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Abstract 

Background: We describe and evaluate a deep network algorithm which automatically contours organs at risk in the 
thorax and pelvis on computed tomography (CT) images for radiation treatment planning.

Methods: The algorithm identifies the region of interest (ROI) automatically by detecting anatomical landmarks 
around the specific organs using a deep reinforcement learning technique. The segmentation is restricted to this ROI 
and performed by a deep image-to-image network (DI2IN) based on a convolutional encoder-decoder architecture 
combined with multi-level feature concatenation. The algorithm is commercially available in the medical products 
“syngo.via RT Image Suite VB50” and “AI-Rad Companion Organs RT VA20” (Siemens Healthineers). For evaluation, tho-
racic CT images of 237 patients and pelvic CT images of 102 patients were manually contoured following the Radia-
tion Therapy Oncology Group (RTOG) guidelines and compared to the DI2IN results using metrics for volume, overlap 
and distance, e.g., Dice Similarity Coefficient (DSC) and Hausdorff Distance  (HD95). The contours were also compared 
visually slice by slice.

Results: We observed high correlations between automatic and manual contours. The best results were obtained 
for the lungs (DSC 0.97,  HD95 2.7 mm/2.9 mm for left/right lung), followed by heart (DSC 0.92,  HD95 4.4 mm), bladder 
(DSC 0.88,  HD95 6.7 mm) and rectum (DSC 0.79,  HD95 10.8 mm). Visual inspection showed excellent agreements with 
some exceptions for heart and rectum.

Conclusions: The DI2IN algorithm automatically generated contours for organs at risk close to those by a human 
expert, making the contouring step in radiation treatment planning simpler and faster. Few cases still required manual 
corrections, mainly for heart and rectum.
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Introduction
In radiation treatment planning, delineating the target 
volumes and organs at risk (OAR) is one of the most 
important and time-consuming tasks. The dose-volume 
histogram analysis for plan evaluation, contour-based 
visual guidance in image-guided radiation therapy, and 
the dose-response assessment of radiation side effects 
are depending on the accuracy of the delineation [1, 2]. 
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The contouring workload will further increase due to 
more widely used strategies of adaptive planning where 
the treatment plan is adapted to anatomical changes such 
as tumor shrinkage, requiring re-contouring during the 
fractionated treatment course.

The need for fast and accurate delineation has led to a 
variety of automated computer-based approaches. Most 
autosegmentation algorithms used in clinical practice 
today are atlas-based and required sophisticated atlas 
creation of self-made contours, with difficulties in case 
of anatomical variations, low contrast organs or when 
the anatomy is modified by the presence of a tumor. In 
addition, atlas-based segmentation is computationally 
intensive and can take several minutes to complete [3–5]. 
In the last years, artificial intelligence (AI) and machine 
learning approaches were developed for autosegmenta-
tion aiming to improve accuracy and shorten the time 
needed for segmentation even in complex anatomical 
situations [6–8].

In this work, we describe and evaluate an AI algorithm 
for autosegmentation of organs at risk based on a deep 
image-to-image-network (DI2IN).

Materials and methods
Autosegmentation with a deep image‑to‑image network 
(DI2IN)
The general data flow of the autosegmentation algo-
rithm provided by SIEMENS Healthineers is illustrated 
in Fig.  1. The input image is the computed tomography 
(CT) image of the patient in full resolution. Image resa-
mpling is applied as normalization to acquire an iso-
tropic image to present the realistic aspect ratio of the 
anatomical structures. Due to the high complexity and 
thus resource requirement from the organ segmentation 
model, the image is typically downsampled to reduce the 
computational burden of the algorithm execution.

