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Abstract

Despite significant methodological advances in protein structure determination high-resolution structures of membrane
proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of
membrane proteins at large scale. Here, a new structural classification approach for a-helical membrane proteins is
introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D
structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity,
reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new
approach to enhance our comprehensive structural classification of a-helical membrane proteins (CAMPS), which is
primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the
absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four
transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to
fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the
evolutionary tendency to re-use already available folds is more pronounced.
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Introduction

Since the determination of the first membrane protein structure

in 1985 [1] a lot has changed in our knowledge about the

membrane protein structure space. Initially, a–helical membrane

proteins appeared to adopt a very simple architecture with

transmembrane helices oriented more or less perpendicular to the

membrane plane forming an a-helix bundle [2,3]. However,

recent structures have shown that they can be much more complex

[4–10], warranting research on the structural variability of

membrane proteins by means of structure classification methods.

Classification approaches, such as SCOP [11] (Structural

Classification Of Proteins) and CATH [12] (Class, Architecture,

Topology, Homologous superfamily), aim at exploring the full

diversity of protein structures by enumerating and organizing all

existing protein architectures. However, our comparative analysis

of the structural classification of a-helical membrane proteins in

these databases has shown that the fold definition initially

developed for globular proteins is applicable to membrane

proteins only to a limited degree [13]. We therefore suggested

revising the fold definition for membrane proteins by incorporat-

ing more fine-grained structural features such as helix-helix

interactions.

Current structural classification approaches specifically tailored

to membrane proteins include methods using helix interaction

patterns [14] and sequence information combined with topology

conservation [15]. The former method classifies known 3D

structures of membrane proteins according to the similarities of

their helix interaction graphs and, in spite of its simplicity, is able

to reconstruct structural classification of SCOP and CATH nearly

perfectly [14]. In contrast, the latter approach is solely based on

sequence information and predicted structural features. Proteins

are classified according to similarities in their amino acid sequence

and their topology (i.e. the number of transmembrane helices and

loop lengths). Both approaches have their advantages and

disadvantages. The strength of the first method is that structural

similarities between proteins sharing no sequence similarity (often

resulting from convergent evolution) can be revealed while the

second method allows for a more comprehensive classification of

membrane proteins. Therefore, it seems desirable to combine both

approaches in order to exploit their full potential.

Here, we present an alternative version of our structural

classification approach initially developed in 2010 [14]. While in

the previous version helix interaction graphs were directly

obtained from three-dimensional membrane protein structures

we now predict these graphs from sequence. This methodology is

applied to provide an exhaustive structural classification of

membrane protein families available in the CAMPS database

[15] and to identify protein clusters with similar helix interaction

patterns that are not related at the sequence level. While certainly
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not meant to replace elaborate classification systems based on

known atomic coordinates our approach represents a useful tool

for exploring those parts of the membrane protein universe that

are not yet covered by 3D structural information and for rational

selection of targets for structural genomics projects.

Materials and Methods

Evaluation Dataset
A dataset of a-helical membrane proteins with available 3D

structures was used to test how well structural similarities between

membrane proteins can be reproduced from predicted helix

architectures. All protein chains with more than four annotated

transmembrane helices were obtained from PDBTM [16] together

with their topology information as derived with the TMDET

algorithm [17]. Proteins with fewer transmembrane helices were

omitted as they lack the required diversity of possible helix

interaction arrangements [14]. Sequence redundancy among all

obtained protein chains was removed at the 95% identity level,

yielding a dataset of 152 proteins which will be further referred to

as PDB_TEST.

Within this dataset the number of observed transmembrane

helices varied between 5 and 13, with seven transmembrane

helices being the most prevalent number found in 59 protein

chains. SCOP [11] and/or CATH [12] annotations could be

obtained for 54 chains although only 24 chains had a classification

in both databases. In accordance with the current approach

adopted both by SCOP and CATH for transmembrane proteins

[13], all proteins were treated as single domain proteins.

Classification Dataset
The analysis of the predicted membrane protein fold space was

conducted for a comprehensive set of clusters of structurally

related a-helical membrane proteins (so called structurally

correlated (SC) clusters) [15] as available from the CAMPS 2.0

database. For each of the 1353 SC-clusters we defined the most

common number of transmembrane helices (TMHs) among the

members (further referred to as the representative TMH number)

and selected those SC-clusters with a representative TMH number

of at least five and a structural homogeneity (reflecting the

variation of the TMH number within the cluster, see [18]) of at

least 0.80. The latter parameter was used to ensure that those

proteins having the representative TMH number indeed represent

the large majority of the corresponding cluster. From each of the

431 SC-clusters satisfying the above conditions the 50 most

divergent protein members (according to sequence identity) with a

TMH number equaling the representative TMH number of the

corresponding SC-cluster were retained for further consideration.

In case fewer than 50 members were available, all of them were

selected. This procedure resulted in a final dataset containing

14,917 membrane protein sequences further referred to as

CAMPS_SC.

Prediction of Individual Helix Architectures for the
Evaluation Dataset

Helix architectures were derived for all proteins in the

evaluation dataset using helix-helix contacts predicted by

TMHcon [19]. Briefly, TMHcon is a neural network-based

residue contact predictor incorporating general and membrane

protein-specific input features. Two versions of the TMHcon

predictor were employed (see reference [19] for more details): i)

NN4, considering all residue contacts between any pair of

transmembrane helices, and ii) NN4-D, considering only long-

range residue contacts between sequentially non-adjacent helix

pairs.

After predicting residue contacts with TMHcon, helix interac-

tions were derived from these contacts by first selecting a subset of

residue contacts according to a fitted contact formula describing

the expected number of contacts for a certain number of

transmembrane residues [19]. For both networks separately

(NN4 and NN4-D), a minimum number of contacts C for a given

helix pair was required to identify interacting helices. In

agreement with earlier results [19], thresholds of C= 9 (NN4)

and C= 15 (NN4-D) were selected for predicting helix architec-

tures as these thresholds were shown to optimize sensitivity and

specificity of the resulting prediction. The final set of interacting

helices was obtained by combining the predicted helix interactions

of both neural networks.

Prediction of Consensus Helix Architectures for the
Classification Dataset

For the classification dataset a representative helix architecture

was obtained for each SC-cluster by first predicting individual

helix architectures for each protein in the cluster and then

combining those individual architectures into a consensus archi-

tecture. During the consensus prediction step all helix interactions

occurring in more individual architectures than a pre-set

consensus threshold (con) were transferred to the consensus

architecture.

