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a b s t r a c t

Neurodegenerative diseases are characterized by the progressive decline of neuronal function in several 
brain areas, and are always associated with cognitive, psychiatric, or motor deficits due to the atrophy of 
certain neuronal populations. 

Most neurodegenerative diseases share common pathological mechanisms, such as neurotoxic protein 
misfolding, oxidative stress, and impairment of autophagy machinery. 

Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset motor neuron disorders 
worldwide. It is clinically characterized by the selective and progressive loss of motor neurons in the motor 
cortex, brain stem, and spinal cord, ultimately leading to muscle atrophy and rapidly progressive paralysis. 

Multiple recent studies have indicated that the amyloid precursor protein (APP) and its proteolytic 
fragments are not only drivers of Alzheimer’s disease (AD) but also one of the earliest signatures in ALS, 
preceding or anticipating neuromuscular junction instability and denervation. Indeed, altered levels of APP 
peptides have been found in the brain, muscles, skin, and cerebrospinal fluid of ALS patients. 

In this short review, we discuss the nature and extent of research evidence on the role of APP peptides in 
ALS, focusing on the intracellular C-terminal peptide and its regulatory motif 682YENPTY687, with the overall 
aim of providing new frameworks and perspectives for intervention and identifying key questions for future 
investigations.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the past few years, common pathways involved in neuro-
degenerative diseases have been highlighted [1]. Indeed, neurode-
generative disorders, such as Parkinson’s disease (PD), Alzheimer’s 
disease (AD), and amyotrophic lateral sclerosis (ALS), show various 
degrees of overlapping pathology, not only in clinical appearance but 
also at the single-protein level or in an entire signalling cascade.

One case is that of the amyloid precursor protein (APP), a protein 
primarily at the center of AD research. An increasing number of 
studies have proposed APP as an active contributor to certain forms 
of ALS [2]. In line with this concept, APP is expressed at the neuro-
muscular junction (NMJ) [3] and is required for the normal devel-
opment and function of the NMJ [4,5] suggesting that alterations in 
the signalling or processing of APP might influence NMJ function and 
are likely to predispose patients to motor neuron diseases (MND), 
such as ALS. Accordingly, alterations in the APP pathway have been 

proposed to represent an ALS signature preceding or anticipating the 
pathology [1,6].

ALS and AD are age-associated sporadic disorders with no pre-
cisely identified genetic causes but with a large number of sus-
ceptibility genes in which selective and progressive dysfunctions of 
specific neuronal populations occur [1,7]. Although apparently un-
related, as AD is primarily a central nervous system disease and ALS 
targets the peripheral nervous system, approximately 30 % of ALS 
patients show neuritic plaques and neurofibrillary tangles, especially 
in the amygdala, hippocampus, and entorhinal and insular cor-
tices [6,8].

In addition, both AD and ALS show accumulation and deposition 
of a specific misfolded protein, APP in AD and TDP-43 in ALS, con-
ferring vulnerability to specific neuronal populations [9] affecting 
mitochondrial and autophagy functions [10,11] and triggering neu-
rotoxic mechanisms [12].

In this short review, we provide evidence for the role of APP 
peptides in ALS, and underline new frameworks and perspectives for 
future research.
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Findings regarding the pathophysiology of AD and ALS and their 
similarities are beyond the scope of this review, as many outstanding 
reports have extensively discussed this area of research [13,14].

In particular, because APP contains multiple structural and 
functional domains, we focused our review mainly on the properties 
of APP intracellular domains and its regulatory motif 682YENPTY687.

2. Lights and shadows of APP in ALS

APP is expressed in both neuronal and non-neuronal cells and is 
largely distributed in extra-neuronal tissues [15]. APP is present at 
synaptic sites in both the central and peripheral nervous systems, 
including the NMJ, and plays an essential role in the development of 
neuromuscular synapses [3,4].