The automatic segmentation is performed on the 
region of interest (ROI) around individual organs or 
a group of multiple organs instead of the entire image 
volume. This helps the segmentation model to focus on 

capturing variations from the organs themselves with-
out disruptions of irrelevant structures and significantly 
reduces the computational resources. The anatomical 
landmark detection was trained independently from seg-
mentation algorithms with manually annotated landmark 
points across the human body as described by Ghesu 
et  al. [9]. To locate the ROIs, anatomical landmarks 
(including vessel bifurcations, bony structures, and organ 
center and boundary points) are detected using a deep 
reinforcement learning technique [9] from the input 
image. For each landmark, an agent is trained to search 
for the best path to walk towards the landmark from any 
location of the image. Specifically, considering the cur-
rent state as an image patch centred at the current voxel, 
the agent learns to take one of the actions from the cur-
rent voxel so that the distance towards the landmark of 
interest is minimized. During testing time, the agent will 
move one step at a time and eventually stop at or around 
the desired landmark where the action estimation con-
verges. To reduce the computational costs, a multi-stage 
strategy is integrated to search the landmark position at 
different scales of the image resolution, where the action 
at the coarser resolution will move the agent close to the 
landmark position with effectively larger step size. Given 
the detected landmarks and their heuristic relationships 
with the organs, ROIs are cropped with the sizes derived 
from training data distribution with its center based on 
the associated landmark position and its size being large 
enough to cover the organs to be segmented.

A deep image-to-image network (DI2IN) [10] based on 
a convolutional encoder-decoder architecture combined 
with multi-level feature concatenation is employed for 
the automatic segmentation step (Fig.  2). Compared to 
traditional U-Net [6], additional convolutional layers with 
stride of 2 (red blocks in Fig. 2) are used in the encoder 
of DI2IN instead of max pooling layers to increase the 
receptive field while reducing sizes of feature maps. In 
the decoder of DI2IN, trilinear interpolation is used to 
upsample the activation maps back to the original input 
image size. During the training process, the network was 

Fig. 1 Autosegmentation data flow. Illustration of the autosegmentation data flow with landmark detection for ROI definition, image resampling, 
organ segmentation and mask resampling
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driven by a cross-entropy loss based on a learning rate 
of 0.001 using the ADAM [11] optimization. The algo-
rithm was trained for the segmentation of left and right 

lung (using 10,000 cases), heart (386 cases), and bladder 
and rectum including anus and rectosigmoid flexure (784 
cases). The training CT data were collected from multiple 

Fig. 2 Deep Image-to-Image Network (DI2IN) for organ segmentation. Deep Image-to-Image Network (DI2IN) for organ segmentation. S: stride, 
Conv: convolution, Cin: number of input channels, Cout: number of output channels, C: number of channels for convolutions where the input 
and output channels are equal, ReLU: rectified linear unit, BN: batch normalization, N: number of output channels, N is set to 1 for single-organ 
segmentation, and to 1 + number of organs for multi-organ segmentation

Fig. 3 Overlap measurements. Overlap measurements of manual and automated contours. Mean values and standard deviation
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hospital sites.  Data annotation was performed based 
on RTOG guidelines by a team trained with anatomical 
knowledge and mentored by radiologists and radiation 
oncologists.

After organ segmentation, the estimated organs mask 
is resampled back to the original image resolution, where 
each organ-specific mask is aggregated in a single multi-
organ mask.

Evaluation patient cohort
An independent evaluation patient cohort was estab-
lished from CT images of patients treated at LMU 
(Ludwig-Maximilians-Universität) university hospital. 
The scans were acquired for treatment planning with-
out contrast medium on a Toshiba CT scanner with 
3 mm slice thickness. For the thoracic region, 237 female 
patients treated for breast cancer were included, result-
ing in 237 usable heart contours and 233/234 usable left/
right lung contours. For the pelvic region, 102 male and 
female patients treated for various tumors (e.g. cervical 
and prostate cancer) were included resulting in 98 usa-
ble bladder and 102 usable rectum contours. OARs with 
gross tumor volume or tumor infiltration were excluded.

The CT data was anonymized for the scientific purpose 
of this work. This study complies with the declaration of 
Helsinki, Good Clinical Practice (GCP) and Good Epi-
demiological Practice (GEP).  The data acquisition and 

analysis were in accordance with Bavarian hospital law 
(Art.27 Abs. 4 BayKrG).

