-bound Rho1  
by half (while leaving the total Rho1 levels unchanged), be-
haves similarly to other Rho1 alleles in suppressing Moe pheno
types. This mutation suppressed apoptosis in Moe cells as 
effectively as the null Rho1 allele (Fig. 5 D compared with 
Fig. 1 [D and E]), again suggesting that Rho1 subcellular lo-
calization, not the overall protein level of Rho1, is important 
for activation of the JNK signaling pathway.

If Rho1 at the cell cortex interacts with Slpr to pro-
mote its activation, we predict that cells with increased cor-
tical Rho1 should display increased Slpr levels. To test this, 
we examined Slpr localization and abundance in Moe mutant 
cells, which we have demonstrated display increased levels 
of cortical Rho1 (Fig. 1 G). As predicted, anti-Slpr staining 
was up-regulated in wing imaginal disc cells depleted of Moe 
function with an RNAi transgene (Fig. 6, A and B). To exam-
ine this further, we quantified Slpr staining pixel intensity in 
this epithelium comparing sections through the apical domain 
with more basolateral sections for four discs, all of which 
gave similar results. Rho1 staining is primarily localized to 
the apical domain; thus, we expect that if the observed Slpr 
abundance is Rho1 dependent, Slpr should be increased pri-
marily in the apical domain. Antibody staining revealed that 
Slpr protein level was increased specifically in the apical do-
main of Moe cells compared with wild-type cells (Fig. 6 C) 
but did not change basally, as predicted.

Scaffolding proteins that link together multiple signaling 
components are known to play an important role in the JNK 
pathway (Dhanasekaran et al., 2007). POSH (plenty of SH3s) 
is a scaffolding protein that mediates JNK activation during  
apoptosis in mammalian fibroblasts (Tapon et al., 1998), neu-
rons (Xu et al., 2003), and Xenopus laevis embryos (Kim et al., 
2005). In vertebrate systems, POSH is known to interact with  
MLK (JNKKK) family members, JNK kinases, and JNKs 
(Xu et al., 2003). To ask whether Drosophila POSH func-
tions in JNK pathway activation in Moe-deficient cells, we 
depleted POSH by transgenic RNAi in Moe imaginal disc 
cells and found dramatically decreased apoptosis (Fig. S1 N). 
Knockdown of POSH also suppressed the adult wing pheno-
type of dpp>MoeRNAi, pucE69/+ animals (Fig. 3 E). We found 
that POSH coimmunoprecipitated with Rho1, Slpr, and Tak1 
(Fig. S4 B), suggesting that these proteins form a complex 
when expressed in S2 cells. Collectively, our results suggest a 
model in which cortically localized Rho1, whose levels are neg-
atively regulated by Moe, promotes the formation of a complex 

Figure 6.  The cortical abundance of Slpr is increased in Moe mutant cells. 
(A) Expression of dpp>MoeRNAi results in increased apical Slpr localiza-
tion. (B) A higher magnification view of the region indicated by the box in 
A is presented showing increased Slpr punctate localization in the apical 
domain of Moe-depleted cells. (C) Pixel intensity across the region of the 
disc, from anterior (A) to posterior (P), shown in B indicates that when 
Moe levels are knocked down, apical (1.5 µm below surface) Slpr levels 
are much greater than in the wild-type cells. More basally (10.5 µm below 
surface), Slpr levels are uniform. Bars, 25 µm.

http://www.jcb.org/cgi/content/full/jcb.200912010/DC1
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preventing basal lamina breakdown, does not prevent cell death 
(unpublished data). Similarly, blocking apoptosis in Moe-deficient 
cells does not prevent the loss of epithelial integrity and extru-
sion from the epithelium. In addition, we observed activated 
caspase staining in Moe cells that were still well integrated 
into the imaginal epithelium (Fig. S1 A), suggesting that loss 
of cell or basal lamina contact is not required for the induction 
of the apoptotic response.

Several important questions regarding our model for Moe’s 
requirement for cell survival remain unanswered. Although 
Moe is known to regulate Rho1 activity, we do not yet un-
derstand the mechanistic basis of this functional interac-
tion. Previous studies have described interactions between 
ERM proteins and Rho guanine nucleotide exchange fac-
tors (Takahashi et al., 1998; D’Angelo et al., 2007), a Rho 
GTPase-activating protein (GAP; Hatzoglou et al., 2007), 
and Rho GDP dissociation inhibitor (GDI; Takahashi et al., 
1997), although their functional significance in vivo has not 
been examined. In principle, any of these interactions could 
explain the effects of Moe loss of function on Rho1 activity, 
including the apparent alteration in Rho1 cortical abundance 
in Moe tissues. For example, if Moe inhibits the activity of 
a Rho guanine nucleotide exchange factor at the cell cortex, 
cells lacking Moe function would be expected to accumu-
late cortical Rho1. Conversely, if Moe positively regulates 
a Rho GAP, perhaps by interacting with and recruiting the 
GAP to the cortex, a similar phenotype is expected in Moe-
deficient cells.