Benchmark Consensus Dataset
As the required stringency of the consensus threshold depends

on the sensitivity and selectivity of the preceding helix interaction

prediction, optimal values for the minimum number of required

contacts C for NN4 and NN4-D of TMHcon and the consensus

threshold con had to be newly re-determined using a subset of all

clusters in the classification dataset with a known PDB [20]

structure. This benchmark dataset was derived by searching all

protein sequences contained in these SC-clusters against PDBTM

[16] (version 2.3) using BLAST [21] for matches with at least 95%

sequence identity and at least 95% sequence coverage. Theoretical

models and structures with a resolution worse than 4 Å were

ignored. Furthermore, only structures were considered whose

TMH number (according to TOPDB [22] or PDBTM, if the

protein was not available in TOPDB) corresponds to the

representative TMH number of the respective SC-cluster. If

several structures were available for one SC-cluster the structure

with the best resolution was chosen. Twenty-eight SC-clusters

were found to be associated with a known structure and those

clusters together with the 28 PDB proteins representing these SC-

clusters will be further referred to as CAMPS_TEST.

Benchmarking Consensus Helix Architecture Quality
To evaluate the quality of the predicted consensus helix

architectures true helix interaction graphs were obtained for the

structures in CAMPS_TEST by considering all TMH pairs (TMH

annotations were taken from TOPDB/PDBTM) with at least one

helix-helix contact as interacting. A helix-helix contact was defined

as a residue pair (located on different TMHs) having a spatial

distance of less than 5.5 Å between any non-hydrogen atoms.

Consensus helix interaction graphs were predicted for each SC-

cluster in CAMPS_TEST using varying values for the contact

thresholds for NN4 and NN4-D and the consensus threshold con.

For each set of thresholds sensitivity and specificity of the final

consensus helix architectures were calculated in comparison to the

true helix interaction graphs. Sensitivity was defined as the

Classification of Membrane Proteins
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proportion of all interacting helices in the true helix architectures

that were also present in the predicted consensus architectures

while specificity described the proportion of all true non-

interacting helices that were also absent in the consensus

architectures. Furthermore, consensus architectures were also

compared to helix architectures predicted with TMHcon for

individual cluster proteins using default thresholds (C= 9 and

C= 15 for NN4 and NN4-D, respectively) and both sensitivity and

specificity were determined analogously.

Predicting Final Consensus Helix Architectures
Using the combination of thresholds for NN4, NN4-D and con

with the best sensitivity at a given specificity (see Results and

Discussion), consensus architectures were generated for all 431

SC-clusters in CAMPS_SC.

Evaluation of HISS-based Classifications Using Predicted
Helix Architectures

Similarities between predicted helix architectures were quanti-

fied using the HISS (Helix Interaction Similarity Score) scoring

system [14] which tests for common helix interactions between two

membrane proteins by quantifying the fraction of helix interac-

tions present in both structures relative to the total number of helix

interactions observed in the individual proteins. Helix interactions

can be weighted differently depending on the number of residue

contacts and on the sequential distance between two helices.

To determine the best method for distinguishing proteins with

similar helix architecture from those with different helix architec-

ture even when only a fraction of all observed helix interactions

are predicted while other interactions are wrongly predicted, HISS

scores [14] were calculated for all protein pairs of the evaluation

dataset having the same number of transmembrane helices and a

consistent annotation (‘same fold’ versus ‘different fold’) in SCOP

and CATH. Different variations of HISS scores were tested where

all predicted helix interactions were either treated equally

(‘unweighted strategy’) or helix interactions with more than 15

predicted helix contacts were upweighted with a factor 1.5

(‘weighted strategy’). Both approaches were compared to the

SCOP/CATH classification using a receiver operator character-

istic (ROC) curve which plots the achieved true positive rate

against the false positive rate over the full range of possible HISS

score thresholds, with any point above the diagonal corresponding

to a better prediction than random. The overall classification

quality was quantified using the Area Under the Curve (AUC)

measure. ROC curve and AUC calculations were executed with R

using the ROCR package [23]. Furthermore, for both weighted

and unweighted HISS scores, individual classifications were

derived where all proteins satisfying a specified HISS score

threshold were classified to the same fold. Then sensitivity and

specificity of this classification with respect to the SCOP/CATH

reference classification were calculated. Sensitivity is defined as the

fraction of all protein pairs with the same SCOP/CATH fold

annotation that satisfied the specified HISS score threshold.

Specificity is defined as the fraction of all protein pairs with

different SCOP/CATH fold annotation and HISS score below the

specified threshold.

Within a second evaluation step HISS scores (‘weighted’ and

‘unweighted’) were calculated for all proteins of the evaluation

dataset having the same number of transmembrane helices

irrespective of their presence in SCOP and/or CATH. Protein

pairs satisfying pre-defined HISS score thresholds were clustered

with the MCL algorithm [24] using default parameters. The

resulting classifications were compared to the previously derived

classification of helix architectures using known membrane protein

structures as available from HISSdb [14]. Again, the AUC

measure and sensitivity/specificity of individual classifications

were calculated to quantify the classification success. This time,

sensitivity describes the fraction of all protein pairs belonging to

the same HISSdb architecture that were also found in the same

MCL cluster based on predicted helix interaction while specificity

quantifies the fraction of all protein pairs classified to different

MCL clusters in the prediction-based classification out of all

protein pairs classified to different architectures within HISSdb.

Large-scale Classification of Consensus Helix
Architectures

We conducted a comparison of all consensus architectures

generated for the SC-clusters in CAMPS_SC using the HISS

scoring system [14], considering only pairs of consensus architec-

tures with the same representative TMH number. All HISS scores

above different pre-defined thresholds were used to cluster the

consensus architectures using the MCL algorithm [24] with

varying inflation values. As the inflation value is an MCL

parameter that controls the granularity of the clustering (the

higher the value the more fine-grained the clustering), different

combinations of the two parameters (HISS score threshold,

inflation value) were tested and the final MCL clusters (termed

HIS ( = helix interaction similarity) clusters) were validated using

the Pfam-A [25] annotations of the corresponding proteins. If a

protein was classified to a Pfam-A family having a clan assignment,

then the clan annotation was considered, otherwise the family

annotation was used. Sensitivity was defined as the fraction of all

proteins covered by the HIS clusters with the same Pfam-A

annotation that were also found in the same HIS cluster. Similarly,

specificity was calculated as the fraction of all proteins with

different Pfam-A annotations that were also found in different HIS

clusters. The parameter combination with the best sensitivity at a

given specificity was chosen for the final set of clustered consensus

architectures.