Manual segmentation
All manual contours were drawn by an experienced radia-
tion oncologist following the guidelines of the RTOG [12, 
13] using Oncentra Masterplan by Elekta AB, Sweden. 
Lungs: All inflated and collapsed, fibrotic and emphy-
sematic lungs were contoured including small vessels 
extending beyond the hilar regions; hilars and trachea/
main bronchus were not included. Heart: Contoured 
along the pericardial sac. The superior aspect (base) 
began at the level of the inferior aspect of the pulmo-
nary artery passing the midline and extend inferiorly to 
the apex of the heart. Bladder: Contoured inferiorly from 
its base, and superiorly to the dome. Rectum: Contour-
ing ended inferiorly from the lowest level of the ischial 
tuberosities (right or left), and superiorly before the rec-
tum lost its round shape in the axial plane and connected 
anteriorly with the sigmoid.

Comparison of manual and automatic segmentation
Manual contours (MAN) were considered as ground 
truth and were compared to the automatic contours 
(AUTO) generated by a software prototype (provided 
by Siemens Healthineers) of the DI2IN algorithm. We 
used several quantitative geometric measures in the 

Fig. 4 Distance measurements. Distance measurements between manual and automated contours. Mean values and standard deviation
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categories volume (absolute and ratio), overlap (Sensitiv-
ity, Specificity [14], Jaccard Conformity Index [15, 16], 
Dice Similarity Coefficient [17], Discordance Index [18, 
19], Geographical Miss Index) and distance (Mean Sur-
face Distance [14], Center of Volume Distance, Residual 
Mean Surface Distance [20, 21], Hausdorff Distance 
 HD95 [22], and difference of the superior, inferior, right, 
left, anterior and posterior boundaries defined by the 
furthest reaching voxel belonging to the contour in the 
respective direction). All formulas used are summarized 
in the appendix. All results were imported into IBM SPSS 
Statistics version 25.0.0 and subsequently processed and 
analysed.

Additionally, MAN and AUTO were inspected visually 
for identification of regions which are still challenging for 
the algorithm.

Results
General algorithm performance
In all cases, the DI2IN algorithm was able to generate 
the automatic contours without any user interaction. The 
computation with the prototype took roughly 30  s per 
organ.

Volume comparison
The volumes of manual (MAN) and automatic (AUTO) 
contours are summarized in Table  1. The highest varia-
tions in absolute volume from patient to patient were 
observed for the left and right lung as the largest struc-
ture types, however, the mean volume difference between 
manual and automatic contours e.g. of the left lung were 
only 17 ml. Also, for all other organs the absolute vol-
umes of manual and automatic contours were similar, 
with the volume ratio either 0.9 or 1.0.

Overlap and distance measurements
The results for all metrics of overlap and distance com-
parisons are summarized in Table 2.

The overlap measurements sensitivity, specificity, Jac-
card Conformity Index (JCI) and Dice Similarity Coef-
ficient (DSC) are illustrated in Fig.  3. The sensitivity 
showed values of 0.98 for the left/right lungs, 0.93 for the 
bladder and 0.91 for the heart, and the lowest value for 

the rectum with 0.84. The specificity was excellent with 
0.99 for all structure types. The JCI with mean values of 
0.95 for the right and left lung showed nearly complete 
overlap between manual and automatic contours. Again, 
the poorest result was obtained for the rectum with a JCI 
of 0.67. The same ranking was seen for the DSC, with 
best values for left/right lung (DSC 0.97), then heart 
(DSC 0.92), bladder (DSC 0.88) and rectum (DSC 0.79).

The Discordance Index (DisI) performed best for left 
and right lung with only 3% of AUTO being outside 
MAN. Heart, bladder and rectum reach 6%, 13% and 
22%, respectively. Comparable results were seen for the 
Geographical Miss Index (GMI), where for the left/right 
lungs 2/3% of MAN were outside AUTO, 8% for the blad-
der, 7% for the heart, and 16% for the rectum.