A particularly intriguing aspect of the results presented 
in this study is the observation that Rho1 binding to Slpr and  
activation of the JNK pathway are independent of GTP bind-
ing (Fig. 4, B and D; and Fig. 5, A and B). Although GTP- 
independent activation of JNK signaling by Rho1 seems sur-
prising, we note that this finding is consistent with previous 
observations that expression of DN Rho1N19 is sufficient to 
activate the JNK pathway (Bloor and Kiehart, 2002) and that 
expression of wild-type Rho1 induces apoptosis in imaginal 
epithelia (Vidal et al., 2006). Together with our observation 
that cortical Rho1 staining is enhanced in Moe-deficient cells 
and decreased in cells that express an activated Moe transgene, 
these results suggest that the ability of Rho1 to control JNK 
pathway activity may be mediated by its subcellular localiza-
tion rather than its GTP-binding state. However, it is impor-
tant to note that in most contexts, these two aspects of Rho1 
function are tightly linked. Normally, only GTP-bound Rho is 
localized to the cell cortex because Rho GDP is bound to Rho 
GDI in the cytoplasm (for review see Dovas and Couchman, 
2005). However, in situations in which Rho1 is ectopically 
expressed at higher than normal levels, endogenous Rho GDI 
may be titrated out, allowing Rho1 to associate with the plasma 
membrane regardless of its activation state. Consistent with 
this idea, we found that when expressed at high levels, Rho1N19 
is cortically localized (not depicted) and triggers activation of 
JNK signaling and apoptosis as effectively as does wild-type 
Rho1 (Fig. 5 A). In contrast, Rho1C189S, a form of Rho1 which 
binds Slpr but does not localize to the membrane, does not in-
duce apoptosis when overexpressed (Fig. 5 C).

regulators of JNK signaling in developing epithelial cells, up-
stream of apoptosis.

Consistent with our model that membrane-associated 
Rho1 promotes the formation of a Slpr-containing complex at 
the cell cortex, a recent study showed that endogenous Slpr 
is cortically localized in epithelial cells (Polaski et al., 2006). 
Furthermore, we have shown that loss of Moe and a concomi-
tant increase in cortical Rho1 results in increased Slpr accu-
mulation at the cell cortex (Fig. 6). In addition to interacting 
with Slpr, we found that Rho1 coimmunoprecipitates with 
both Tak1 (Fig. S4 A) and Hep (not depicted), which is con-
sistent with our genetic interaction data in imaginal discs and 
adult wings (Fig. 2, K and L; and Fig. 3 E). MLKs such as 
Slpr are known to interact with scaffolding proteins that link 
together multiple kinase components in the pathway. We have 
found that reducing POSH, a JNK scaffolding protein, can sup
press loss of Moe-induced apoptosis (Fig. 3 E and Fig. S1 N) 
and that POSH can form a complex with Rho1, Slpr, and Tak1 
in cultured Drosophila cells (Fig. S4 B). These results are con-
sistent with a model in which Rho1 and Slpr form a complex 
together with other JNK components to activate the JNK path-
way, although we have not demonstrated that all four compo-
nents are present in a single complex.

An alternative model for the induction of apoptosis in Moe-
deficient and Rho1-overexpressing cells is that cytoskeletal dis-
ruption and loss of epithelial integrity, which are characteristic 
of these manipulations, trigger the apoptotic response. For ex-
ample, a process termed anoikis has been described in mam-
malian epithelia in which cells that lose contact with the basal 
lamina undergo apoptosis via mechanisms that are not well 
understood (Ma et al., 2007). However, the evidence suggests  
that anoikis or a similar mechanism is not at work in Moe-
deficient cells in the following ways. Blocking activation of 
matrix metalloproteinases in Moe-deficient cells, and thereby 