APP is post-transcriptionally processed into three major isoforms 
with differential cellular and tissue expression patterns. The three 
main isoforms of APP described to date are APP695, APP751 and 
APP770, depending on the number of amino acids, and are produced 
through alternative splicing of exons 7 and 8, which encode the 
Kunitz protease inhibitor and OX-2 domains, respectively [16]. 
APP695 lacks both domains, whereas the APP751 isoform containes 
only KPI domain in the extracellular sequence. APP770 in addition to 
KPI domain, contains an OX-2 domain [17]. APP751 and APP770 are 
ubiquitously expressed, whereas APP695 is predominantly expressed 
in neurons [18,19].

APP belongs to an evolutionarily conserved type I transmem-
brane glycoprotein family that includes two paralogues, amyloid 
precursor-like proteins 1 and 2 (APLP1 and APLP2), with similar 
structures and membrane topologies [20]. Notably, previous studies 
using knockout mice have emphasized the high functional re-
dundancy of APP, APLP1, and APLP2 [21]. These proteins contain 
several conserved motifs that are shared between all vertebrates, 
including E1 and E2 domains in the extracellular region and a short 
intracellular C-terminal domain (AICD) that contains the highest 
conserved consensus motif, Y682ENPTY687 [22]. The latter is thought 
to be crucial for AICD binding to adaptor proteins, and for APP 
trafficking and localization in cells [23]. Notably, while Aβ originates 
solely from APP, AICD originates from APP, APLP1, and APLP2 [20].

Aβ peptides, the major components of amyloid fibrils in AD, are 
the result of sequential cleavage of β- and γ-secretase. Briefly, β-se-
cretase cleavage generates a soluble APP peptide (sAPPβ) secreted in 
extracellular compartments and an intracellular C-terminal frag-
ment (CTF99). CTF99 is then cleaved by γ-secretase to produce Aβ40 
and Aβ42 peptides and AICD, which appears to regulate the tran-
scription of certain genes [24,25]. AICD is rapidly metabolized by 
insulin-degrading enzyme [26,27] and the endosomal/lysosomal 
system [28]. Alternatively, α-secretase cleaves APP within the Aβ 
sequence, thus precluding Aβ formation and generating sAPPα with 
neurotrophic properties and the CTF83 peptide, which is further 
processed by γ-secretase to yield AICD and p3 fragment [29–32].

Increased β-secretase activity has been observed in animal 
models of ALS and nerve injury [33,34]. Similarly, a lack of α-se-
cretase expression associated with increased β-secretase expression 
and activation of the amyloid cascade of APP, leading to increases in 
amyloid-β and AICD peptides, has been reported in the hippocampi 
of ALS patients [35]. In addition, deficits in lysosomal autophagic 
pathways have been demonstrated to activate the γ-secretase com-
plex and lead to Aβ42 accumulation in cultured human muscle fibers 
[36]. Pharmacological inhibition of β-secretase enhances peripheral 
functional recovery after sciatic nerve ablation and increases axonal 
sprouting due to partial nerve injury [37]. Treatment with a mono-
clonal antibody (MAb) that blocks β-secretase cleavage prevents an 
increase in APP expression, phosphorylation, processing, and in-
flammatory processes [33,34].

β-Secretase cleavage to generate Aβ peptides and AICD occurs 
preferentially in the APP695 isoform, although increased expression 

of APP751 and APP770 has been detected in the brains of patients with 
AD and is associated with increased Aβ deposition [38,39]. Inter-
estingly, prolonged activation of extrasynaptic NMDA receptors, 
which has been associated to neurodegenerative diseases [40,41], 
shifts APP splicing from APP695 to KPI-containing APP isoforms in 
neurons and triggers APP processing to produce Aβ [40]. This might 
imply that dysregulated splicing of APP mRNA occurs in pathological 
conditions and might allow discrimination of different pathologies 
in which APP has been demonstrated to be involved, including PD 
and ALS. Indeed, most reports focusing on the role of the APP gene in 
ALS face difficulties in discriminating between the three isoforms 
and refer to APP generically [22]. In this regard, a recent study re-
ported the development of a new PCR procedure that can accurately 
measure and quantify the transcript copy numbers of all three major 
isoforms, APP695, APP751, and APP770 [42].