The distance measurements in terms of center of vol-
ume distance, MSD, RMSD and  HD95 are illustrated in 
Fig. 4. The MSD and RMSD showed mean values between 
0.8 and 4.6  mm for all organs. The Hausdorff distance 
 HD95 was best for left /right lung with of 2.7/2.9 mm, and 
worst for the rectum with 10.8 mm

Most boundary differences where around or below 
3  mm (the thickness of one CT slice). Bigger discrep-
ancies were seen for the superior, inferior and anterior 
boundaries of the rectum with − 8.7  mm, 7.0  mm and 
5.2 mm respectively, and the inferior and superior bound-
ary of the heart with a mean deviation of − 8.5 mm and 
− 4.9 mm respectively.

The visual inspection showed an overall excellent 
agreement between manual and automated contours, 
with the most challenging organs, as already identified by 
the boundary analysis, being the rectum and the heart. 
Two exemplary cases are shown in Fig. 5.

Discussion
The quantitative comparison between MAN and AUTO 
contours showed an excellent agreement in most cases 
for all geometric metrics in terms of volume, overlap 
and distance, with some exceptions especially for the 
heart and the rectum. The discrepancies for the rectum 
can be explained by the fact that the training data set 
did include anus and the rectosigmoid flexure, but the 
manual segmentation did not. Some cases would require 

Table 1 Volume comparison

Volume comparison between manual (MAN) and automatic contours (AUTO), mean values ± standard deviation

Bladder
mean ± SD

Rectum
mean ± SD

Heart
mean ± SD

Lung left
mean ± SD

Lung right
mean ± SD

Volume MAN [ml] 331 ± 178 89 ± 39 569 ± 115 1,897 ± 604 2,220 ± 647

Volume AUTO [ml] 362 ± 209 97 ± 44 557 ± 108 1,914 ± 623 2,240 ± 668

Difference (MAN-AUTO) [ml] 32 ± 74 8.1 ± 22 11 ± 54 17 ± 158 19 ± 151

Ratio (MAN/AUTO) 0.9 ± 0.2 0.9 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1
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manual corrections before the automatic contours could 
be used for radiotherapy planning, however even in these 
cases the time needed by a human expert for editing the 
autogenerated organ contours would likely be less than 
generating the complete contour manually from scratch.

Delpon et  al. [23] compared five commercial atlas-
based segmentation software solutions for radiation plan-
ning to manual segmentation for 10 patients for bladder 
and rectum: ABAS (Elekta Oncology Systems, Crawley, 
UK), WorkFlow Box (Mirada Medical Ltd., Oxford, UK), 
MIM Maestro (MIM Software Inc., USA), SPICE (Philips 
N.V., Netherlands) and RayStation (RaySearch Laborato-
ries AB, Sweden). For the rectum, the software systems 
achieved a volume ratio of 0.9–1.3 (this study: 0.9) and a 
mean DSC of 0.49–0.75 (this study: 0.79). For the blad-
der, the atlas-based software systems achieved a volume 
ratio of 1.01–1.62 (this study: 0.9) and a mean DSC of 
0.62–0.81 (this study: 0.88). In another study using the 
atlas-based system ABAS, Kim et  al. reported DSC val-
ues for the bladder below 0.6 [24]. These findings indicate 
that the algorithm presented in this work is able to out-
perform atlas-based algorithms for organ segmentation.