Gene Ontology Enrichment Analysis
To identify significantly enriched Gene Ontology [26] (GO)

terms within the set of proteins covered by the HIS clusters, we

used the Ontologizer software [27]. The software requires a GO

ontology file, an annotation file (with GO terms mapped to genes),

so-called study sets (genes/proteins of interest), and a population

set (reference set) as input. We chose the GO slim [28] generic

ontology (OBO v1.2; as of January 11, 2012) which is a subset of

the whole GO containing high-level terms and the unfiltered

UniProt annotation file (as of December 13, 2011; both files were

downloaded from http://www.geneontology.org). Two separate

enrichment analyses were conducted. In the first analysis (further

referred to as protein class level enrichment analysis) all membrane

proteins covered by the HIS clusters were grouped according to

their TMH number and each group constituted a study set

resulting in eleven study sets (5–15 TMHs). The union of all eleven

study sets formed the population set. In the second analysis (further

referred to as cluster level enrichment analysis) each HIS cluster

itself described a study set using those members whose TMH

number corresponded to the representative TMH number of the

corresponding cluster, yielding 151 study sets. The population set

was again the sum of all study sets. For further consideration, we

selected all enriched GO terms returned by Ontologizer with an

adjusted P-value better than or equal to 0.05. The adjusted P-

values were calculated using the Bonferroni correction method

(which is one of the optional parameters of the Ontologizer

software).

Classification of Membrane Proteins
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Availability
Consensus helix interaction graphs and the clustering of SC-

clusters into HIS clusters can be downloaded at http://webclu.bio.

wzw.tum.de/CAMPS2.0/download.jsp.

Results and Discussion

Overview of the Methodology
In this study we sought to further improve large-scale

classification of predicted membrane protein architectures by

introducing a new classification level in our CAMPS database [15]

that goes beyond similarity of amino acid sequence and predicted

transmembrane topology. To this end, predicted helix-helix

interactions were used to identify, for each CAMPS cluster, a

consensus helix interaction architecture representing common

helix interactions among all cluster members and the similarity

among these consensus helix interaction patterns was subsequently

used to group initially separate CAMPS clusters.

To optimize and analyze the quality of this new classification

procedure the two major components of the classification process

were separately evaluated. To test how well predicted helix

interactions can be used to identify structural similarities among

membrane proteins, helix interaction architectures were predicted

for individual sequences with known three-dimensional structures.

Then these architectures were classified based on their similarity.

The obtained classification was compared to the corresponding

SCOP/CATH classification of the same proteins as well as to our

own HISSdb classification (dataset PDB_TEST, Figure 1A). At

the cluster level consensus helix architectures were first derived

only for those CAMPS clusters, where a representative PDB

structure was available. Subsequently, the quality of those

consensus helix architectures in comparison to the true helix

interaction patterns, derived from the PDB structures, was

analyzed (dataset CAMPS_TEST, Figure 1B).

Finally, the complete process of deriving consensus helix

architectures and classifying them based on helix interaction

similarity was applied to a comprehensive set of CAMPS clusters

(dataset CAMPS_SC, Figure 1C) and the resulting set of predicted

membrane protein architectures was analyzed.

Classification of Predicted Helix Architectures in
Comparison to SCOP and CATH

The similarity of predicted helix interaction graphs and the

possibility of discriminating proteins with similar and different

architectures based on these graphs was first evaluated using

proteins with available 3D structure that are classified consistently

in SCOP and CATH either to the same fold or to different folds.

As four helix bundle proteins are known to pose a problem to

structural classification in general [13], only proteins with at least

five transmembrane helices were considered. The resulting test set

contained 54 protein chains forming 211 protein pairs of which 95

had the same fold assignment in SCOP/CATH while the

remaining protein pairs had the same number of transmembrane

helices but different fold assignments. Helix interactions were

predicted for all proteins based on helix-helix contacts obtained

with TMHcon [19] using a two step filtering procedure where a

large set of residue contacts is selected in the first step but only

those helix pairs are predicted as interacting that make at least C

residue contacts (see Materials and Methods). Similarities among

these predicted helix interactions were quantified using HISS

similarity scores [14] in two variations: i) treating all predicted

helix interactions equally, and ii) upweighting interactions with

many predicted contacts.

As seen in Table 1, proteins from the same fold in SCOP and

CATH consistently have higher HISS scores than proteins from

different folds independent of the HISS calculation method

applied. Accordingly, the classification of proteins into ‘‘same’’

or ‘‘different’’ fold based on HISS scores results in a classification

well above random as can be concluded from the reported AUC

(‘area under the ROC curve’) values which were found to be as

high as 0.848 (a random prediction would result in an AUC value

of 0.5). The incorporation of weights for HISS score calculation

had no major effect on the prediction (AUC of 0.846 without

weights compared to 0.848 with weights).

Using specific HISS score thresholds to predict proteins as

belonging to the same fold (Table 1), the sensitivity and specificity

of such a prediction can be calculated by testing how many

proteins that actually belong to the same fold satisfy this threshold

and how many proteins that are classified to separate folds in

SCOP and CATH have HISS scores below this threshold. The

lower this score threshold is chosen, the more sensitive is such a

prediction at the cost of reduced specificity. Aiming at a specificity

of 80%, the best prediction was obtained with weighted HISS

scores with a sensitivity of nearly 77%. Similarly, the best

prediction with 90% specificity (unweighted HISS scores) resulted

in a sensitivity of 65%.

These results are highly encouraging with respect to the

structural classification of membrane proteins. Of course, similar

structures can not be identified with equal quality as based on

known structures, where a HISS based classification resembles

SCOP and CATH nearly perfectly with an AUC value of 0.998

[14]. Still, a large fraction of all proteins having the same helix

architecture can be recognized with high specificity. Importantly,

this similarity can also be determined using predicted helix

interactions when the sequence similarity between the analyzed

proteins is too low to confidently assign a common fold. For

example, bovine rhodopsin (PDB 1GZM, chain A) was found to

have HISS scores $0.9 with several other rhodopsins such as

halorhodopsin (PDB 1E12, chain A) or sensory rhodopsin (PDB

1XIO, chain A) although the sequence similarity among these

proteins is too low to obtain a proper sequence alignment (for

comparison: proteins with identical helix interactions result in

HISS = 1.0).

Classification of Predicted Helix Architectures in
Comparison to HISSdb

As SCOP and CATH both cover only a fraction of all available

membrane protein structures, we used our own previously

introduced classification of known membrane protein structures

called HISSdb [14] to test the classification of predicted helix

architectures on the full set of PDB proteins. HISS scores

(weighted and unweighted) were calculated for all protein pairs

having the same number of transmembrane helices within our

evaluation dataset (2520 protein pairs in total of which 1540 were

classified within HISSdb to the same architecture). Following the

standard HISSdb construction protocol the MCL clustering

algorithm with default parameters was used to obtain clusters of

proteins having highly similar helix interaction patterns and the

obtained clusters were compared to the original HISSdb clusters

(Table 2).