It is noteworthy that specific adaptors might bind APP695, APP751, 
and APP770 because of the differences in their APP sequences, APP/ 
KPI versus APP695, thus affecting APP endocytosis, trafficking, and 
metabolism in neuronal cells. Accordingly, sequence differences 
between APP695, APP751, and APP770 may regulate the transport of 
APP695 along a distinct processing route, leading to β-secretase 
cleavage, whereas APP/KPI isoforms are excluded from this pathway 
or located in a distinct subcellular compartment. In this context, the 
identification of these different adaptor proteins may be useful for 
designing innovative strategies for the differential diagnosis of 
neurodegenerative diseases associated with altered APP levels.

Notably, only AICD generated by β- and γ-secretase cleavage 
translocates to the nucleus, where several potential target genes 
have been identified Table 1 [25]. Although γ-secretase cuts AICD in 
several subcellular locations, AICD generated by α-secretase cleavage 
at the plasma membrane has a lower likelihood of reaching the 
nucleus because of its short half-life and longer distance from the 
cell surface [43]. In contrast, AICD produced in the endosomes by β- 
and γ-secretase cleavage can reach the nuclear vicinity before γ- 
cleavage releases AICD owing to dynein- and microtubule-mediated 
transport systems [44].

Interestingly, less AICD is produced in amyloidogenic APP pro-
cessing than in non-amyloidogenic processing, raising the question 
of whether a reduction in AICD levels results in the loss of physio-
logical functions or the gain of new functions.

Some of these genes, such as those encoding the Aβ-degrading 
enzyme, neprilysin (NEP), are implicated in APP metabolism. 
Although the direct involvement of NEP in ALS has not yet been 
defined, it is known that NEP not only participates in the regulation 
of various brain functions but also in movement regulation [59,60]. 
Loss of NEP expression results in altered locomotor activity [61].

Other putative AICD target genes are α2-actin and transgelin, 
which are involved in the regulation of actin cytoskeleton dynamics 
[44]. Notably, many mutations in ALS-related genes that affect cy-
toskeletal integrity and dynamics have been identified [62]. For in-
stance, mutations in proteins that regulate actin polymerization, 
including superoxide dismutase (SOD1), TDP-43, FUS, and Profilin1 

Table 1 
Putative genes regulated by AICD. 
Source: Adapted from Muller et al. [44].

Protein References

α2-actin and transgelin [44]
Neprilysin (Aβ degradation factor) [45]
GSK3 β (glycogen synthase kinase) [46–50]
p53 (Tumor suppressor) [51,52]
AchE1, AchE2 (Acetyl choline esterase) [53,54]
Thymidylate synthase [45,55]
(HES) Hairy and Enhancer of split (differentiation factor) [56]
LRP1 (Lipoprotein Receptor) [57]
EGFR (Epidermal growth factor receptor) [58]
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(PFN1), have been identified in patients with ALS, causing an in-
creased tendency to aggregate and leading to the formation of cy-
toplasmic inclusions [63]. Notably, mutations in PFN1 (C71G, M114T, 
G118V, A20T, T109M, Q139L, and E117G) [64,65] and other cytoske-
letal-related proteins such as Tubulin A4A (TUBA4A) [66] and ki-
nesin family member 5A (KIF5A) [67] have been identified in familial 
ALS patients. The ability of mutant PFN1 to associate with actin is 
impaired in ALS, and mutant PFN1 motoneurons exhibit morpho-
logical abnormalities characterized by smaller growth cones and 
shorter axons [68].

Indeed, the disruption of cytoskeletal integrity and/or motor 
neuron-dependent transport are key features of ALS. This highlights 
the necessity of potentially differentiating variants of these genes 
that might act as primary causes of the disease from those that 
might become risk factors or disease modifiers of the pathology. In 
addition, the possibility that altered levels of AICD in ALS might 
influence the expression of some of these genes and activate neu-
rotoxic downstream pathways is an aspect not enough speculated 
that might deserve attention.

