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Abstract

Background: Amyloid precursor protein (APP) is cleaved by B-site amyloid precursor protein-cleaving enzyme 1
(BACE1) to produce 3-amyloid (AR), a critical pathogenic peptide in Alzheimer’s disease (AD). A generation can be
affected by the intracellular trafficking of APP or its related secretases, which is thus important to understanding its
pathological alterations. Although sorting nexin (SNX) family proteins regulate this trafficking, the relevance and role

of sorting nexin-4 (SNX4) regarding AD has not been studied yet.

Methods: In this study, human brain tissue and APP/PST mouse brain tissue were used to check the disease
relevance of SNX4. To investigate the role of SNX4 in AD pathogenesis, several experiments were done, such as
coimmunoprecipitation, Western blotting, immunohistochemistry, and gradient fractionation.

Results: We found that SNX4 protein levels changed in the brains of patients with AD and of AD model mice.
Overexpression of SNX4 significantly increased the levels of BACET and AB. Downregulation of SNX4 had the
opposite effect. SNX4 interacts with BACET and prevents BACE1 trafficking to the lysosomal degradation system,
resulting in an increased half-life of BACE1 and increased production of AR.

Conclusions: We show that SNX4 regulates BACE1 trafficking. Our findings suggest novel therapeutic implications
of modulating SNX4 to regulate BACET-mediated B-processing of APP and subsequent A generation.
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Background

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by senile plaques containing extra-
cellular deposits of the B-amyloid (Ap) peptide [1]. The
APB4o_4o peptide is derived from the amyloid precursor pro-
tein (APP) via the action of two membrane-bound proteo-
lytic enzymes: - and y-secretase. B-site amyloid precursor
protein-cleaving enzyme 1 (BACEL) is a transmembrane
aspartyl protease that mediates the [-secretase cleavage,
yielding a soluble ectodomain-secreted APP derivative
(sAPPp), as well as to a membrane-anchored C-terminal
fragment (CTF) that subsequently undergoes presenilin-

* Correspondence: ysy@amc.seoul kr; dhkim@amc.seoul kr

Equal contributors

Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of
Ulsan College of Medicine, Seoul, Korea

Full list of author information is available at the end of the article

( BioMed Central

mediated y-secretase cleavage [2—4]. The y-secretase cleav-
age of CTF generates AP [5]. Previous reports have shown
that APP proteolytic processing occurs at various subcellu-
lar sites. AP is produced in the trans-Golgi network (TGN),
Golgi-associated vesicles, the endosomal system, and the
endoplasmic reticulum/intermediate compartment [6-9].

BACE1 has been shown to transit through the
secretory pathway and target the endosomal system,
cycling between endosomes and the cell surface, prob-
ably via TGN [10, 11]. The critical and initial point of
Ap generation is mediated by BACEL; hence, much ef-
fort has been made to develop BACE1 inhibitors. It is
thus important to understand which molecular machin-
ery regulates the trafficking of BACEL affecting Ap
generation.

Sorting nexins (SNXs) are a diverse group of cellular
trafficking proteins that contain a phospholipid-binding
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motif (PX). SNXs can form protein-protein complexes
and bind specific phospholipids, which suggests a role
for these proteins in membrane trafficking and protein
sorting [12—14]. The mammalian SNX protein contain-
ing a Bin/amphiphysin/Rvs domain (SNX-BAR) retromer
is composed of two subcomplexes; a membrane remod-
eling unit comprising a specific combination of the
SNX-BAR domains, including dimers of SNX1/SNX2
and SNX5/SNX6; and a stable trimeric complex of vacu-
olar protein sorting (VPS) proteins. The trimer of
VPS26-VPS29-VSP35 provides cargo selectivity through
direct binding of VPS35 to the cytosolic tail of several
cargo proteins (e.g., cation-independent mannose-6-
phosphate receptor) [15]. The assembly of these two
subcomplexes allows the SNX-BAR retromer to coordin-
ate the formation/stabilization of endosomal tubules se-
lectively enriched with the appropriate cargo for
endosome-to-TGN retrieval [16, 17].

Recent studies involving sorting nexin-4 (SNX4) regula-
tion of the transferrin receptor have suggested that SNX-
BARs play a fundamental, evolutionarily conserved role in
tubule-based endosomal sorting [18-20]. Several SNX
family members have been found to modulate A gener-
ation through different regulatory mechanisms [21-23].
However, the functional roles of over 30 other mammalian
SNX proteins remain unknown and deserve further inves-
tigation, particularly regarding their potential involvement
in AD. In our present study, we first demonstrate that one
of the SNX family members, SNX4, can interact with
BACELI and affect its intracellular trafficking, thereby me-
diating the B-processing of APP in AP production.

Table 1 Human mediotemporal gyrus samples used in this study
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Methods

Human brain tissue and APP/PS1-transgenic mouse brain

tissue

Mediotemporal gyri from eight patients with AD and
seven age- and sex-matched controls were provided by
the Netherlands Brain Bank (Table 1). Pathological sta-
ging of AD was based on the Braak staging system [24].
Hippocampi and cortices from age-matched (6 and
24 months) control and APP/PS1 mice were analyzed by
Western blotting.

Plasmids

Human SNX4 (GenBank accession number NM_003794)
was tagged with green fluorescent protein (GFP) at its N-
terminus for fluorescence imaging. These modified SNX4
complementary DNAs were subcloned into a mammalian
expression vector, pEGFP-C1 (Invitrogen, Carlsbad, CA,
USA). The sequence of all constructs was verified by DNA
sequencing. All experiments were performed in SH-SY5Y,
HeLa, and HEK293 cells or mouse primary cortical
neurons.