Again, protein pairs belonging to the same HISSdb cluster were

found to have significantly higher HISS scores than proteins from

different HISSdb clusters based on both weighted and unweighted

HISS scores (Table 2). In contrast to the SCOP/CATH analysis,

however, this time weighted HISS scores were able to reproduce

the original HISSdb classification more closely than unweighted

HISS scores as indicated by the obtained AUC values (0.752 with

Classification of Membrane Proteins
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Figure 1. Overview of the methodology. A: Classification of a-helical membrane protein structures using predicted helix architectures. B:
Parameter optimization for generating consensus helix architectures. C: Classification of a-helical membrane proteins using consensus helix
architectures.
doi:10.1371/journal.pone.0077491.g001
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weighted and 0.704 with unweighted scores). Importantly, both

AUC values are again clearly higher than random, indicating that

predicted helix interactions are sufficiently accurate to identify

structural similarities among the full set of membrane proteins

with solved 3D structure. However, it must be noted that

classifications using the full evaluation dataset have lower AUC

values than the subset of SCOP/CATH proteins discussed earlier.

As the latter dataset contains roughly only 10% of all protein pairs

from the full evaluation dataset, an AUC value of 0.75 (as obtained

from a much larger set of HISSdb structures with weighted HISS

scores) seems to be a more realistic estimate of what is optimally

achievable with predicted helix interactions than the AUC value of

0.85 reported for SCOP/CATH proteins.

After clustering all protein pairs satisfying a given HISS score

threshold with the MCL algorithm, we evaluated the sensitivity

and specificity of the resulting classifications with respect to the

original HISSdb classification (Table 2). In this case sensitivity

describes the fraction of all protein pairs belonging to the same

HISSdb cluster that were also clustered together with the MCL

algorithm based on predicted helix interaction. Similarly, speci-

ficity describes the fraction of all protein pairs classified to different

clusters in the prediction-based classification out of all protein

pairs classified to different folds in the original structure-based

classification. Using weighted HISS scores, the HISSdb classifica-

tion of transmembrane proteins with known 3D structures could

be reproduced with a specificity of 81% and a sensitivity of 66%.

Even at the specificity level of 90% nearly 50% (48.7%) of all

proteins with the same HISSdb clusters were also correctly

identified to have similar folds based on predicted helix

architectures. As already indicated by AUC values, unweighted

HISS scores are not able to express similarities and differences of

predicted helix architectures as well as weighted HISS scores. As

can be seen from Table 2, a minor change in the clustering score

threshold from 0.89 to 0.90 leads to significantly deviating

classifications with increased specificity from 74.5% to 85.3%

accompanied by an even stronger decrease in sensitivity from

77.6% to 37.9%. We are therefore not able to report sensitivity

and specificity for classifications with close to 80% or 90%

specificity as we did for the SCOP/CATH dataset and the full

evaluation dataset with weighted HISS scores since no such

Table 1. Classification of proteins in SCOP and CATH using predicted helix interactions.

HISSa Avg(HISS)same
b Avg(HISS)diff

c AUCd Scoree Sensitivityf [%] Specificityg [%]

uw 0.890 0.749 0.846 0.88 72.6 78.4

0.90 65.3 92.2

w 0.864 0.665 0.848 0.82 76.8 81.0

0.88 53.7 91.4

Helix interactions were predicted using the threshold combination C= 9 (network NN4) and C = 15 (network NN4-D), see Materials and Methods. HISS scores were
calculated with and without weighting edges.
aHISS scores were calculated both without weighting helix interactions (uw) and with up weighting interactions involving .15 residue contacts by a factor 1.5 (w).
bAvg(HISS)same: average HISS score for proteins classified to the same fold in SCOP and CATH.
cAvg(HISS)diff: average HISS score for proteins classified to different folds in SCOP and CATH.
dAUC: area under the curve describing how well proteins with the same fold can be differentiated from proteins with different folds (AUC =0.5 would correspond to a
random prediction).
eScore: HISS score threshold used to identify proteins with the same helix architecture. For both weighted and unweighted HISS scores, two thresholds were chosen
such that the specificity of the obtained classifications most closely approached either 80% or 90%.
fSensitivity: Fraction of all protein pairs with the same SCOP/CATH fold annotation having a HISS score above the specified threshold.
gSpecificity: Fraction of all protein pairs with different SCOP/CATH fold annotation having a HISS score below the specified threshold.
doi:10.1371/journal.pone.0077491.t001

Table 2. Classification of all proteins with solved 3D structure using predicted helix architectures in comparison to the HISSdb
database.

HISSa Avg(HISS)same
b Avg(HISS)diff

c AUCd Scoree Sensitivityf [%] Specificityg [%]

Uw 0.812 0.717 0.704 0.89 77.6 74.5

0.90 37.9 85.3

W 0.775 0.622 0.752 0.85 66.0 81.0

0.88 48.7 90.5

Helix interactions were predicted using the threshold combination C= 9 (network NN4) and C = 15 (network NN4-D), see Materials and Methods. HISS scores were
calculated with and without edge weighting. Final classifications were obtained by clustering all proteins satisfying the specified HISS score thresholds using the MCL
algorithm.
aHISS scores were calculated both without weighting helix interactions (uw) and with up weighting interactions involving .15 residue contacts by a factor 1.5 (w).
bAvg(HISS)same: average HISS score for proteins classified to the same helix architecture type in HISSdb.
cAvg(HISS)diff: average HISS score for proteins classified to different helix architecture types in HISSdb.
dAUC: area under the curve describing how well proteins with the same fold can be differentiated from proteins with different folds (AUC =0.5 would correspond to a
random prediction).
eScore: HISS score threshold used for clustering proteins with the MCL algorithm. For both weighted and unweighted HISS scores, two thresholds were selected such
that the specificity of the obtained classifications most closely approached either 80% or 90%.
fSensitivity: Fraction of all protein pairs with the same HISSdb architecture annotation assigned to the same MCL cluster.
gSpecificity: Fraction of all protein pairs with different HISSdb architecture annotation assigned to different MCL clusters.
doi:10.1371/journal.pone.0077491.t002
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classifications could be obtained with unweighted HISS scores.

Accordingly, weighted HISS scores seem to be the method of

choice for comparing a large number of membrane proteins as we

intend to do in the following analyses. The differential weighting of

helix interactions according to the number of predicted helix

interactions allows for a more fine-grained quantification of

structural similarity and also seems to have an additional positive

effect on classification accuracy as helix interactions with many

predicted contacts have a higher chance of being correctly

predicted.