Glycogen synthase kinase 3β (GSK3β) promotes tau hyperpho-
sphorylation and neurofibrillary tangle formation in AD [69]. Dys-
regulations of GSK3β signalling has also been recognized in ALS [70]. 
In this regard, increased levels of GSK3β expression and phosphor-
ylation of the Tyr216 residue have been reported in the spinal cord, 
frontal and temporal cortices, and hippocampus of patients with 
ALS [71–73].

The tumor suppressor genes p53 and cyclin B1, and D1 or KAI1 
are pro-apoptotic factors and cell cycle reentry, respectively, and are 
involved in neuronal death processes, also included ALS (Reviewed 
by Szybińska et al. [74]. Consistently, activation of p53 and an altered 
Bcl-x/Bax ratio were also observed in the ventral horns of the lumbar 
spinal cord of SOD1 transgenic mice harboring a single amino acid 
substitution of glycine to arginine at codon 86 (SOD1 G86R) mice 
[75]. p53 [76] and other apoptotic markers, such as Rb, Bax, Fas, and 
caspases [77] are increased in the motor cortex and spinal ventral 
horns of postmortem brain tissues [74,78].

APP regulates Cu/Zn SOD1 expression and function, which is one 
of the major targets of oxidative damage in the brains of AD patients 
[79,80] and its mutations have been linked to familial ALS [81]. In 
ALS neurons, Aβ acts as an early and short-lived change [82] directly 
interacting with superoxide dismutase 1 (SOD1), decreasing its en-
zymatic activity [83] and accelerating the onset of motor impair-
ment [84]. Accordingly, increased Aβ immunoreactivity has been 
reported in the perikaryal region of anterior horn neurons of pa-
tients with familial and sporadic forms of ALS, and proximal axonal 
swelling was detected in mild lesions or in the early stage of the 
pathology [85] supporting the concept that ALS is a disease not 
confined to the motor system [86–88]. Indeed, neurodegeneration in 
patients with ALS also involves brain areas such as the dorsolateral 
prefrontal cortex, anterior cingulate, hippocampus, dentate gyrus 
(DG), parietal lobe, substantia nigra, cerebellum, amygdala, and basal 
ganglia [86,89–91] and amyloid cascade-related biomarkers have 
been found in the cerebral spinal fluid of patients with ALS and 
frontotemporal dementia (FTD) [92,93]. Additionally, an increase in 
Aβ levels has been observed in the skin and muscles of ALS pa-
tients [93,94].

Similar results were obtained in SOD1 transgenic mice harboring 
a single amino acid substitution of glycine to alanine at codon 93 
(SOD1-G93A), which is commonly used to model ALS, where Aβ 
peptide accumulation and increased APP levels have been detected 
in a restricted subpopulation of vulnerable muscle fibers and in the 
spinal cord [2]. Interestingly, genetic ablation of APP (APP−/−) in 
SOD1-G93A mice significantly prevents neuromuscular junction 
loss, reduces disease progression, and promotes motor neuron sur-
vival, further supporting the idea that APP and Aβ peptides might 
contribute to ALS pathology by accelerating muscle denervation [2]. 

The hypothesis that Aβ can also be neurotoxic in the peripheral 
nervous system was further supported by evidence from murine 
models of familial AD overexpressing Aβ, in which the susceptibility 
of motor neurons to Aβ peptides, progressive degeneration of ske-
letal muscle, and age-dependent axonal degeneration in the spinal 
cord have been described [95–97].

3. The 682YENPTY687-mediated APP processing regulation: 
possible implications in ALS

As mentioned above, APP processing can result in the production 
of Aβ peptides, which contribute to AD or the secretion of the sAPPα 
peptide as well as intracellular AICD.

The production of sAPP(α or β) and AICD metabolites largely 
depends on the level of Tyr682 phosphorylation of the highly con-
served 682YENPTY687 motif on AICD (referred to as neuronal APP695 

numbering). The 682YENPTY687 motif represents a docking site for 
multiple interacting proteins. 682YENPTY687 phosphorylation 
changes the AICD conformation, which shifts the cis/trans isoforms, 
resulting in loss of affinity for binding proteins. Notably in both 
APP695 as well as APP751 and APP771 the 682YENPTY687 motif is pre-
served.