Cell culture and isolation of primary mouse cortical
neurons

SH-SY5Y, HeLa, and HEK293 cells were maintained in
DMEM (Thermo Fisher Scientific, Rockford, IL, USA)
supplemented with 10% FBS (Thermo Fisher Scientific,
Rockford, IL, USA) and incubated in 5% CO, at 37 °C.
Cultures of primary cortical neurons were prepared from
the brains of embryonic day 16 pups as described previ-
ously [25]. Briefly, cerebral cortices were dissected in

Diagnosis Sex Age (years) Braak stage Amyloid PMD (h:minutes) pH Weight (g)
Alzheimer's disease M 85 5 C 07:10 6.13 1020
Alzheimer's disease M 65 6 C 08:50 6.88 1057
Alzheimer's disease M 65 5 @ 05:50 6.36 1355
Alzheimer's disease M 65 5 C 07:20 647 1173
Alzheimer's disease M 87 5 C 06:10 6.14 1047
Alzheimer's disease M 67 5 C 04:10 6.40 1252
Alzheimer's disease M 70 6 C 04:50 6.95 1040
Alzheimer's disease M 82 5 C 05:15 6.34 1182
Nondemented control M 73 0 @) 24:45 ? 1267
Nondemented control M 71 1 0 07:40 6.20 1150
Nondemented control M 87 1 A 10:20 6.32 1256
Nondemented control M 80 0 0 07:15 5.80 1331
Nondemented control M 84 1 A 05:35 6.98 1337
Nondemented control M 82 1 @) 05:10 6.75 1087
Nondemented control M 78 1 0 <17:40 6.52 1125

Mediotemporal gyri from eight patients with AD and seven age- and sex-matched controls were provided by the Netherlands Brain Bank. Braak stages based on
neurofibrillary tangles were 5 or 6 in subjects with Alzheimer’s disease (AD) and 0 or 1 in the controls [24]. Braak stages based on amyloid plaques were C in AD
cases and 0 or A in the controls [24]. Tissue preparation time from death is displayed as postmortem delay (PMD)
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cold calcium- and magnesium-free Hanks’ balanced salt
solution and incubated with a 0.125% trypsin solution
for 15 minutes at 37 °C. Trypsin was inactivated with
DMEM containing 20% FBS, and cortical tissue was dis-
sociated by repeated trituration using a Pasteur pipette.
Cell suspensions were diluted in neurobasal medium
supplemented with Gibco B-27 components (Life Tech-
nologies/Thermo Fisher Scientific, Grand Island, NY,
USA) and seeded onto plates coated with poly-D-lysine
(catalogue number P7886-100MG; Sigma-Aldrich, St.
Louis, MO, USA) and laminin (1 mg/ml; Life Technolo-
gies/Thermo Fisher Scientific, Grand Island, NY, USA).
Neurons were maintained at 37 °C in a humidified 5%
CO, environment. All animal protocols used in this
study were approved by Asan Institute for Life Sciences
Animal Care and Use Committee.

Transfection of plasmids and small interfering RNA
The SH-SY5Y, HeLa, and HEK293 cells and primary
mouse cortical neurons were transfected with plasmids,
scrambled small interfering RNA (siCTL), or a small
interfering RNA (siRNA) mixture (siSNX4) of three dif-
ferent siRNAs designed for targeting to SNX4 using
Lipofectamine 2000 reagent (catalogue number 11668-
019; Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s guide.

The following are sequences of the siRNAs targeting
human SNX4:

1. Sense: 5 -CAGAUCAGUUAAAGAGUA-3' ,
antisense: 5’ -UACUCUUUUAACUGAUCUG-3'

2. Sense: 5/ -CAGAAUAAAGGUGCUAGAA-3' ,
antisense: 5’ -UUCUAGCACCUUUAUUCUG-3'

3. Sense: 5/ -GUUUCAAGACCAGCUGUUU-3' ,
antisense: 5 AAACAGCUGGUCUUGAAAC-3’

The following are sequences of the siRNAs targeting
murine SNX4:

1. Sense: 5’ -UGAAUGGAGUGCCAUCGAA-3’ ,
antisense: 5/ -UUCGAUGGCACUCCAUUCA-3’

2. Sense: 5° -GGAAUUCAGGUUUGGACCA-3' ,
antisense: 5’ -UGGUCCAAACCUGAAUUCC-3’

3. Sense: 5/ -GAGUAGCAGAUCGACUCUA-3'
antisense: 5’ -UAGAGUCGAUCUGCUACUC-3’

Immunocytochemistry and immunohistochemistry

For immunocytochemistry, SH-SY5Y and HeLa cells
were plated onto 18-mm coverslips (Marienfeld,
Lauda-Konigshofen, Germany) coated with 0.05 mg/ml
poly-D-lysine (Sigma-Aldrich, St. Louis, MO, USA).
HeLa cells were transfected with pEGFP-C1-SNX4. At
24 h after transfection, cells were fixed with 4% para-
formaldehyde. After being washed three times with
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PBS, cells were permeabilized with PBS containing
0.1% Triton X-100 for 5 minutes at room temperature
(RT). Next, the cells were washed three times and
blocked with PBS containing 5% bovine serum albumin
for 30 minutes at 37 °C. The cells were washed three
additional times and incubated with a primary antibody
against rat hemagglutinin (HA) (Roche, Basel,
Switzerland) for 60 minutes at 37 °C. After cells were
washed five times with PBS, a secondary antibody coupled
to Texas Red (Invitrogen, Carlsbad, CA, USA) was added
for 60 minutes at 37 °C. Finally, the cells were washed five
times and mounted for imaging. The cells were examined
by confocal microscopy with the LSM 780 microscope
(Carl Zeiss, Oberkochen, Germany), and image processing
was performed using the ZEN software system (Carl Zeiss,
Oberkochen, Germany).