Figure 7.  A model for Moe and Rho1 function in apoptosis based on 
genetic, biochemical, and subcellular localization data. Moe negatively 
regulates Rho1 activity, at least in part by preventing its localization to the 
cell cortex. Cortical Rho1 forms a complex that contains Slpr, Tak1, Hep, 
and POSH and functions to activate the JNK pathway. Downstream of the 
JNK pathway, hid transcription is up-regulated to trigger apoptosis.
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To compare Rho1 transgene expression levels, each genotype was stained 
using the same antibody solutions and imaged using the same confocal 
gain and offset settings. To observe cortical Rho1 localization, discs were 
fixed in 10% TCA on ice for 20 min. Antibodies were used at the following 
concentrations: rabbit anti–cleaved caspase-3 at 1:1,000 (Cell Signaling 
Technology), mouse anti-MMP1 at 1:300 (cocktail of 3A6B4, 3B68D12, 
5H7B11; Developmental Studies Hybridoma Bank), rat anti–DE-cadherin 
(DCAD2) at 1:250 (Developmental Studies Hybridoma Bank), mouse anti-
Moe at 1:40,000, rabbit anti-Moe at 1:20,000 (provided by D. Kiehart, 
Duke University, Durham, NC), mouse anti–-galactosidase at 1:1,000 
(Promega), mouse anti-Rho1 (P1D9) at 1:50 (Developmental Studies 
Hybridoma Bank), rat anti–phospho-ERM (297S) at 1:10 (provided by 
S. Tsukita, Kyoto University, Kyoto, Japan; Matsui et al., 1998), rabbit anti-
Dia at 1:5,000 (Afshar et al., 2000), rabbit anti-Slpr at 1:400 (Polaski  
et al., 2006), and rabbit anti–laminin A (provided by J. Fessler, University 
of California, Los Angeles, Los Angeles, CA). Fluorescent secondary anti-
bodies were obtained from Jackson ImmunoResearch Laboratories, Inc. 
and used at a dilution of 1:1,000. Tissues were mounted in ProLong 
Antifade (Invitrogen). Confocal images were taken on a laser-scanning 
confocal microscope (LSM510; Carl Zeiss, Inc.) using the LSM acquisition 
software (Carl Zeiss, Inc.) and either a 40× NA 1.3 EC Plan-NeoFluar 
objective or a 20× NA 0.8 Plan-Apochromat objective. Images were then 
compiled in Photoshop 7.0 (Adobe).

Expression constructs
cDNA clones for Rho1, Rac1, and Cdc42 were used as templates for 
PCR amplification reactions using gene-specific primers that added  
5 BamHI and 3 EcoRI restriction sites. These PCR products were then sub-
cloned into the Gateway entry vector pENTR3C (Invitrogen). Site-directed 
mutagenesis using mutagenic primers was performed on the pENTR3C 
constructs to make the Rho1V14, Rho1N19, Rho1C189S, Rac1V12, Rac1N17, 
Cdc42V12, and Cdc42N17 constructs. LR Clonase recombination reactions 
were then performed to put these constructs into the pAFW (actin pro-
moter, 3× N-terminal Flag tag), pAHW (actin promoter, 3× N-terminal HA 
tag), and pTW (derived from pUAST, untagged) vectors (obtained from 
the Drosophila Genomics Resource Center).

P-element transformation was used to generate Rho1C189S trans-
genic lines (Duke University Model Systems Genomics). Multiple lines 
were tested and found to have similar effects. Two individual lines with 
different expression levels were used for further analysis.

slpr was PCR amplified from the cDNA clone GH26507 (Drosophila 
Genomics Resource Center) with primers incorporating a 5 KpnI and  
3 EcoRI restriction site. This PCR fragment was then subcloned into 
the pENTR3C vector. Because the original EST contains a point mutation 
changing amino acid D314 to Y (reported in Polaski et al., 2006), site-
directed mutagenesis was performed on this subclone to change the muta-
tion back to the original amino acid. This clone was then used as the 
template for all further experiments. All slpr fragments were PCR amplified 
with 5 KpnI and 3 EcoRI restriction sites and cloned into the pENTR3C 
vector. The deletions of the CRIB (deletes aa 503–514) and kinase domain 
(deletes aa 141–445) were performed using site-directed mutagenesis. 
LR Clonase reactions were performed to put slpr constructs into the pAW 
(actin promoter, untagged), pAFW, and pAHW vectors.

Tak1 was PCR amplified from the cDNA clone LD42274 (Drosophila 
Genomics Resource Center) with primers incorporating a 5 KpnI and 
3 XhoI restriction site. This PCR fragment was then subcloned into the 
pENTR3C vector. LR Clonase reactions were performed to put Tak1 
into the pAFW and pAHW vectors. The UAS-POSH-Flag construct 
was provided by N. Harden (Simon Fraser University, Burnaby, British 
Columbia, Canada).

UAS-dia RNAi construct
To build the UAS-dia RNAi transgene, nt 1542–2088 from dia were PCR 
amplified with primers incorporating a 5 BamHI and 3 EcoRI site using 
a dia cDNA (provided by S. Wasserman, University of California, San 
Diego, La Jolla, CA). This PCR product was cloned into the pENTR3C 
vector and then transferred into the pRISE (Kondo et al., 2006) destina-
tion vector using a LR Clonase reaction. The resulting pRISE dia RNAi 
clone was checked for proper recombination. P-element transformation 
was used to generate transgenic lines (Duke University Model Systems 
Genomics). To provide better knockdown of Dia protein, a recombinant 
line carrying two copies of the UAS-dia RNAi was used.