For instance, Grb2, Shc, Grb7, and Crk interact with APP only 
when Tyr682 is phosphorylated, whereas Fe65, Fe65L1, and Fe65L2 
interact with APP only when this tyrosine is not phosphorylated 
(reviewed by Matrone et al. [23]) Table 2.

In this regard, the 682YENPTY687 binding protein, Fe65 acts as an 
AICD stabilizer in the nuclear compartment, where it binds to his-
tone acetylase Tip60 to form AFT complexes and prevents APP 
amyloidogenic processing [118]. Notably, decreased Fe65 expression 
has been identified in patients with ALS, in which the accumulation 
of APP and Aβ has also been detected, suggesting that the AICD-Fe65 
complex is internalized into the nucleus, as occurs when the APP 
amyloidogenic signalling pathway is activated [86].

Similarly, the 682YENPTY687 binding proteins Clathrin and AP2 
control APP endocytosis, as well as many other transmembrane 
proteins, and proper trafficking to the early endosome and back to 
the plasma membrane, thus preventing APP accumulation in the late 
endosome and lysosome, where because of the acidic environment, 
APP is preferentially cleaved by β secretase [119] thereby initiating 
amyloidogenic processing [116,120]. Although a direct link between 
ALS and the Clathrin and AP2 adaptors has not yet been demon-
strated, alterations in the transport of endosomes or lysosomes have 
been proposed to be likely causative of the pathology, as in many 
other neurodegenerative diseases [121]. Accordingly, several genes 
involved in endosomal maturation, lysosome biogenesis, and vesicle 
trafficking have been linked to ALS [122], suggesting that these 

Table 2 
Some of the most common 682YENPTY687 adaptor proteins. 

Protein References

Fe65 (fe65l1, fe65l2) [98–100]
Mint/X11 (mint1, mint2, mint3) [101]
Numb [56]
JIP (JIP1, JIP3) (Islet-brain1/C-Jun N-terminal kinase 

interacting protein-1)
[102]

PAT (PAT1, PAT1A) (Protein interacting with APP tail 1) [103]
Pin1 (peptidyl-prolyl isomerases. PPIase) [104]
FKBP12 [105]
SHCA/SHCC (Src homology and collagen homology) [106,107]
GRB2 (growth factor receptor-bound protein 2) [108]
Dab1, dab2 (Disabled Regulator protein) [109,110]
Crk [111]
cAbl (Tyrosine kinase) [112]
Fyn (Tyrosine kinase) [113–115]
Clathrin, AP2 (adaptor protein 2) [116]
SorLA (Sortilin-related receptor) [117]
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pathways are altered in ALS. In addition, changes in the expression of 
proteins responsible for endocytic trafficking have been detected in 
ALS patients [123,124]. Among others, SorLA, which belongs to the 
VPS10Ps protein family and interacts with the 682YENPTY687 motif of 
APP [125], decreases in the anterior horn cells (AHCs) of patients 
with ALS compared to controls [126]. Notably, abundant SorLA ex-
pression has been detected in neurons throughout the central ner-
vous system, including the cortex, hippocampus, cerebellum, and 
spinal cord, which controls retromer-dependent sorting of APP and 
prevents APP amyloidogenic processing [125,127,128].

Referring to another 682YENPTY687 binding protein, Notch, stu-
dies have reported that Notch and APP compete for α- and γ-secre-
tase cleavage. Interestingly, inactivation of the Notch pathway and a 
reduction in α-secretase expression have been described in the 
hippocampus of patients with motor neuron deficits. Such altera-
tions are associated with increased β-secretase expression and the 
activation of the amyloidogenic cascade, leading to Aβ and AICD 
accumulation [35,129,130]. Of note Notch 1 is essential for hippo-
campal neurogenesis [131,132] and the Notch receptor is expressed 
in neural stem cells [131]. Consistently, inactivation of the Notch 
pathway results in inhibition of neurogenesis, and Notch signalling 
is repressed in the hippocampi of patients with ALS [133]. Inter-
estingly, some drugs that increase Notch signalling have been found 
to promote hippocampal neurogenesis [134]. Similarly, a rat model 
of AD showed that soluble Aβ42 suppresses Notch1 expression [135].