For immunohistochemistry, paraffin-embedded blocks
were sectioned and attached to the slide glasses. The paraf-
fin of sectioned tissues was removed with xylene deparaffi-
nizing solution. Next, tissues were dehydrated with various
ethanol solutions at 100%, 90%, 80%, 70%, and 50% and
washed twice with distilled water. For antigen retrieval, tis-
sues were boiled for 5 minutes in 1 mM ethylenediamine-
tetraacetic acid (EDTA) solution (pH 8.0). After being
washed three times with PBS, tissues were permeabilized
with PBS containing 0.1% Triton X-100 for 20 minutes at
RT. The cells were washed three times and were blocked
with PBS containing 2% bovine serum albumin and 2%
horse serum for 30 minutes at 37 °C. Tissues were washed
three times and were incubated with a primary antibody
against goat anti-SNX4 (Santa Cruz Biotechnology, Dallas,
TX, USA), rabbit anti-BACE1 (Cell Signaling Technology,
Danvers, MA, USA), mouse anti-BACE1 (Santa Cruz Bio-
technology, Dallas, TX, USA), and rabbit anti-Rab11 (Cell
Signaling Technology, Danvers, MA, USA). After tissues
were washed five times with PBS, a secondary antibody
coupled to fluorescein isothiocyanate and Texas Red (Invi-
trogen, Carlsbad, CA, USA) was added for 60 minutes at
37 °C. After that step, tissues were washed three times with
PBS and mounted for imaging. The cells and tissue were
examined by confocal microscopy with the LSM 780
microscope, and image processing was performed using the
ZEN software system.

Cell surface biotinylation assay

Cells transfected with SNX4 were cooled on ice and
washed three times with ice-cold PBS containing 1 mM
MgCl, and 0.1 mM CaCl, to remove any contaminating
proteins. After washing cells twice more with PBS,
0.5 mg of EZ-Link Sulfo-NHS-LC-Biotin (Thermo Fisher
Scientific, Rockford, IL, USA) per milliliter of reaction
volume was added and incubated at 4 °C for 60 minutes.
After further washing cells twice with PBS, the cells were
harvested in PBS and lysed in lysis buffer (1% Nonidet
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P-40, 40 mM Tris-HCI, pH 7.5, 150 mM NaCl, 10 mM
EDTA, 5 mM ethylene glycol-bis(B-aminoethyl ether)-
N,N,N’,N’-tetraacetic acid, 5% glycerol, 1 mM phenyl-
methylsulfonyl fluoride, and protease inhibitor cocktail
[EMD Millipore, Billerica, MA, USA]). Cell lysates were
centrifuged at 14,499 x g for 10 minutes at 4 °C to re-
move any insoluble material. The resulting supernatant
was incubated with 50 ul of 50% streptavidin-coated
agarose beads (Thermo Fisher Scientific, Rockford, IL,
USA) with rotation for 2 h at 4 °C. After the beads were
washed three times with lysis buffer, the bound proteins
were eluted with SDS sample buffer by boiling for 5 mi-
nutes. Total protein and isolated biotinylated proteins
were analyzed by immunoblotting. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) in the surface frac-
tion was used as a negative control to confirm fraction-
ation [26, 27].

Coimmunoprecipitation and Western blot analysis

For  coimmunoprecipitation and immunoblotting,
HEK?293 cells or cultured mouse cortical neurons transi-
ently expressing BACEI-HA and GFP (mock) or GFP-
SNX4 construct or mouse brain tissues were lysed with
lysis buffer for 1 h at 4 °C. Cell lysates were centrifuged at
14,499 x g for 10 minutes at 4 °C to remove any insoluble
material. Immunoprecipitation was performed by over-
night incubation with anti-BACE1 antibody (Cell Signal-
ing Technology, Danvers, MA, USA), anti-GFP (Roche,
Basel, Switzerland), or anti-HA (Roche, Basel,
Switzerland) antibody. Immune complexes were captured
using protein G sepharose (GE Healthcare Life Sciences,
Piscataway, NJ, USA), followed by washing with lysis buf-
fer three times. Immunoprecipitated samples or 5% of the
input lysates were used for immunoblotting. For Western
blot analysis, protein lysates from HEK293 cells or pri-
mary mouse cortical neurons or mouse brain tissue were
homogenized in 1x IGEPAL (I8896; Sigma-Aldrich, St.
Louis, MO, USA), a protein extraction solution, according
to the manufacturer’s instructions and incubated at —20 °
C with rotation for 30 minutes. The suspension was
microcentrifuged at 15,682 x g for 15 minutes at 4 °C, and
the supernatant was collected. Protein concentrations
were measured by Bradford assay, and proteins were
mixed with 5x sample buffer (60 mM Tris-HCI, pH 6.8,
2% wt/vol SDS, 25% vol/vol glycerol, 14.4 mM vol/vol -
mercaptoethanol, and bromophenol blue), boiled at 100 °
C for 5 minutes, and stored at —-20 °C. Proteins were re-
solved by SDS-PAGE at a constant voltage (110 V) and
transferred at 100 V for 1.5 h to polyvinylidene difluoride
membranes (0.2-mm pore size; Bio-Rad Laboratories,
Hercules, CA, USA). After 1-h incubation in blocking buf-
fer (PBS containing 0.1% vol/vol Tween-20 [PBST]) con-
taining 3% wt/vol bovine serum albumin and 5% vol/vol
skim milk, blots were incubated with primary antibodies
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overnight at 4 °C. Blots were next washed in PBST buffer,
incubated with HRP-conjugated anti-immunoglobulin G
(1:5000; Thermo Fisher Scientific, Rockford, IL, USA), and
visualized using enhanced chemiluminescence reagents
(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) and
x-ray film. The primary antibodies and dilutions used in
the Western blot analysis were goat anti-SNX4 (1:500;
Santa Cruz Biotechnology, Dallas, TX, USA), rabbit anti-
BACE1 (1:5000; Abcam, Cambridge, UK), mouse anti-
GEFP (1:5000; Santa Cruz Biotechnology, Dallas, TX, USA),
mouse anti-B-actin (1:10,000; Sigma-Aldrich, St. Louis,
MO, USA), mouse anti-GAPDH (1:2000; EMD Millipore,
Billerica, MA, USA), mouse anti-early endosome antigen
1 (EEA1) (1:2000; BD Biosciences, San Jose, CA, USA),
rabbit anti-Rab7 (1:2000; Sigma-Aldrich, St. Louis, MO,
USA), rabbit anti-Rab11 (1:1000; Cell Signaling Technol-
ogy, Danvers, MA, USA), and mouse anti-Af (6E10,
1:5000; Covance, Princeton, NJ, USA). The band inten-
sities were measured and analyzed with Image] software
(National Institutes of Health, Bethesda, MD, USA).