Finally, we were interested to find out whether our HISS-based

classification of predicted helix architectures captures structural

similarity beyond simple sequence similarity or rather tends to

identify only those protein pairs as being similar that also have a

high sequence identity. To this end, we calculated sequence

identities of all protein pairs correctly classified to the same fold

based on predicted helix interactions (classifications with weighted

HISS scores and 80% or 90% specificity) and compared these

identities to the distribution of sequence identities obtained for all

protein pairs classified to the same cluster in the HISSdb database

(Figure 2). Our method based on predicted helix interactions is

able to correctly classify protein pairs over the full range of

observed sequence identities and hence all three sequence identity

distributions are highly similar. Within HISSdb, the average

sequence identity of proteins belonging to the same cluster is

28.7%, which is closely matched by our predicted classifications

having average sequence identities of 28.6% (80% specificity) and

29.4% (90% specificity). For the 90% specificity classification, for

example, this corresponds to roughly 10% of all correctly classified

protein pairs (73 out of 750) having a pairwise sequence identity

lower than 20%. For example, the microbial sensory rhodopsin

(1xioA) and the beta1-adrenergic receptor from turkey (2vt4A)

display a pairwise sequence identity of 17.8% while still belonging

to the same CATH fold 1.20.1070. These promising results

confirm that structural similarities beyond mere sequence identity

can be deduced from predicted helix interaction patterns. While

existing classification approaches specifically addressing mem-

brane proteins always use sequence similarity as a major criterion

for a common classification [18,29], the combination of predicted

helix interactions and HISS scores offers a completely new

possibility of deriving structural similarity originating, for example,

from convergent evolution.

Generation and Large-scale Classification of Predicted
Consensus Helix Architectures

In a next step, we refined our method to predict helix

interaction patterns by generating consensus helix architectures

based on sets of structurally related membrane proteins (SC-

clusters) from the CAMPS 2.0 database [15]. In CAMPS 2.0 a–

helical membrane proteins are classified into structural families

according to sequence similarity, the number of transmembrane

helices, and loop length patterns. Although sequence information

is not the only feature in the classification, it has a major effect on

the clustering result. Thus, it is possible that multiple SC-clusters

describe similar structures originating from convergent evolution.

By applying the method of consensus helix architectures to SC-

clusters we sought to find membrane proteins that share structural

similarity, but lack sequence similarity.

We started by determining optimal parameters for building

consensus architectures using a set of 28 SC-clusters containing

known three-dimensional PDB [20] structures (dataset

CAMPS_TEST). Consensus architectures with varying contact

thresholds C (for NN4 and NN4-D) and consensus thresholds con

were generated for each of the 28 SC-clusters (as described in

Materials and Methods) and compared to the observed individual

helix architecture of the corresponding structure. Aiming at 80%

specificity the best parameter setting was achieved for C= 11

(network NN4), C= 11 (network NN4-D) and con= 0.3 (consensus

threshold), yielding a sensitivity of 61.6% (Table 3). For

comparison, we also predicted individual helix architectures for

the proteins used for building consensus architectures and

calculated the average sensitivity and specificity. Similarly, helix

architectures were predicted for the PDB proteins themselves and

compared to the observed helix architectures. As seen in Table 3

consensus architectures reproduced observed helix arrangements

as good or even better as the average helix predictions and the

predictions obtained for the PDB proteins. At 80% specificity,

consensus architectures were 1.7% more sensitive than the PDB

predictions and 2.2% more sensitive than the average predictions.

Using the optimal parameters at 80% specificity (C= 11 for

NN4, C= 11 for NN4-D, con = 0.3), we generated consensus

architectures for all 431 SC-clusters from the classification dataset

(CAMPS_SC) containing proteins with 5 to 15 TMHs. All pairs of

consensus architectures representing the same number of TMHs

(16,027 pairs in total) were compared to each other using the HISS

scoring system. Similar to the clustering of protein pairs (see

above), all SC-cluster pairs (represented by their consensus

architectures) above a given HISS score threshold were clustered

using the MCL algorithm. The resulting clusters representing

combinations of SC-clusters were termed HIS ( = helix interaction

similarity) clusters. Trying different HISS score thresholds and

different MCL inflation values (whereas the inflation value

regulates the granularity of the clustering) we calculated the

sensitivity and specificity of the HIS clusters with respect to Pfam-

A [25] annotations. Sensitivity was defined as the fraction of all

protein pairs with the same Pfam annotation that were assigned to

the same HIS cluster and specificity as the fraction of all protein

pairs with different Pfam annotations assigned to different HIS

clusters. The best parameter combination reaching 90% specificity

for all 431 SC-clusters corresponds to a HISS score threshold of

0.86 and an inflation value of 2 (Table 4). This combination

achieves a sensitivity of almost 52%. However, when we calculated

sensitivity and specificity for SC-clusters with members having 5 to

7 TMHs and more than 7 TMHs separately, we found that this

parameter setting (0.86/2) is not optimal for both SC-cluster

categories. Thus, we derived different parameter settings for the

two categories both achieving similar values of sensitivity and

Figure 2. Sequence similarity distribution. Sequence identity
among all protein pairs classified to the same architecture within the
HISSdb database and the two structural classifications obtained using
predicted helix interactions with either 80% specificity or 90%
specificity.
doi:10.1371/journal.pone.0077491.g002
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specificity. Aiming at 90% specificity, a HISS score threshold of

0.95 and an inflation value of 1.1 were shown to perform best for

the first category, achieving almost 55% sensitivity. For the second

category, the combination 0.75/1.1 performed with 90% speci-

ficity and almost 50% sensitivity (Table 4).

Accordingly, we used the parameter combinations 0.95/1.1 (for

SC-clusters with up to 7 TMHs) and 0.75/1.1 (for SC-clusters with

more than 7 TMHs) for the final clustering of all consensus

architectures. The 431 SC-clusters were joined into 151 HIS

clusters, whereas 111 of them are singleton clusters (i.e. clusters

only containing one SC-cluster) and 40 HIS clusters contain two

or more SC-clusters (Table 5). Only 15 out of 151 HIS clusters

encompass at least one SC-cluster that is associated with known

three-dimensional structures. Assuming that each HIS cluster

corresponds to a distinct membrane protein fold, 90% of the HIS

clusters represent unknown folds, illustrating that the membrane

protein structure space is largely unexplored (note that this

number refers to membrane proteins with at least five transmem-

brane helices (see Materials and Methods).

