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Abstract: Open global forest cover data can be a critical component for Reducing Emissions from
Deforestation and Forest Degradation (REDD+) policies. In this work, we determine the best threshold,
compatible with the official Brazilian dataset, for establishing a forest mask cover within the Amazon
basin for the year 2000 using the Tree Canopy Cover 2000 GFC product. We compared forest cover
maps produced using several thresholds (10%, 30%, 50%, 80%, 85%, 90%, and 95%) with a forest
cover map for the same year from the Brazilian Amazon Deforestation Monitoring Project (PRODES)
data, produced by the National Institute for Space Research (INPE). We also compared the forest
cover classifications indicated by each of these maps to 2550 independently assessed Landsat pixels
for the year 2000, providing an accuracy assessment for each of these map products. We found that
thresholds of 80% and 85% best matched with the PRODES data. Consequently, we recommend using
an 80% threshold for the Tree Canopy Cover 2000 data for assessing forest cover in the Amazon basin.
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1. Introduction

Tropical forests play an essential role in the carbon (C) cycle [1]. However, human actions through
deforestation and forest degradation can revert the natural tropical forest C sink. It is estimated that
deforestation is the second largest source of C emission into the atmosphere, emitting between 0.81
and 1.14 Pg C annually [2-5]. Degradation is another important driver of carbon emission within
tropical regions. In the Amazon, during drought years, C emissions from forest fires can exacerbate
old-growth forest deforestation emissions by more than half [6].

Brazil has been monitoring the extent of the Amazon rainforest since the late 1980s using
Landsat images available through the Brazilian Amazon Deforestation Monitoring Project (PRODES),
a project operated by the Brazilian National Institute of Space Research in collaboration with the
Ministry of the Environment and the Brazilian Institute of Environment and Natural Resources [7].
Since deforestation is the second largest CO, emission driver [8], PRODES allowed Brazil to be a pioneer
in reducing emissions under the Reducing Emissions from Deforestation and Forest Degradation
(REDD+) policy [9]. For the correct monitoring of forest areas, there is a need to draw a baseline,
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or year of reference, to begin monitoring. Consequently, a map representing the forest area at the
beginning of forest monitoring is important [10]. With the baseline forest (a forest mask) established,
one can quantify new deforestation as well as degraded areas by identifying the affected areas on the
initial map. Recently, such forest monitoring initiatives have gained popularity [11,12], especially after
the emergence of remote sensing applications using cloud computing as a platform [13].

The Google Earth Engine platform has allowed studies on a planetary scale [14]. To date, the uses
of the Google Earth Engine have been diverse, such as mapping malaria risks [15], environmental
monitoring [13,16], and urban mapping [17,18]. Hansen et al. [13] were among the first researchers to
use the Google Earth Engine platform. They mapped forest changes worldwide from 2000 to 2013 using
Landsat imagery collection (30 m of spatial resolution). In the current version of the mapping engine
(v1.6), the authors processed images up to 2018 [19]. A highlight of their research was the construction
of a raster map of the 2000 baseline named “Tree Canopy Cover 2000 GFC Data’ (TreeCover2000).
TreeCover2000 represents tree cover for the year 2000 at a 30-meter spatial resolution. These data were
generated using multispectral satellite imagery from the Landsat 7 thematic mapper plus (ETM+)
sensor [13,20]. Cloud-free observations from over 600,000 images were analyzed using Google Earth
Engine to determine per-pixel tree cover using a supervised machine learning algorithm (regression
tree approach) [13,20]. The regression tree training data were obtained from Ikonos (4 m of spatial
resolution) and QuickBird (2.8 m of spatial resolution) image classifications, in which tree cover was
transformed to percent values [21,22]. The result was a map of percentage values of tree cover, ranging
from 0% to 100%, where 0% represented no tree cover and 100% represented maximum tree cover
for a pixel. These data require a user to choose a percentage threshold value to determine whether a
pixel is considered forest (i.e., cover value equal to or greater than the threshold). Several thresholds
have been empirically chosen in the literature to define forest cover with the TreeCover2000 data.
For example: Grecchi et al. [23], Taubert et al. [24], Brinck et al. [25], and Esquivel-Muelbert et al. [26]
used 30%; Shimabukuro et al. [27] used 50%; Wagner et al. [28] used 80%; and Tyukavina et al. [29]
used 83%. However, as far as we know, no study has focused on testing the performance of these
thresholds in delimiting the Amazonian rainforests in order to match with other countries’ definition
of forest. Without a threshold standardization, comparisons among studies and with official statistics
become impossible.