Protein synthesis inhibition

HEK293 cells stably expressing BACE1 were transfected
with mock or SNX4 constructs for 24 h, followed by
treatment with 10 pg/ml cycloheximide, a protein syn-
thesis inhibitor (Sigma-Aldrich, St. Louis, MO, USA) for
0,1,and 6 h.

Gradient fractionation

To produce a single-cell suspension, SH-SY5Y cells were
plated in 10 ml of DMEM (Thermo Fisher Scientific, Rock-
ford, IL, USA) supplemented with 5% FBS (Thermo Fisher
Scientific, Rockford, IL, USA) and grown to 90% confluency
with 5% CO, at 37 °C. SH-SY5Y cells were cotransfected
with BACE1 and SNX4 constructs or mock treatment for
48 h. After transfection, the cells were washed three times
with cold PBS and harvested. The suspension was micro-
centrifuged at 13,362 x g for 5 minutes at 4 °C, and the
supernatant was removed. In accordance with the manufac-
turer’s instructions, the pellet was resuspended in gradient
fractionation solution A (catalogue number 89839; Thermo
Fisher Scientific, Rockford, IL, USA) and incubated with
added protease inhibitor at —4 °C for 2 minutes. The mixed
solution was homogenized on ice, added to gradient frac-
tionation solution B, and centrifuged at 500 x g for 10 mi-
nutes at 4 °C. The supernatant was transferred to a 1.5-ml
tube, and protein concentrations were measured by the
Bradford method. Equal amounts of protein were mixed
with OptiPrep gradient solution (Sigma-Aldrich, St. Louis,
MO, USA). The supernatant containing total protein in
640 pl was loaded onto the top of a step gradient composed
of 320 pl of 30% gradient, 320 pl of 27% gradient, 160 pl of
23% gradient, 320 pl of 20% gradient, and 160 ul of 17%
gradient (total approximately 2 ml). Gradients were
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centrifuged at 145,000 x g for 2 h at 4 °C. Fourteen 130-pl
fractions were collected from the top of the gradient. The
distributions of BACE1, EEA1, Rab7, Rabll, and p-actin
along the gradient were assayed by SDS-PAGE followed by
Western blot analysis.

Quantitative analysis of fluorescence intensity

The fluorescence intensity of immunostained cells in im-
ages were measured using the ZEN 2011 software sys-
tem (blue edition). Each intensity value was corrected
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with background fluorescence intensity of nonstained
cells and normalized by each control. The intensity value
in all figures was analyzed from about 50-100 cells, and
then p values were calculated using Student’s ¢ test.

Statistical analysis

Data are presented as mean + SEM and were analyzed
using Student’s ¢ test. A p value less than 0.05 was con-
sidered to be statistically significant.
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Fig. 1 Altered levels of sorting nexin-4 (SNX4) in the brains of patients with Alzheimer's disease (AD) and APP/PST mice. a Expression of SNX4 in
the hippocampus of wild-type (WT) (n=5) and APP/PS1 (n=5) mice aged 6 months (6 M) and 24 months (24 M) analyzed by Western blotting
with antibodies against SNX4, 3-site amyloid precursor protein-cleaving enzyme 1 (BACE1), 3-amyloid (AB), and B-actin. Representative images
and graphs are shown. Data are presented as mean + SEM. **p < 0.01, ***p < 0.001. n.s Not significant b Expression of SNX4 in the cortex of WT
(n=5) and APP/PS1 (n=5) mice aged 6 months and 24 months analyzed by Western blotting with antibodies against SNX4, BACE1, AB, and 3-
actin. Representative images and graphs are shown. Data are presented as mean + SEM. **p < 0.01, ***p < 0.001. ¢ Expression of SNX4 in AD (n=
8) and non-AD (n=7) brains analyzed by Western blotting with antibodies against SNX4, BACE1, AR, and B-actin. Representative images and
graphs are shown. Data are presented as mean + SEM. **p < 0.01, ***p < 0.001
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Results