Validation of HIS Clusters
Comparison with Pfam. Using Pfam-A family and clan

annotations of membrane proteins, original (sequence and

topology based) SC-clusters and the new helix interaction based

clusters (HIS clusters) were compared with each other. It is

important to mention at this point that we do not intend to fully

reproduce the Pfam clustering. SC-clusters and HIS clusters are

designed to represent sets of structurally similar membrane

proteins likely to share the same fold, while Pfam is a sequence-

based approach and does not consider structural features.

Nevertheless, Pfam is used as a reference since Pfam annotations

are available for a large majority of membrane proteins (about

70%, data not shown). Among all protein pairs having the same

Pfam-A family annotation 66.5% of pairs were also found in the

same SC-cluster (sensitivity), while 99.9% of all pairs with different

annotations were assigned to different SC-clusters (specificity).

Using Pfam clan annotations a sensitivity of 11.3% and a

specificity of 100% was observed for SC-clusters. Subsequent

clustering of SC-clusters using helix architectures led to signifi-

cantly improved sensitivity at the cost of a slightly reduced

specificity. HIS clustering resulted in a sensitivity of 81.6% (at

94.8% specificity) and 42.0% (at 96.1% specificity) at the family

and clan level, respectively. Most importantly, HIS clusters are

30.7% more sensitive than SC-clusters when compared to Pfam

clans. Pfam clans are described as a set of related Pfam families

that have arisen from a single evolutionary origin [30] and hence

tend to group together large, divergent families. Thus, Pfam clans

represent a perfect evaluation when investigating the clustering of

Table 3. Parameter optimization for generation of consensus helix architectures.

Graph type Contact thresholda Consensus thresholdb Accuracy [%] Sensitivityc [%] Specificityd [%]

Consensus C11/C11 0.3 71.8 61.6 80.1

C12/C14 0.6 69.9 45.4 89.7

PDBe C5/C12 2 70.9 59.9 79.8

C12/C18 2 69.8 45.4 89.6

Averagef C6/C18 2 70.1 59.4 79.5

C15/C27 2 66.0 41.3 89.5

aContact threshold (NN4/NN4-D): number of required helix-helix contacts to predict a helix as interacting. NN4 and NN4-D are two versions of the TMHcon software for
the prediction of helix-helix contacts.
bConsensus threshold: fraction of individual helix architectures required to contain a helix interaction to transfer it to the consensus architecture.
cSensitivity: fraction of known interacting helices that can also be found in the predicted architectures.
dSpecificity: fraction of known non-interacting helices that are also absent in the predicted architectures.
ePDB: helix architectures derived from known PDB structures were compared with those that were predicted for these PDB proteins.
fAverage: helix architectures were predicted for all proteins involved in the consensus architecture and compared with the helix architectures derived from the known
PDB structures.
doi:10.1371/journal.pone.0077491.t003

Table 4. Parameter optimization for clustering of consensus helix architectures.

SC-cluster dataseta HISS score threshold Inflation value Sensitivityb [%] Specificityc [%]

All 0.70 1.1 67.1 85.3

0.86 2 51.8 89.5

#7 TMHs 0.84 5 66.9 78.8

0.95 1.1 54.9 91.2

.7 TMHs 0.70 1.1 54.2 84.3

0.75 1.1 49.9 89.5

aAll: All SC-clusters from the classification dataset; #7 TMHs: SC-clusters with members having up to seven TMHs; .7 TMHs: SC-clusters with members having more
than seven TMHs.
bSensitivity: Fraction of all proteins pairs having the same Pfam annotation that were assigned to the same HIS cluster using the respective HISS score threshold and
inflation value.
cSpecificity: Fraction of all proteins pairs having different Pfam annotations that were assigned to different HIS clusters using the respective HISS score threshold and
inflation value.
doi:10.1371/journal.pone.0077491.t004
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structurally similar proteins with low sequence similarity. Our

results indicate that the further clustering of SC-clusters led to a

considerable improvement of the clustering quality, particularly

for divergent membrane proteins, as illustrated by the three test

cases below.

CASE 1: G Protein-Coupled Receptors. G protein-coupled

receptors (GPCRs) are known to be the largest and most diverse

protein superfamily in the mammalian genome and are further

subdivided into five main families [31–33] (with family A being the

largest family of GPCRs). All GPCRs share a common structure of

a seven transmembrane helix bundle [34], while sequence

similarity is rather low among distant GPCRs, which led to

several CAMPS SC-clusters containing GPCRs. Clustering based

on helix architectures resulted in 12 SC-clusters that all contain

members assigned to the Pfam clan CL0192 (‘Family A G protein-

coupled receptor-like superfamily’) being grouped into the same

HIS cluster due to their similar consensus architectures (Figure 3A).

Importantly, protein pairs from different SC-clusters that were

merged during this process were found to have an average

pairwise sequence identity of 14.1%, which again confirms that

our method is able to identify membrane proteins with similar

structures lacking significant sequence similarity.

Case 2: APC superfamily. Similarly, another five SC-

clusters were found that are all linked with Pfam clan CL0062

(‘APC superfamily’) and are now classified to the same HIS cluster

(Figure 3B). While GPCRs are only present in eukaryotes, amino

acid/polyamine/organocation (APC) transporters are numerous

in all domains of life. As in the previous case, the average pairwise

sequence identity between protein pairs originating from different

SC-clusters (joined into the same HIS cluster) was found to be very

low (14.5%).

CASE 3: SC-clusters with similar 3D structures. The last

case is special as it shows two SC-clusters associated with known

3D structures being similar to each other and joined into the same

HIS cluster (Figure 4). SC-Clusters CMSC0058 and CMSC0180

contain the archaeal aquaporin AqpM (2f2b, chain A) and the

bacterial formate channel (3 kly, chain A), respectively. By

comparing the two structures using DaliLite [35] we observed a

high degree of structural similarity (Z-score: 17.6). While a Z-score

of at least 2.0 indicates a common fold, a Z-score above 20 means

that two structures are true homologs (see the DaliLite help file at

http://www.ebi.ac.uk/Tools/dalilite). At the same time, the

sequence identity of the two channels is only 15.3%. It is

interesting to note that both structures are also classified to the

same CATH [12] fold (‘Glycerol uptake facilitator protein’) and to

the same OPM [36] superfamily (‘Major Intrinsic Protein (MIP)/

FNT superfamily’). Furthermore, Theobald and Miller also

revealed that the two channels share a common structural fold

in the absence of sequence similarity raising questions about the

evolution of membrane proteins [37].

Taken together, our results clearly indicate that using predicted

helix architectures it is possible to identify structurally similar

membrane proteins lacking sequence similarity. This ability can

aid in discerning distant evolutionary relationships between

membrane proteins and in organizing the membrane protein fold

space, as demonstrated below.