Bearing in mind that the Amazonian forest extends beyond Brazil’s borders and, apart from Brazil,
few other Amazonian countries have long-term, large-scale forest mapping projects in place, the use of
the TreeCover2000 dataset is essential for establishing baselines of intact forest areas. It is also valuable
to have measurements that are comparable across countries. However, it is not clear what threshold
would best delimit Amazonian forests. To answer this question, we compared the PRODES forest
cover map with maps produced using different thresholds of the TreeCover2000 data for an area within
the Brazilian portion of the Amazon basin. We also compared the classifications in all the maps to 2550
independently assessed Landsat pixels indicating forest coverage in the year 2000.

2. Materials and Methods

2.1. Study Area

We used the Brazilian state of Mato Grosso (Figure 1) for this analysis due to its physiographic
heterogeneity. Mato Grosso includes flooded fields (Pantanal), natural fields and savannas (Cerrado),
and deciduous and evergreen forests (Amazonia) [30]. This region is also part of the “arc of
deforestation”, an area of intense deforestation that borders the Cerrado [31] and recently considered a
consolidated agricultural frontier [32]. Consequently, Mato Grosso is potentially the only place that
provides the full range of phytophysiognomies found in the Amazon basin as a whole.
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Figure 1. Location of the state of Mato Grosso, representative biomes, and the spatial distribution of
the 10 km? plots used as samples. The smaller map shows the extent of the Amazon basin [33].

2.2. Datasets

The Tree Canopy Cover 2000 GFC data (TreeCover2000) were obtained from the Global Forest
Change website [19]. These data represent the percentage of all vegetation greater than 5 m in height,
not necessarily natural forest, with values ranging from 0% (no vegetation greater than 5 m in height)
to 100% (total cover) [13]. The global dataset is divided into 10-degree by 10-degree segments (tiles).
Four such tiles were necessary to get complete coverage of Mato Grosso (00N_060W, 00N_070W,
10S_60S, and 10S_70S). The spatial resolution of the data is 0.00025 degrees, which is equivalent to
30 m in the Equator region.

The PRODES data were obtained from [34]. The data have a 1:250,000 mapping scale and represent
areas of old-growth forests mapped manually from radar and optical remote sensing data. We used
the vector data from 2014. From that, we reconstructed the forest cover for the year 2000 by converting
all deforested polygons from the period 2001 to 2014 back to forest, with the remainder labelled as
non-forest. These data were then converted to a 30 m raster basis to be compatible with Tree Canopy
Cover 2000 data.

An independent reference sample of forest and non-forest coverage in the study area was obtained
from Tyukavina et al. [29,35]. In their study, 10,000 Landsat (5, 7, and 8) 30 m pixels were classified over
the period from 1999 to 2013 across the entire Brazilian Amazon. Of these sample pixels, 2550 were
located in Mato Grosso. As this work is based on the year 2000, an external evaluator assessed each of
the 2550 pixels in Mato Grosso and labelled each as forest or non-forest based on the year 2000 data.

2.3. Methods

About 9329 10 by 10 km plots (samples) were established across Mato Grosso (Figure 1). Of these
plots, 4994 (53%) were in the Amazon biome, 3703 (40%) were in the Cerrado biome, and 632 (7%) were
in the Pantanal biome. Initially, we calculated the forest cover percentage from the PRODES data within
each of the 9329 plots. Then, we calculated the forest cover proportion from the Tree Canopy Cover
2000 maps, which used the following thresholds: (1) greater than 10%; (2) greater than 30%; (3) greater
than 50%; (4) greater than 80%; (5) greater than 85%; (6) greater than 90%; and (7) greater than 95%.
Any pixel that exceeded these thresholds was considered as forest. We selected these thresholds based
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on preliminary tests and the previous studies from the literature [23,24,26-29], representing a wide
range of thresholds. Hereafter, we refer to these thresholds as 10%, 30%, and so on.

The proportions of forest cover within each of the 9329 plots defined by each threshold and
the PRODES forest cover were compared using linear regression, suggested by Shimabukuro et
al. [30]. This method is a robust and straightforward approach to validating remote sensing mapping.
The coefficient of determination (R?), intercept, slope, and the root mean squared error (RMSE) were
used for comparison among the various regression equations to determine the best threshold to use.
The ideal value for R? was 1, 0 for the intercept, 1 for the slope, and 0 for the RMSE. We used the
bootstrap method for this analysis. In this approach, 10,000 interactions were performed, where
each interaction was randomly raffled 10% of the 9329 plots with replacement. Then, the means and
standard deviations of the 10,000 R?, intercept, slope, and the RMSE were calculated. All analyses
were performed using the R statistical software package [36]. To calculate the forest proportion within
each of the 10 by 10 km plots, the “Ism_c_pland” function of the “landscapemetrics” package [37] was
used. Linear regressions were performed using the "In" native function of the R software.