Altered levels of SNX4 in the brains of patients with AD
and APP/PS1 mice

To investigate whether SNX4 is involved in the patho-
genesis of AD, we compared the levels of SNX4 protein
between controls and patients with AD. The total level
of SNX4 protein was approximately 70% less in late-
stage AD brains than in controls (Fig. 1c). To investigate
temporal changes of SNX4 levels during the aging
process, we checked SNX4 levels using transgenic APP/
PS1 AD model mice. Interestingly, SNX4 levels in the
brains of 6-month-old APP/PS1 mice were increased
compared with wild-type mice, whereas SNX4 levels
were decreased in the brains of 24-month-old APP/PS1
mice compared with controls (Fig. 1, Additional file 1:
Figure S1). We also performed immunohistochemistry
using anti-BACE1 and anti-SNX4 in wild-type and APP/
PS1 mouse brain tissue. Consistent with the Western
blot analysis results, BACE1 and SNX4 levels in the
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brain tissue of 6-month-old APP/PS1 mice were in-
creased compared with those of wild-type mice, whereas
SNX4 levels were decreased and BACEL levels were un-
changed in the brain tissue of 24-month-old APP/PS1
mice and AD brain compared with controls (Figs. 2 and
3). BACE1 antibody specificity was verified additionally
(Additional file 2: Figure S2).

SNX4 increases BACE1 and B-processing of APP

Our observations of increased SNX4 levels in the brains
of young APP/PS1 mice and decreased SNX4 levels in
the brains of old APP/PS1 mice and patients with late-
stage AD prompted us to investigate the role of SNX4
by overexpression and knockdown. To this end, HEK293
cells were cotransfected with BACE1 and SNX4 to
examine if SNX4 affected AP generation. Levels of
BACE1 were increased in SNX4-transfected cells com-
pared with mock-transfected cells (Fig. 3a and b). sAPPB
and AP was also increased in the culture media by

6 month

BACE1
Wild-type
BACE1
APP/PS1 o

24 month

BACE1
Wild-type

BACE1

APP/PS1

Fig. 2 Altered levels of sorting nexin-4 (SNX4) and {3-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in the brains of APP/PS1 mice.
Immunohistochemistry was performed using anti-BACE1 (red) and anti-SNX4 (green) antibodies in wild-type and APP/PST mice aged 6 months and
24 months. The intensity of BACET and SNX4 in neurons is increased in the cortices of 6-month-old APP/PST mice compared with wild-type mice. The
intensity of BACE1 and SNX4 in neurons is decreased in the cortices of 24-month-old APP/PST mice compared with wild-type mice. Scale bar =20 um
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Fig. 3 Sorting nexin-4 (SNX4) expression increases {3-site amyloid precursor protein-cleaving enzyme 1 (BACE1) levels and B-amyloid (AB). a
HEK293 cells were cotransfected with BACET and either mock or SNX4. Quantitative Western blot analysis was performed using anti-BACET, anti--
actin, anti-AB (6E10), anti-amyloid precursor protein (anti-APP), anti-soluble ectodomain-secreted B-amyloid precursor protein derivative (anti-
SAPPR), and anti-SNX4 antibodies. The amount of A was analyzed in the culture media by immunoblotting. b Quantification of Western blot
band intensities. The graphs display the immunoreactivity to anti-BACE1, anti-APP, anti-sAPPB, and anti-AR antibodies, normalized to B-actin. **p
<001, **p <0.001. ¢ Hela cells were cotransfected with BACET-hemagglutinin (HA) and either mock or SNX4. Immunocytochemistry was per-
formed using an anti-HA antibody (green). Scale bar =20 um. d Primary mouse cortical neurons were transfected with either mock green fluores-
cent protein (GFP) or SNX4-GFP. Quantitative Western blot analysis was performed using anti-BACE1, anti-AR (6E10), anti-APP, anti-sAPP, anti-B-
actin, and anti-GFP antibodies. The amounts of AB and sAPPB were analyzed in the culture medium by immunoblotting. e Quantification of West-
ern blot band intensities. The graphs display the immunoreactivity to BACET, APP, SAPP@, and AR antibodies, normalized to 3-actin. **p < 0.01,
***p < 0.001. f Primary neurons were cotransfected with BACET-HA and either mock or SNX4. Immunocytochemistry was performed using an anti-

SNX4 overexpression (Fig. 3a and b). Next, HeLa cells
were cotransfected with BACE1-HA and SNX4 and im-
munostained with HA antibody. In these experiments,
BACE1 was increased in SNX4-transfected cells com-
pared with mock-transfected cells (Fig. 3c). Primary
mouse cortical neurons were also cotransfected with
BACE1 and SNX4 to confirm the effects in neurons, and
we found that levels of BACE1 and secreted sAPPfB and
AP were increased in SNX4-transfected neurons com-
pared with mock-transfected cells (Fig. 3d and e). Im-
munocytochemistry also showed that BACE1 was
increased in SNX4-transfected neurons compared with
mock-transfected neurons (Fig. 3f). These results show

that SNX4 overexpression increases BACE1L levels and
subsequently leads to an increase in the BACE1l-
mediated, APP-processing product Ap.