Exploring the Membrane Protein Fold Space
Distribution of helix architectures across TMH

classes. After validating our new classification of predicted

membrane protein architectures (i.e. HIS clusters) against Pfam

clans we investigated how many distinct protein architectures

could be observed with a given number of transmembrane helices

and how this distribution differed from corresponding distributions

considering the original SC-clusters or individual membrane

proteins (Figure 5, Table 5). In 1998 Jones analyzed the patterns of

occurrence of transmembrane topologies [38]. This and other

genome-wide analyses [39–43] showed that proteins with 6 and 12

TMHs, such as small-molecule transporters, sugar transporters

and ABC transporters, are predominant in uni-cellular organisms.

In contrast, proteins with 7 TMHs are abundant in C. elegans and

human due to the high abundance of G-protein coupled receptors.

For the membrane proteins in our classification dataset

(CAMPS_SC) we could observe similar trends (see Figure 5A

and Table S1 in the Supporting Information), except for the 12

TMH class which is more abundant in eukaryotes than in

Table 5. TMH distribution among SC-clusters and HIS clusters.

Number of
TMHs

Number of
SC-clusters Number of HIS clusters Reduction factorc

Singletona Non-Singletonb Total

5 97 25 18 43 2.3

6 121 26 8 34 3.6

7 68 28 3 31 2.2

8 24 1 1 2 12.0

9 12 3 1 4 3.0

10 37 16 4 20 1.9

11 27 0 1 1 27.0

12 30 6 1 7 4.3

13 5 0 1 1 5.0

14 8 4 2 6 1.3

15 2 2 0 2 1.0

Total 431 111 40 151 2.9

aHIS cluster containing only one SC-cluster.
bHIS cluster containing two or more SC-clusters.
cNumber of SC-clusters divided by total number of HIS clusters.
doi:10.1371/journal.pone.0077491.t005
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Figure 3. Consensus helix architectures of selected SC-clusters. A: All SC-clusters belong to Pfam clan CL0192 (‘Family A G protein-coupled
receptor-like superfamily’) and were joined into the same HIS cluster (CMHIS0006). B: All SC-clusters belong to Pfam clan CL0062 (‘APC superfamily’)
and were joined into the same HIS cluster (CMHIS0005). Nodes correspond to transmembrane helices, edges represent helix interactions.
doi:10.1371/journal.pone.0077491.g003
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prokaryotes (Eukaryota: 16.0%, Archaea: 9.2%, Bacteria: 13.0%).

A likely explanation from this deviation from earlier analyses is

that they were based on not more than four eukaryotic genomes

while the CAMPS database incorporates 134 eukaryotic genomes

in total [15].

Similarly, we also investigated the distribution of TMH classes

among our HIS clusters in comparison to the original SC-clusters

(see Figures 5B and 5C and Table S1 in the Supporting

Information). While the distribution at the protein level reflects

the mere abundance of different TMH classes, the distribution at

the cluster level (especially the HIS cluster level) rather displays

their structural diversity. As can be seen in Figures 5A and 5B, the

distribution of SC-clusters is highly similar to the protein

distribution with slight differences for the 8, 9 and 12 TMH class.

While proteins with 8 and 9 TMHs are almost equally abundant

as proteins with 10 TMHs, SC-clusters with 8 and 9 TMH

proteins are less frequent than those involving the 10 TMH

topology. In contrast to these minor differences, the distribution of

HIS clusters differs significantly from both the protein and the SC-

cluster distribution: while the 6 TMH class is abundant among

prokaryotic SC-clusters and the 7 TMH class among eukaryotic

SC-clusters, the number of HIS clusters decreases from 5TMH to

7TMH in all superkingdoms. Furthermore, the fraction of HIS

clusters with 8, 11 and 12 TMH proteins was clearly reduced in

comparison to their respective frequency in the SC-cluster and

protein distribution. Overall we observe that proteins are more

likely to have similar helix interaction patterns and therefore also

similar predicted folds the more helices they have (hence the

reduction in the number of different architectures), which is rather

surprising as an increase in the number of helices would potentially

open up a much larger combinatorial space for different possible

helix interaction patterns.

The abundance of proteins with 8 to 12 TMHs is rather

homogeneous (see Figure 5A), while HIS clusters with the 10 and

12 TMH topology are more frequent than HIS clusters with, for

example, the 11 TMH topology (see Figure 5C) suggesting that

these membrane protein classes are structurally more diverse. It is

known from previous publications that internal gene duplications

are a very common mechanism in membrane protein evolution

[2,44–49]. According to these studies proteins with 10 and 12

Figure 4. Example of two SC-clusters that were joined together.
Both SC-clusters contain structures with a very similar transmembrane
helix packing. (A) Left panel: Representative structure (PDB code: 2f2b,
chain A) of SC-cluster CMSC0058. Right panel: Consensus helix
architecture for SC-cluster CMSC0058. (B) Left panel: Representative
structure (PDB code: 3 kly, chain A) of SC-cluster CMSC0180. Right
panel: Consensus helix architecture for SC-cluster CMSC0180. Both
structures contain six transmembrane helices (M1–M6) colored
differently. The fifth helix of 3 kly_A is interrupted (M5a, M5b). Nodes
correspond to transmembrane helices, edges represent helix interac-
tions. Transmembrane helix coordinates were extracted from PDBTM
[16].
doi:10.1371/journal.pone.0077491.g004

Figure 5. Occurrence of TMH classes among individual
proteins, SC-clusters and HIS clusters. A: Percentage of proteins
with a certain number of TMHs. Percentage of SC-clusters (B) and HIS
clusters (C) with a certain representative TMH number.
doi:10.1371/journal.pone.0077491.g005
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TMHs seem to have evolved through a complete gene duplication.

Therefore, we speculate that proteins with 10 and 12 TMHs show

a higher structural diversity as they originated from proteins with 5

and 6 TMHs that themselves are distributed among many

different HIS clusters. Similarly, we suggest that for the same

reason proteins with 14 TMHs adopt more diverse structures than

proteins with 13 TMHs.