The 682YENPTY687 adaptor protein Numb is involved in stem cell 
maintenance and differentiation, as well as in neuritogenesis, and 
antagonizes Notch-1 signalling [136,137]. Numb is reduced one week 
after the spinal cord lesion or after motor neuron ablation and then 
restored at one month [129] in animal models of ALS, in line with 
other evidence of decreased neurogenesis in patients with ALS 
[35,133]. Nevertheless, the role of Numb, as well as the other APP 
adaptor protein Shh, has also been reported in the regulation of adult 
neurogenesis [138] and the expression of these proteins has been 
found to be downregulated in animal models of motor neuron de-
generation [129].

Furthermore, c-Abl [49,139] and Fyn tyrosine kinase (TK) phos-
phorylate the APP Tyr682 residue of APP under physiological or pa-
thological conditions, although Fyn appears to be primarily 
responsible for aberrant Tr682 phosphorylation in AD neurons [115]. 
Interestingly, an increase in the amount of c-Abl mRNA, phos-
phorylated c-Abl and Fyn TK has been detected in motor neurons of 
ALS [140–142]. Consistently, treatment with c-Abl and Fyn in-
hibitors, such as dasatinib and bosutinib, or the new compound 
SC75741, has been shown to exert protective effects on motor neuron 
degeneration in G93A-SOD1 transgenic ALS mice [142] as well as 
iPSC-derived motor neurons from patients with ALS [141,143,144]. In 
addition, multiple studies have associated mutations in genes 

encoding different kinases with ALS [145,146], suggesting that al-
terations in the function of specific kinases and/or their downstream 
targets are crucial to neuronal survival, and that protein kinase in-
hibitors may be a reasonable target for the design of innovative ALS 
treatment [147,148].

Multiple lines of evidence indicate that regulation of APP traf-
ficking might prevent Aβ generation. Consistently, increased sAPPα 
levels appeared to be associated with a reduced risk of developing 
AD [149–152].

Interestingly, variations in sAPPα production have also been re-
ported in conditions other than AD such as cerebrovascular and 
neurodegenerative diseases [153], bipolar disorder [154] and 
ALS [92,93].

In particular, sAPPα is upregulated in the muscles of mouse 
models of familial ALS and in patients [1,2,94], whereas low sAPPα 
concentrations have been found in the CSF of patients with ALS with 
a rapidly progressive course of the disease [92]. However, whether 
the increase in sAPPα represents a cell survival response to mole-
cular changes caused by MND [86] or a neurotoxic process to pro-
mote neuronal death is a matter of debate.

Interestingly, Barbagallo et al. previously demonstrated that 
sAPPα production largely depends on Tyr682 phosphorylation of the  
682YENPTY687 motif of APP in neurons [155]. Accordingly, when 
Tyr682 is not phosphorylated, APP is largely located in the plasma 
membrane where it is processed by α-secretase to generate sAPPα. In 
contrast, when APP is phosphorylated at the Tyr682 residue, APP 
endocytosis and trafficking inside neurons are affected, resulting in 
APP accumulation in acidic neuronal compartments, such as late 
endosomes and lysosomes, where it is preferentially cleaved to 
generate sAPPβ peptides [114,116,125]. Consistently, APP YG knock-in 
mice, in which Tyr682 is not phosphorylated because it is replaced by 
glycine (YG), show aberrant sAPPα production in the brain and motor 
neurons [155,156]. In addition, YG mice display a progressive re-
duction in muscular strength, motor functions and abilities, and 
learning performance [157]. Such deficits are associated with age- 
dependent cognitive decline, autophagic dysfunction, and pro-
gressive dendritic spine loss [125], mirroring some of the crucial 
features reported in patients [158] (Fig. 1).

Notably, the YG background, when introduced into an APLP2 null 
background failed to rescue early postnatal lethality or neuromus-
cular synaptic defects present in APLP2 null mice, supporting the 
role of the Tyr682 residue and 682YENPTY687 motif in regulating NMJ 
neurodevelopment and function [156].