IPs
8.0 × 106 S2 cells were transfected with the indicated constructs 
using DDAB (dimethyldioctadecyl-ammonium bromide) at 250 µg/ml 

Cdc42 and Rac1 interactions with Slpr are strongly CRIB 
domain dependent (Fig. 4 C). Consistent with previous stud-
ies, Cdc42 and Rac1 bind to Slpr preferentially in the GTP-
bound state (Fig. 4; for review see Gallo and Johnson, 2002). 
In contrast, binding of Rho1 to Slpr seems independent of the 
CRIB domain and is strikingly GTP independent. In addition, 
only Rho1 shows a strong dependence on the kinase domain 
for Slpr binding, suggesting that it interacts with Slpr through a 
fundamentally different mechanism than do the other Rho fam-
ily GTPases. Further dissection of the Rho1-binding domain of 
Slpr may shed light on how Rho1 binding affects Slpr activity.

A remaining question is whether the ability of Rho1 
and Moe to control apoptosis is developmentally regulated 
in epithelial tissues. Previous studies have demonstrated that 
Moe activation and its ability to down-regulate Rho1 activ-
ity is controlled by a Sterile-20 kinase, Slik (Hipfner et al., 
2004; Hughes and Fehon, 2006; Carreno et al., 2008; Kunda 
et al., 2008). Additionally, Slik itself has been demonstrated 
to be required for cell survival (Hipfner and Cohen, 2003). 
However, at the moment, little is known about how Slik ac-
tivity may be regulated in development. Further work will 
be required to understand the roles of Slik, Moe, and Rho1 
in regulating apoptosis in developing tissues as well as their 
possible role in other nondevelopmental events such as tissue 
homeostasis or response to wounding, in which epithelial in-
tegrity and apoptosis function coordinately.

Materials and methods
Drosophila stocks and crosses
All crosses were performed at 25°C. Moe double-stranded RNA depletion 
experiments were performed using a dppblnk-Gal4, UAS-MoeRNAi, UAS-
GFPNLS/TM6B recombinant line. The MoeRNAi transgene (provided by 
D. Ready, Purdue University, West Lafayette, IN) was described previously 
(Karagiosis and Ready, 2004). All other experiments using the dpp-Gal4 
driver were performed using a dppblnk-Gal4, UAS-GFPNLS/TM6B recom-
binant line. Half-rescued imaginal discs were generated by crossing 
MoeG0323/FM7-GFP (Speck et al., 2003; Karagiosis and Ready, 2004) 
to enGal4; UAS-Myc-Moe. The UAS-Rho1+ 2.1A and UAS-Rho1N19 trans-
genes used for overexpression experiments were provided by M. Mlodzik  
(Mount Sinai School of Medicine, New York, NY). Genetic interaction tests  
between JNK signaling components in Moe-deficient or Rho1-overexpressing  
cells were performed using the following stocks: UAS-Tak1RNAi 1388R-1, 
UAS-slprRNAi 2272R-1, UAS-hepRNAi 4353R-2, 4353R-3, and UAS-
bskRNAi 5680R-1 (obtained from the National Institute of Genetics stock 
center, Japan), UAS-egr RNAi, UAS-wgn RNAi, and UAS-dAsk1 DN (pro-
vided by M. Miura, University of Tokyo, Bunkyo-ku, Tokyo, Japan), UAS-
Tak1 DN (provided by T. Adachi-Yamada, Kobe University, Kobe, Japan), 
UAS-Mekk1RNAi (provided by B. Lemaitre, École Polytechnique Fédérale 
de Lausanne, Lausanne, Switzerland), UAS-POSHRNAi (#26655-line A;  
#26657-line B; obtained from the Vienna Drosophila RNAi Center), 
and UAS-Myc-puc (provided by D. McEwen, University of Texas Health 
Science Center at San Antonio, San Antonio, TX). The Cdc424 allele 
was described previously (Genova et al., 2000). A UAS-Timp transgene 
was expressed to block the activity of matrix metalloproteinases (pro-
vided by A. Page-McCaw, Rensselaer Polytechnic Institute, Troy, NY). The 
Rac1j11 Rac2 Mtl/TM6B, Rho1E3.10/Cyo, UAS-rokCAT3.1, UAS-bskDN, 
and UAS-LacZ lines were obtained from the Bloomington Stock Center. 
Recombinant lines used were UAS-slprRNAi, pucE69/TM6B, UAS-hepRNAi, 
pucE69/TM6B, UAS-Rho1, pucE69/TM6B, and UAS-Rho1, hid-lacZ/
TM6B. The presence of the lacZ reporter in each was confirmed by 
-galactosidase staining.

Immunostaining
Wandering third instar wing discs were dissected in Schneider’s medium 
containing serum and fixed in 2% paraformaldehyde solution for 20 min. 
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