In recent years, a significant focus was put on the devel-
opment and evaluation of machine learning based algo-
rithms. Feng et  al. [25] developed a deep convolutional 
neural network for autosegmentation of thoracic organs 
and reported DSC 0.972/0.979 and  HD95 2.103/3.958 mm 
for left/right lung. Regarding these metrics, our algo-
rithm achieved an almost identical performance (DSC 
0.97/0.97,  HD95 of 2.7/2.9 mm). Cardenas et al. reported 

in their review about deep learning autosegmentation 
architecture types [26] mean DSC values between 0.89 
and 0.93 for the heart, 0.93–0.98 for the lungs and 0.7–
0.84 for bladder. In comparison, the algorithm presented 
here achieved equivalent results for the heart (DSC 0.92) 
and right/left lung (DSC 0.97), and superior results for 
the bladder (DSC 0.88). Considering that the evaluations 
were not performed on the same data sets, we conclude 
that the accuracy of the algorithm presented here is at 
least comparable to other modern machine and deep 
learning-based algorithms.

Sultana et  al. [27] used a two-step hierarchical con-
volutional neural network segmentation strategy for 
automatic contouring of multiple organs of the pelvis, 
combining an UNet architecture with a generative adver-
sarial network. They reported excellent mean DSC values 
for bladder of 0.95 (this study: 0.88) and rectum of 0.90 
(this study: 0.79), however based on a single center and 
relatively small cohort of 290 training and 15 test cases.

Lustberg et  al. [28] compared a prototype version of 
the “Mirada DLC Expert” (Mirada Medical Ltd., Oxford, 
UK), which utilizes convolutional neural networks, to the 
atlas-based autosegmentation “WorkFlow Box” of the 
same company and to manual segmentation, and found 
that the DLC expert showed promising results for auto-
matically generating high quality contours, providing a 
greater time saving compared to existing solutions.

We consider the comparably large unseen evalua-
tion cohort size of 237 patients for the thorax region 
and 102 patients for the pelvic region to be a strength of 

Table 2 Overlap and distance measurements

Overlap and distance measurements between manual and automatic contours as mean values ± standard deviation (SD)

Bladder
mean ± SD

Rectum
mean ± SD

Heart
mean ± SD

Lung left
mean ± SD

Lung right
mean ± SD

Sensitivity 0.93 ± 0.15 0.84 ± 0.1 0.91 ± 0.04 0.98 ± 0.03 0.98 ± 0.03

Specificity 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Jaccard Conf. Index (JCI) 3D 0.81 ± 0.15 0.67 ± 0.10 0.85 ± 0.06 0.95 ± 0.06 0.95 ± 0.05

Dice Sim. Coeff. (DSC) 3D 0.88 ± 0.13 0.79 ± 0.08 0.92 ± 0.04 0.97 ± 0.05 0.97 ± 0.04

Discordance Index (Disl) 3D 0.13 ± 0.1 0.22 ± 0.10 0.06 ± 0.07 0.03 ± 0.05 0.03 ± 0.05

Geographical Miss Index 3D 0.07 ± 0.15 0.16 ± 0.12 0.08 ± 0.04 0.02 ± 0.03 0.03 ± 0.03

Center of volume comp. [mm] 4.1 ± 5.0 8.9 ± 6.8 4.7 ± 2.6 2.0 ± 1.3 2.1 ± 1.7

Mean surface dist. (MSD) [mm] 1.8 ± 2.2 2.5 ± 1.6 1.6 ± 0.7 0.8 ± 0.8 1.0 ± 0.8

Residual mean surface dist. (RMSD) [mm] 3.1 ± 3.7 4.6 ± 3.1 2.2 ± 0.93 1.8 ± 1.7 1.8 ± 1.3

Hausdorff Distance  (HD95) [mm] 6.7 ± 8.8 10.8 ± 8.4 4.4 ± 2.0 2.7 ± 2.7 2.9 ± 2.7

Right Boundary [mm] 2.9 ± 4.7 − 0.9 ± 4.1 0.0 ± 1.4 − 4.9 ± 19.2 0.8 ± 1.2

Left Boundary [mm] 0.1 ± 3.7 2.5 ± 16.1 − 0.3 ± 1.8 − 0.26 ± 1.0 2.5 ± 6.0

Anterior Boundary [mm] 2.0 ± 5.1 5.2 ± 10.5 − 0.4 ± 2.1 0.6 ± 1.5 0.7 ± 1.6

Posterior Boundary [mm] − 1.9 ± 11.7 1.7 ± 5.8 0.0 ± 2.0 − 0.1 ± 2.2 − 0.2 ± 1.9

Inferior Boundary [mm] − 0.3 ± 4.8 7.0 ± 13.2 − 8.5 ± 4.8 − 1.8 ± 4.1 − 1.5 ± 3.3