SNX4 knockdown leads to decreased BACE1 and -
processing of APP

The knockdown of SNX4 with a siRNA mixture de-
creased the level of BACEl in SH-SY5Y cells and
mouse cortical neurons (Fig. 4a and b). The levels of
sAPPpP and AP in the culture media was also decreased
following an SNX4 knockdown (Fig. 4a and b). SH-
SY5Y cells were transfected with BACE1-HA and ei-
ther siCTL or siSNX4, then immunostained with HA
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Fig. 4 Reduced sorting nexin-4 (SNX4) levels decrease (3-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and 3-amyloid (AB). a SH-SY5Y
cells were cotransfected with BACET and either SNX4 small interfering RNA (siRNA) or control siRNA (siCTL). Quantitative Western blot analysis
using anti-BACE1, anti-AB (6E10), anti-B-actin, anti-amyloid precursor protein (anti-APP), anti-soluble ectodomain-secreted 3-amyloid precursor pro-
tein derivative (anti-sAPP(), and anti-SNX4 antibodies was performed, and the amounts of AR and sAPP@ in the culture medium were analyzed
by immunoblotting. b Quantification of Western blot band intensities. The graphs display the immunoreactivity to BACE1, APP, sAPPB, and AR
antibodies, normalized to B-actin. **p < 0.01, ***p < 0.001. ¢ SH-SY5Y cells were transfected with either siCTL or siSNX4. Immunocytochemistry was
performed using an anti-hemagglutinin (anti-HA) antibody (green). Scale bar =20 um. d Primary mouse cortical neurons were cotransfected with
BACET and either shCTL or shSNX4. Western blot analysis was performed using anti-BACE1, anti-APP, anti-sAPP, anti-B-actin, anti-AB (6E10), and
anti-SNX4 antibodies. The amounts of AR and sAPPB were analyzed in the culture medium by immunoblotting. e Quantification of Western blot
band intensities. The graphs display the immunoreactivity to anti-BACE1, anti-APP, anti-sAPPB, and anti-AR antibodies, normalized to B-actin. **p
<001, ***p < 0.001. f Primary neurons were cotransfected with BACET-HA and either shCTL or shSNX4. Immunocytochemistry was performed using
an anti-HA antibody (green). Scale bar=20 um

antibody. BACE1 was downregulated in siSNX4-transfected
cells compared with siCTL-transfected cells (Fig. 4c). Pri-
mary mouse cortical neurons were also transfected with
BACE1 and either siCTL or siSNX4 to confirm the effects
of SNX4 in neurons. Levels of BACE1 and secreted A
were decreased in siSNX4-transfected neurons compared
with siCTL transfected cells (Fig. 4d and e). Immunocyto-
chemistry also revealed that BACE1 was decreased in
siSNX4-transfected neurons compared with siCTL-
transfected neurons (Fig. 4f). The results obtained with siR-
NAs were confirmed with various target sequences and re-
covery experiments (Additional file 3: Figure S3). These
results indicated that SNX4 knockdown downregulated

BACE1 levels and subsequently led to decreased levels of
the BACE1-mediated, APP-processing product Ap.

SNX4 interacts with BACE1

To determine whether SNX4 modulated BACE1L-
mediated APP processing/Ap generation through a direct
interaction, we carried out coimmunoprecipitation be-
tween SNX4 and BACE1 in HEK293 cells and mouse cor-
tical neurons transfected with BACE1-HA and either
mock-GFP or SNX4-GFP. We found that an anti-HA
antibody pulled down SNX4-GFP but not the mock-GFP.
The specificity of coimmunoprecipitation was confirmed
through immunoblot analysis using anti-MHC-1 antibody,
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showing no interaction between BACEl and another
membrane protein, MHC-1 (Fig. 5a, b). We further car-
ried out coimmunoprecipitation between endogenous
SNX4 and BACELI in mouse brain tissue and found that
an anti-BACE1 antibody pulled down SNX4 (Fig. 5c). Im-
munocytochemistry with an HA antibody also showed
that SNX4-GFP and BACE1-HA colocalized in HeLa cells
and primary neurons (Fig. 5d, e). In contrast to BACE],
presenilin-1 does not interact with SNX4 (Additional file 4:
Figure S4).

SNX4 shifts BACE1 from the degradation pathway and
increases its half-life

Given our finding that SNX4 interacts with BACE1 and
regulates its levels, we investigated the effects of SNX4
on BACEl trafficking and turnover. Gradient

fractionation was performed in SH-SY5Y cells. In con-
trol cells, BACE1 was found to be localized broadly
through all fractions but was especially abundant in
fractions 6 and 7 (Fig. 6a), which overlapped with Rab7,
a late endosome marker, suggesting that a significant
portion of BACELI traffics to the degradation pathway.
Interestingly, in SNX4-transfected cells, the primary
localization of BACELI shifted to fractions 3-5 (Fig. 6a),
which overlapped more with Rabll, a recycling endo-
some marker. The knockdown of SNX4 narrowed the
range of BACE1-rich fractions and shifted the fractions
to Rab7-positives, whereas BACE1-rich fractions were
broad, including either Rabl1l- and Rab7-positives in
siCTL-transfected cells (Fig. 6b). These results sug-
gested that BACE1 had escaped from the degradation
pathway, probably via SNX4-dependent effects on its
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fractionation was performed on SH-SY5Y cells cotransfected with BACET and either mock or SNX4 constructs. In mock-transfected cells, strong
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Rab11 antibody (green) in SH-SY5Y cells. Arrows indicate BACE1 localization to the cell membrane. Scale bar =20 um. d HEK293 cells expressing
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idly after 1 h in mock-transfected cells but decreased slowly in SNX4-transfected cells. ****p < 0.001. EEAT1, Early endosome antigen 1
recycling. Immunocytochemistry also showed that cycloheximide. In control cells, BACE1 decreased very

BACE1 was colocalized in Rabl1 and trafficked to the
surface in SNX4-transfected SH-SY5Y (Fig. 6¢, arrows).
The half-life of BACE1 was tested in HEK293 cells ex-
pressing BACE1 using the protein synthesis inhibitor

rapidly after cycloheximide treatment (Fig. 6d), indicat-
ing that BACEL is rapidly degraded under normal con-
ditions. However, in SNX4-transfected cells, BACE1

decreased slowly after cycloheximide treatment
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compared with controls (Fig. 6d), suggesting that SNX4
may protect BACE1 from the degradation pathway
(Fig. 8).