Structural similarity of transporter families with 8 TMH

and 11 TMH. We investigated more closely the 8 and 11 TMH

classes that appear to make the largest contribution to the almost

3-fold decrease in the number of protein clusters after the

clustering based on helix architecture similarity (Table 5). Thus, 23

out of 24 SC-clusters with members having eight TMHs were

joined into one HIS cluster. Different transporter proteins

including ABC transporters, nickel transporters, NADH dehydro-

genases and P-type ATPases, as well as many proteins of unknown

function were grouped together. Hence, it seems that these

transporters have a common structural core, a structural similarity

that could not be revealed using the SC-clustering approach. In

fact, previous studies based on hydropathy profile analysis also

revealed structural similarities between different families of

secondary transporters not related in amino acid sequence,

indicating distant evolutionary relationships [50–53]. Therefore,

we hypothesize that structural similarity is likely to be found in

other transporter families as well, and our HIS cluster (joining 23

SC-clusters) is one more case of structurally related transporters

that arose either by divergent or convergent evolution [54]. The

second remaining HIS cluster containing 8 TMH proteins is a

singleton cluster comprising only one SC-cluster (CAMPS code

CMSC0049). Given that CMSC0049 includes proteins of

unknown function, it might be an interesting target for structural

genomics.

All 27 SC-clusters of the 11 TMH class were joined into a single

HIS cluster (Table 5). Again, most of the SC-clusters represent

different transporters, such as sulfate, ammonium, metal ion and

amino acid transporters, as well as sodium/alanine and sodium/

glutamate transporters. Furthermore, the grouped SC-clusters are

linked with different Pfam clans (CL0062 ‘APC superfamily’,

CL0064 ‘CPA/AT transporter superfamily’, CL0182 ‘IT super-

family’). Taken together, for the special case of 8 and 11 TMH

proteins, we assume that (almost) all SC-clusters were combined

into one HIS cluster because the considered transporter families

share a common structural core.

Functional diversity of membrane protein classes and

HIS clusters. In a final analysis we investigated how the

structural diversity observed within our predicted membrane

protein architectures correlates with functional diversity among

the classified proteins. To this end we performed a GO (Gene

Ontology) term enrichment analysis for both TMH classes and

HIS clusters in order to find out whether TMH classes associated

with many HIS clusters are also associated with a large number of

enriched GO terms. The highest number of distinct GO terms was

found for proteins with 5, 6 and 7 TMHs (having 6 to 7 terms; see

Table S2 and Table S3 in the Supporting Information). In this

case functional diversity seems to imply structural diversity. The

same applies to the 10 TMH and 14 TMH classes (5 and 4 terms,

respectively) as compared to the remaining classes in the range of 8

to 15 TMHs. However, it has to be noted that the difference in the

number of distinct GO terms is often too subtle in order to draw

clear conclusions regarding the correlation between structural and

functional diversity. For example, the 13 TMH and 14 TMH

classes differ remarkably in their structural variability (according to

the number of different HIS clusters), but only slightly in their

functional variability (3 and 4 enriched GO terms, respectively).

The number of GO terms for the 13 TMH class drops down to 2,

if we consider the terms ‘transport’ and ‘transmembrane transport’

as only one enriched term, as the second is just a more detailed

description of the first one.

We used enriched GO terms to draw conclusions about the

functional diversity of different membrane protein classes.

However, we are aware of the fact that this approach is not

necessarily straightforward. First, one protein can be associated

with multiple GO terms (multi-functional protein). Second, one

HIS cluster can be linked with multiple GO terms (multi-

functional cluster). Therefore, the statement that the more GO

terms can be found the higher the functional diversity might be

misleading. To investigate the effect of multi-functional proteins

we looked at the protein annotations and searched for GO terms

that frequently occur in combination with other GO terms. This

was found to occur in three cases: i) when proteins with 5, 9, and

10 TMHs were annotated with the GO term ‘cell division’, the

‘cell cycle’ annotation was available as well, ii) the same applies to

the combination ‘protein targeting’ and ‘transport’ concerning the

6 TMH class, and iii) the annotations ‘transport’, ‘transmembrane

transport’ and ‘response to stress’ also occurred in combination

affecting the 11, 12 and 13 TMH classes.

Similarly, to analyze the presence of multi-functional HIS

clusters, we performed a separate GO enrichment analysis (see

Table S4 in the Supporting Information). Except for HIS clusters

with 15 TMHs, one or more significantly (i.e. P-value#0.05)

enriched GO terms could be found for all HIS clusters. Compared

to the enrichment analysis at the protein level additional GO terms

were found to be enriched that were, however, not considered for

further analyses. In total, we found seven HIS clusters to contain

multiple enriched GO terms (CMHIS0048, CMHIS0029,

CMHIS0010, CMHIS0001, CMHIS0006, CMHIS0004,

CMHIS0003) whereas the terms that were earlier found to occur

frequently in combination were considered as only one term.

Additionally, we also observed that several HIS clusters from the

same TMH class are associated with the same GO terms. For

example, four clusters (CMHIS0137, CMHIS0143, CMHIS0130,

CMHIS0006) of the 7 TMH class contain the term ‘signal

transduction’. Taking into account the effects of multi-functional

proteins, multi-functional HIS clusters and HIS clusters with the

same functional annotations we conclude that the structural

diversity of HIS clusters can be explained by functional diversity,

at least to some extent.

Conclusions

Structure classification of membrane proteins is hampered by

the paucity of structural data, necessitating alternative approaches

to explore the membrane protein fold space. Here, we present a

new structural classification approach for a-helical membrane

proteins using predicted helix architectures. In a first step we

evaluated how well predicted helix architectures reflect structural

similarity between membrane proteins. Subsequently consensus

helix architectures were generated for selected SC-clusters from

our CAMPS database and then SC-clusters with similar interac-

tion patterns, not necessarily related at the sequence level, were

joined into so called HIS clusters. Finally, HIS clusters were

further investigated regarding their structural and functional

properties.

Predicted helix architectures were not only shown to successfully

recognize similar membrane protein structures, achieving a

sensitivity of 65% at 90% specificity when compared to SCOP

and CATH, but also to be able to identify membrane proteins

sharing the same fold but almost no sequence similarity.
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Organizing membrane proteins according to their helix interac-

tion patterns has shed some new light on the structure space of

membrane proteins. In particular, we found that although in large

membrane proteins the number of possible arrangements of

transmembrane helices is virtually unlimited proteins with 8 and

more helices are distributed over considerably fewer different

architectures than proteins with up to 7 helices. This finding

suggests that in the course of membrane protein evolution a

limited number of folding arrangements have been repeatedly re-

used. This effect seems to be especially prevalent in the case of

transporter proteins with either 8 or 11 transmembrane helices,

which all seem to share a common helix interaction pattern.

Apart from using predicted helix architectures for structural

classification we believe that they can also find application in

predicting domain boundaries. Since interactions within domains

are more frequent than between domains it may be possible to

delineate domain boundaries by searching for tightly connected

sub-graphs on helix-helix interaction graphs. Such sequence-based

domain recognition would allow to further fine-tune membrane

protein structure classification.
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