Moreover, we built a confusion matrix that was used to tabulate the differences in classification
between the maps and the reference samples using the “Accuracy Assessment” tool [38], developed by
the Food and Agriculture Organization of the United Nations (FAO), from the 2550 Landsat sample
pixels (year 2000) provided by Tyukavina et al. [29]. As suggested by Olofsson et al. [39] and the
FAO [38], we determined a weighted matrix error using the ratio of the area of each class sampled over
the total area of each class (Equation (1)). This weighted error was then used to calculate the standard
error (Equation 2) and the confidence interval for the estimated area of each class,

pij=——" )

)

where p; ; is the proportional area for each cell in the matrix, W; corresponds to the class weights (the
proportional area of class i), 1; ; is the sample count in cell ij, n; is the total sample count in class i,
and S(p) is the standard error of the area estimates assuming simple random sampling.

3. Results

Our analyses revealed that the lower thresholds (10%, 30%, and 50%) included forest cover in
areas covered by savanna vegetation within the Cerrado biome (see Figure 1) [40], in the south-central
portion of Mato Grosso (see Figures 2 and 3) [40]. Maps produced using the 80%, 85%, and 90%
thresholds showed greater visual similarity to the PRODES forest map (Figures 2 and 3).
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Figure 2. Spatial arrangement of each threshold assessed in the study compared to the Brazilian
Amazon Deforestation Monitoring Project (PRODES) data.
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Figure 3. Maps of differences between spatial arrangements of each threshold assessed in the study
compared to the PRODES data. Red (—1) represents pixels that were non-forest cover using PRODES
and forest cover using the Tree Canopy Cover 2000 data. White (0) represents pixels classified into
the same class using both datasets. Blue (1) represents pixels that were classified as forest cover using
PRODES and non-forest cover using Tree Canopy Cover 2000 data.
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As expected, the 95% threshold map indicated the smallest forest cover, about 37% of Mato Grosso,
and the 10% threshold map indicated the largest forest cover, about 66% of Mato Grosso (Table 1).
The PRODES map indicated approximately 41% of forest cover within Mato Grosso in 2000, which
was most closely matched by the 90% threshold.

Table 1. Forest cover assessment for the year 2000 in Mato Grosso, Brazil, according to the PRODES
map and maps produced using various thresholds with the Tree Canopy Cover 2000 data.

Map Forest (%) Non-Forest (%)
PRODES map 41 59
10% Threshold 66 34
30% Threshold 63 37
50% Threshold 58 42
80% Threshold 49 51
85% Threshold 47 53
90% Threshold 40 60
95% Threshold 37 63

We found that forest cover maps produced from the 10%, 30%, and 50% thresholds tended to
overestimate forest cover based on the 9329 sample plots, as evidenced by the concentration of the
majority of the points above the 1:1 line (Figure 4). The maps produced using thresholds of 90% and
95% underestimated forest cover, as more points fell below the 1:1 line than above it. Finally, the forest
maps produced using the 80% and 85% thresholds showed a more even dispersion of points around
the regression line and the 1:1 line.
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Figure 4. Regression between the forest percentage within all of 9329 (10 by 10 km) samples cells using
different thresholds from the Tree Canopy Cover 2000 data and their corresponding percentages on a
reference map developed using the PRODES data. The dashed red line is the 1:1 line. The blue line is
the average regression line from 10,000 interactions for each threshold tested.
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All the 10,000 regressions were significant at a level of 1% (p-values less than 0.001). The R?
increased from an average of 0.612 + 0.021 to 0.869 + 0.013 for 10% and 85%, respectively. The intercept
coefficient values decreased from an average of 41.560 + 1.058 for the 10% threshold to an average of
0.978 + 0.473 for the 95% threshold. At the same time, the slope coefficient values increased from an
average of 0.591 + 0.013 for the 10% threshold to an average of 0.888 + 0.009 for the 85% threshold.
Finally, the RMSE had a lower average of 13.060 + 0.644 for the 85% threshold, and a higher average of
17.910 + 0.498 for the 10% threshold.

The accuracy assessment results showed that the poorest match (lowest overall accuracy) was
obtained with the 95% threshold (71%) and the best match (highest overall accuracy) was obtained
with the 50% threshold (87%) (Table 2). The PRODES data had the third lowest match (74%), albeit
slightly higher than the 90% threshold. The 80% threshold best matched with the PRODES data in
terms of the estimated cover of non-forest and forest in Mato Grosso.

Table 2. Result from 10,000 bootstrap interactions. Intercept, slope, coefficient of determination (R?),
root mean squared error (RMSE), and p-values of the linear regressions are used for comparing the
tested thresholds to the PRODES data. SD is the standard deviation.