SNX4 regulates cell membrane levels of BACE1

Because our results suggest that SNX4 protects
BACE1 from the degradation pathway and increases
its half-life (Fig. 6), we speculated that SNX4 may be
involved in the recycling of BACE1. Hence, we carried
out a cell surface protein biotinylation assay for
BACE1. Upon overexpression of SNX4, the levels of
cell surface BACE1 as well as total BACE1 increased,
whereas these levels decreased when SNX4 was
knocked down compared with each control (Fig. 7a,
¢). GAPDH and a-tubulin in the cell surface fraction
were used as a negative control for accurate fraction-
ation. Upon SNX4 expression, total BACE1 levels in-
creased 2.8-fold, and the levels of BACEL at the cell
surface increased 5.6-fold (Fig. 7b). Knockdown of
SNX4 decreased total BACE1 levels by 40% and sur-
face BACEL1 levels by 20% (Fig. 7d).

Discussion
In our present study, we found that SNX4 levels are al-
tered in the brains of patients with AD and in AD model
mice. Our data reveal that SNX4 interacts with BACE1
and increases its steady-state levels, leading to increased
generation of AP. Our results also indicate that SNX4
enhances the recycling of BACE1 from sorting endo-
somes to the plasma membrane. This recycling of
BACE1 by SNX4 prevents the trafficking of BACE1L to
late endosomes and lysosomes for degradation, increas-
ing the half-life of BACE1 and B-processing of APP.
SNX4 is a member of the PX domain-containing traf-
ficking molecule family involved in membrane

trafficking [19, 20]. One feature of SNXs is their ability
to support cargo complex formation by binding specific
lipids and aiding donor membrane curvature via their
PX and BAR domains [28, 29]. Another role of SNXs is
to tightly control the levels of their selected target cargo
proteins in a given organelle. SNX4 localizes to Rab11*
recycling endosomes, which have abundant SNX4 but
relatively low levels of SNX1 and SNX8 [20]. SNX4 is
also involved in the recycling of the transferrin receptor.
Sorting tubules are formed by SNX4 from Rab4*/Rab11*
endosomes, indicating that recycling endosomes are ex-
tended by SNX4-dependent membrane trafficking,
whereas SNX1 or SNX8 associates with TGN-targeted
tubules in the early-to-late endosome pathway [20] Col-
lectively, SNX4 may regulate the recycling of specific
cargoes to the plasma membrane. This is supported by
our finding that SNX4 recycles BACEL to the plasma
membrane and protects it from the degradation pathway
(Figs. 6, and 7).

We first hypothesized that decreased SNX4 might in-
duce AP generation and pathology because we observed
decreased SNX4 levels in AD brains (Figs. 1c, and 2).
However, our experiments using overexpression and
knockdown of SNX4 revealed opposite results (Figs. 3,
and 4). Our AD brain samples represented late-stage dis-
ease (Braak stages 5 and 6) (Table 1). In the brain samples
of AD model mice, SNX4 levels increased at age 6 months
but decreased at age 24 months (Figs. 1a and b, 2). Taken
together, these results suggested that SNX4 might be up-
regulated in the early stages of AD pathogenesis and
might augment AP generation by regulating the recycling
of BACE1 and preventing it from lysosomal degradation
(Fig. 8). However, SNX4 is downregulated in the late
stages of AD by unidentified mechanisms. This downregu-
lation might be a compensatory response to inhibit Ap
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Fig. 8 Putative models of the role of sorting nexin-4 (SNX4) role in
[3-site amyloid precursor protein-cleaving enzyme 1 (BACE1) traffick-
ing. a BACE1 in the plasma membrane is endocytosed and trafficked
to the sorting endosomes. BACE1 is then sorted to the late endo-
somes and lysosomes for degradation. If BACET interacts with SNX4
during the sorting processes, it is recycled to the plasma membrane
by SNX4 and shifted away from the lysosomal degradation pathway,
resulting in a longer half-life and more chances to generate {3-
amyloid. b When SNX4 is upregulated, such as in the early stage in
Alzheimer's disease model mice, SNX4 recycles BACET and prevents
its degradation. ¢ When SNX4 is downregulated, the recycling of
BACET is decreased, and its degradation increases

generation, or it might represent a by-product of neurode-
generation. These possibilities can be addressed in future
studies. Upregulation of SNX4 in the early stages of AD is
an important issue because therapeutic reduction of
SNX4 can inhibit generation of AP. Hence, future studies
are necessary to address the mechanism of SNX4 upregu-
lation in the early stages of AD.