Superior Boundary [mm] − 1.8 ± 10.6 − 8.7 ± 16.9 − 4.9 ± 8.7 − 0.7 ± 2.0 − 0.5 ± 1.6
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this study. We also aimed at a comprehensive geomet-
ric evaluation to facilitate the comparison with other 
studies. A limitation is that for the thorax region only 
female patients were used. We assume that the findings 
are transferable to male patients, however this needs to 
be confirmed by further studies and by thorough inspec-
tion in clinical practice. Another limitation is that only 
one human reader was used. Multiple human readers 
would allow the assessment of inter-observer variations, 
which can be quite substantial [14, 29, 30]. For another 
algorithm it has already been shown that the accuracy of 
deep-learning based autosegmentation is comparable to 
inter-observer variability [31]. It can be speculated that 
automatic algorithms might even become able to contour 
organs at risk with a higher reproducibility and accuracy 
than humans, especially when less experienced readers 
are included [1, 2, 32, 33]. This could, in addition to the 
time savings, also increase the quality of the radiation 
treatment planning, like it has been discussed for head 
and neck patients in [34].

The algorithm in the software prototype used in this 
study corresponds to the algorithm implemented in two 
products by Siemens Healthineers (Erlangen, Germany), 
the server-based “syngo.via RT Image Suite” (version 
VB50) and the cloud-based “AI-Rad Companion Organs 
RT” (version VA20), for lungs, rectum and bladder. The 
heart model evaluated in this study is slightly improved 
with regard to the latest released product versions at the 
time of submission of this publication. Both products are 

commercially available and are certified for clinical use, 
making this study relevant for clinical practice.

As future work it is planned to include multiple human 
readers to assess inter-observer variations and an analysis 
of the dosimetric consequences of contour differences as 
a metric with more direct clinical impact than geometric 
parameters.

Conclusions
We described and evaluated a commercially available 
deep image-to-image network (DI2IN) algorithm for 
automatic contouring of organs at risk in radiation treat-
ment planning. The automatic contours showed excellent 
agreements with manual contours drawn by an experi-
enced radiation oncologist, with some deviations mostly 
at the lower part of the heart and both upper and lower 
parts of the rectum.

Appendix
The metrics used in this work were calculated as follows:
Sensitivity = AUTO∩MAN

MAN (from [14]).
Specificity =

−

AUTO∩

−

MAN
−

MAN

 (from [14]).

(
−

AUTO= VolumeoutsideAUTO,
−

MAN= VolumeoutsideMAN )

JaccardIndex(JCI) = AUTO∩MAN
AUTO∪MAN(from [15, 16])

DiscordanceIndex(DisI) = 1−
MAN∩AUTO

AUTO  (from 
[18, 19])
DiceSimilarityCoefficient = 2(AUTO∩MAN )

AUTO+MAN (from [17])

Fig. 5 Exemplary cases. Left panel: Exemplary case with manual and automated contours of left and right lung and heart. Right panel: Exemplary 
case with manual and automated contours of rectum and bladder. The arrow indicates the difference at the inferior boundary of the rectum
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SurfaceDistance(DSM) = 1
ns+ns′

(

∑ns
p=1

d
(

p, S′
)

+
∑nS′

p′=1
d
(

p′, S
)

)

 
(from [14])

ResidualMeanSurfaceDistance(RMS)

=

√

1
ns+ns′

(

∑ns
p=1

d(p, S′)2 +
∑nS′

p′=1
d(p′, S)2

)

 (from [20, 

21])
HausdorffDistance(HD) = max

[

d
(

S, S′
)

, d(S′, S)
]

 
(from [22])
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