Threshold R? (+ SD) Intercept (+ SD) Slope (+ SD) RMSE (+ SD)  p-value (+ SD)
10% 0.612 + 0.021 41.560 + 1.058 0.591 + 0.013 17.910 + 0.498 0+0
30% 0.669 + 0.020 35.870 £ 1.029 0.655 + 0.013 17.520 + 0.542 0+0
50% 0.752 + 0.019 26.630 + 0.953 0.755 + 0.012 16.500 + 0.620 0+0
80% 0.860 + 0.014 13.290 + 0.693 0.874 + 0.009 13.380 + 0.646 0+0
85% 0.869 + 0.013 10.351 + 0.693 0.888 + 0.009 13.060 + 0.644 0£0
90% 0.857 + 0.013 4.120 + 0.513 0.872 + 0.010 13.540 + 0.550 0+0
95% 0.852 + 0.013 0.978 + 0.473 0.879 + 0.010 13.960 + 0.010 0+0

Not surprisingly, the highest user’s accuracy (85%) for non-forest cover was obtained with the 10%

threshold and declined with increasing threshold size (Table 3). The highest user’s accuracy (99%) for
forest cover was found with the 95% threshold and declined with decreasing thresholds. The pattern
for the producer’s accuracy was the opposite of that of the user’s accuracy. The highest producer’s
accuracy for non-forest cover (99%) was found for the 95% threshold and the highest producer’s
accuracy for forest cover (94%) was found for the 10% threshold. The thresholds that best resembled
those obtained by the PRODES data were 85% (user’s accuracy) and 50% (producer’s accuracy).
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Table 3. Error matrix, accuracy, and confidence interval for each class (forest and non-forest) at each threshold compared to the PRODES data.

L. Observed Estimated Area Estimated Area + 95%  User’s Accuracy Producer’s Overall
Predictions Class (%) Confidence (km?) (%) Accuracy (%) Accuracy (%)
Non-Forest Forest
0% Non-forest 544 9% 393 352,159 + 12,849 85 64 o
e 300 1601 60.7 543,914 + 12,849 84 94
. Non-forest 600 118 39.4 353,006 + 12,606 84 71
30% Forest 244 1579 60.6 543,067 + 12,606 87 93 86
) Mo enes: 688 186 386 346,277 + 12,568 79 82
50% it 156 1511 614 549,796 + 12,568 91 74 &
. Non-forest 787 389 36.0 322,227 + 13,082 67 93
80% Forest 57 1308 64.0 573,846 + 13,082 9% 77 82
) Non-forest 803 461 35.2 315,401 + 13,256 64 95
85% Forest 41 1236 64.8 580,672 + 13,256 97 73 80
000, Non-forest 821 651 343 307,281 + 13,985 56 97 .
o Forest 23 1046 65.7 588,792 + 13,985 98 62
050 Non-forest 832 737 33.6 302,454 + 14,090 53 99 -
Eorent 12 960 66.4 593,618 + 14,090 99 57
PRODES Non-forest 748 572 36.6 327,194 + 15,134 57 89 s

Forest 96 1125 63.4 567.323 + 15,134 92 66
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4. Discussion and Conclusions

We compared Amazonian forest cover using Tree Canopy Cover 2000 and the PRODES data within
a portion of the Amazon basin in Brazil. By creating several forest maps from applying thresholds to the
Tree Canopy Cover 2000 data, we showed that there are relevant differences in the quantity and spatial
distribution of forest cover depending on the threshold chosen. For instance, we found that thresholds
of 80% and 85% for the Tree Canopy Cover 2000 data best matched the PRODES forest cover data
across Mato Grosso State in Brazil. For example, the lower thresholds evaluated—between 10% and
50%—overestimated forest cover, especially within savanna formations, where trees are sparser within
the landscape. Thus, the choice of less conservative thresholds may inflate the quantification of forest
disturbances, such as fires [27], deforestation [13], selective logging [23], forest fragmentation [24-26],
and, consequently, carbon emissions accounting.

We emphasize that the choice of a threshold level for the Tree Canopy Cover 2000 data will depend
on the nature of the application. If the change in forest cover through time is being assessed, then,
obviously, consistency through time among threshold levels is more important than the threshold level
ultimately chosen for the assessment. However, in general, based on our analyses, we recommend
using an 80% threshold with the Tree Canopy Cover 2000 data for assessing forest cover in the
Amazon basin.

The approach we presented may help countries currently involved in REDD+ in the Amazon
region. Forest reference levels can be based on Tree Canopy Cover 2000 data using our suggested
threshold (UNFCCC, 2010) [41]. Presently, Brazil, Colombia, Ecuador, Guyana, Peru, and Suriname are
members of REDD+ [42]. A standardization of methods across countries would be beneficial for the
evaluation of the effectiveness of countries’ efforts to mitigate emissions from land cover change.
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