In accordance with the importance of Tyr682 phosphorylation on 
the 682YENPTY687 motif in controlling sAPPα release and preventing 
aberrant sAPPα secretion, when the APP background lacking the  
682YENPTY687 domain was reintroduced into APP-knockout mice, an 
increased cell surface expression of sAPPα was detected [159].

Fig. 1. Similarities between ALS SOD1-G93A and APP YG mice. 
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Interestingly, YG hippocampal neurons fail to differentiate 
properly in vitro because of deficits in nerve growth factor (NGF) 
response [160]. In fact, the lack of Tyr682 phosphorylation prevents 
the association between APP and the NGF receptor TrkA, resulting in 
TrkA perinuclear accumulation and causing APP redistribution to-
wards the non-amyloidogenic pathway with the accumulation of 
sAPPα and AICD peptides [160]. This critical role of NGF in APP 
trafficking, control of neuronal functions, and prevention of dys-
function largely reminds us of the crosstalk between glial cell-de-
rived neurotrophic factor (GDNF) and APP at the neuromuscular 
junctions [161,162]. GDNF controls muscle and Schwann cell func-
tions [163]. Deficits in GDNF and APP signalling have been associated 
with ALS. GDNF is decreased in the serum of patients with ALS, 
whereas sAPPα levels are increased in the same fluid [164]. APP 
regulates GDNF gene expression [164,165]. NGF promotes trophic 
effects and protects neurons from AD-related processes [166]; when 
GDNF is administered directly to muscles, it improves muscle-nerve 
synapse performance and promotes motor neuron activity and sur-
vival [167]. In addition, overexpression of GDNF in muscles extends 
the lifespan of ALS mice [168]. Whether GDNF activity and secretion 
levels change depending on APP Tyr682 phosphorylation is worth 
investigating.

4. Conclusions

Considerable knowledge gaps and clinical challenges associated 
with neurodegenerative diseases remain unaddressed. Perhaps the 
biggest challenge is to better define and understand the factors that 
initiate the pathology and drive cellular dysfunction in the disease. 
Numerous studies suggest that neurodegenerative diseases share 
not only clinical phenotypes but also molecular mediators (s). 
Although the findings discussed here portray only part of the broad 
literature on AD and ALS and their roles in these diseases, it is likely 
sufficient to delineate some of the critical questions for the next 
phase of studies.

Herein, we discuss a novel hypothesis that might deserve to be 
expanded and sustained in the future regarding the potential role of 
the conserved 682YENPTY687 motif located on the AICD of APP in ALS 
and speculate that modifications in the 682YENPTY687 peptide might 
represent an early signature of the disease, as previously described 
in AD [23,120].

The 682YENPTY687 peptide has been consistently viewed as an 
active and critical player in controlling APP function and preventing 
the switch from the non-amyloidogenic to amyloidogenic pathway 
through phosphorylation of the Tyr682 residue [23,120]. However, 
the idea that this peptide can also regulate APP activity in other 
pathologies such as ALS has never been speculated. Importantly, 
evidence regarding the role of 682YENPTY687 peptide in regulating 
the levels of sAPPα in motor neurons and influencing the correct 
development of NMJ has been reported previously [33,34,82,164]. 
Indeed, Tyr682 phosphorylation of the 682YENPTY687 motif controls 
APP trafficking and prevents amyloidogenic APP processing to gen-
erate Aβ [157,160]. Conversely, the lack of Tyr682 phosphorylation in 
YG mice causes an increase in sAPPα levels, autophagic deficits, lo-
comotor deficiency, and cognitive deficits, all of which have been 
observed in ALS patients [155,157]. Consistently, an aberrant in-
crease in sAPPα levels has been detected in the dysfunctional NMJ of 
patients with ALS [1,2,94].

These findings raise the question of whether a possible mal-
function of the 682YENPTY687 pathway might influence Tyr682 

phosphorylation and predispose APP to aberrant production of 
sAPPα in patients with ALS.

Based on these perspectives, this short review provides new and 
important directions for the investigation of ALS.
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