The critical and initial point of AB generation is me-
diated by BACE1; hence, it is very important to under-
stand which molecular machinery regulates the
trafficking of BACEL, affecting A generation. Although
we found the direct interaction of BACE1 and SNX4
(Fig. 5) that accounts for changes in BACE1-mediated
APP processing (Fig. 3, and 4), APP processing could
also rely on the APP level itself. SNX4 also regulated
the APP full-length levels (Fig. 3, and 4), which could
affect BACE1-mediated APP processing. We think that
SNX4 could regulate both APP and BACEL, affecting
Ap levels by the direct interaction of BACE1 and SNX4
and the indirect and unknown mechanism of APP.
BACE1 has been shown to transit through the secretory
pathway and target the endosomal system, cycling be-
tween endosomes and the cell surface, probably via the
TGN [10, 11]. In addition to our findings of SNX4’s
roles in BACEL1 trafficking, several molecular mecha-
nisms of regulating BACE1 have been reported. The
endosomal trafficking of BACE1 appears to be partially
regulated by an acidic cluster-dileucine motif in its
cytoplasmic tail [30-32]. This motif has been shown to
interact with the Vps27/Hrs/signal-transducing adapter
molecule domain of Golgi-localized y-adaptin ear-
containing ADP-ribosylation factor-binding (GGA) pro-
teins GGA1l, GGA2, and GGA3, adapter proteins that
mediate sorting between the TGN and endosomes [31,
33]. Recently, GGA3 was shown to bind BACE1 via the
ubiquitin-sorting machinery and to regulate BACE1
degradation [34]. Although we showed that BACEI1
level is regulated by SNX4, BACE1 was not decreased
in the brains of 24-month-old mice or in late-stage AD
brains (Fig. 1, and 2). This phenomenon let us
analogize that BACE1 escaping from the recycling path-
way may be not degraded, despite a decrease of SNX4
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due to other factors, including inefficiency of lysosomal
degradation or the endocytic pathway, as observed in
AD-like pathological conditions [35, 36]. Decreased
BACEL levels were protected by inhibiting lysosomal
acidification or endocytosis using bafilomycin Al or
chlorpromazine in siSNX4-transfected cells (Additional
file 5: Figure S5), which may explain how BACE1 is not
decreased in the brains of 24-month-old mice or in
late-stage AD brains. Although it has been reported
that BACE1 levels were increased in patients with AD
[37], some studies have shown that BACE1 levels were
not elevated in AD temporal cortex [38], in line with
our present results.

Conclusions

Our data indicate that SNX4-mediated regulation of the
steady-state levels and trafficking of BACEL, as well as
the subsequent increase in BACEl-mediated cleavage,
may be relevant to AD progression. Regulating the ex-
pression levels of BACEL to reduce AP production re-
mains a promising strategy for therapeutic intervention
in AD. Inhibition of BACEl expression by strategies
such as SNX4 modulation may be a critical strategy in
developing AD therapeutics.

Additional files

Additional file 1: Figure S1. The original immunoblots of represented
proteins in Fig. 1 in the main text. (JPG 882 kb)

Additional file 2: Figure S2. BACE1 antibody specifically detects BACE1
in immunoblot analysis. Hela cells were transfected with GFP, GFP-
BACET, HA, or HA-BACET1, and expression of BACE1 in each cell was ana-
lyzed by immunoblotting using anti-BACET antibody. The bands were de-
tected in only GFP-BACE1- or HA-BACE1-transfected cells and appeared
at close to the appropriate size marker (GFP-BACET approximately

100 kDa, HA-BACE1 approximately 75 kDa). (JPG 127 kb)

Additional file 3: Figure S3. SNX4 does not interact with presenilin-1
and control APLP2 processing. a SH-SY5Y cells were transfected with
BACET-HA and either mock GFP or SNX4. The cell lysates were coimmuno-
precipitated with GFP antibody followed by Western blotting against
anti-GFP and anti-presenilin-1 antibodies to assess interaction between
SNX4 and presenilin-1. b SH-SY5Y cells were transfected with BACET-HA
and either mock-GFP or SNX4, and the levels of APLP2 were analyzed by
immunoblotting in either cell lysates or culture medium. The bar graph
shows the band densities of the sAPLP2 in medium as a percentage of
the indicated group. Data are presented as mean = SEM of three inde-
pendent experiments and were analyzed using Student’s t test. **p <
0.01, ***p < 0.001 vs. control. (JPG 218 kb)

Additional file 4: Figure S4. The decrease of BACE1 is protected by
inhibiting lysosomal acidification or endocytosis. SH-SY5Y cells were
transfected with BACET-HA and either mock-GFP or SNX4 and incu-
bated with or without chlorpromazine (15 uM) or bafilomycin A1
(nM) for 24 h. The BACET levels were analyzed by immunoblotting in
the cell lysates. The bar graph shows the band densities of BACE1 as
a percentage of the indicated group. Data are presented as mean +
SEM of three independent experiments and were analyzed using Stu-
dent’s t test. **p <0.01, **p <0.001 vs. control. JPG 146 kb)

Additional file 5: Figure S5. a SNX4 is sufficiently downregulated by

SIRNA. SH-SY5Y cells and mouse primary cortical neurons (DIV 5)
were transfected with siCTL or three different targeting siSNX4 siRNAs.
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The levels of SNX4 and BACE1 were analyzed by immunoblotting in
the cell lysates. The siSNX4 siRNAs sufficiently decreased the levels of
SNX4 and BACE1 compared with siCTL. b Mouse primary cortical
neurons (DIV 5) were cotransfected with BACET-HA and siCTL, siSNX4
mixture, or siSNX4 mixture and SNX4. The levels of SNX4, BACE1, APP,
SAPPB, and AP were analyzed by immunoblotting in the cell lysates.
siSNX4 sufficiently decreased the levels of SNX4, BACET, APP, and
BACE1-mediated APP-processing products compared with siCTL, and
the decrease of indicated protein levels was rescued with SNX4. ¢
Quantification of Western blot band intensities. The graphs display
the immunoreactivity to BACE1, APP, sAPP@, and AB antibodies, nor-
malized to B-actin (**p <0.01, ***p <0.001). d Primary neurons were
cotransfected with BACET-HA and siCTL, siSNX4 mixture, or siSNX4
mixture and SNX4. Immunocytochemistry was performed using an
anti-HA antibody (green). Scale bar=10 um. (JPG 530 kb)
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