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Abstract

Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease
(AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein
candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively.
These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the
DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcc-receptor classes. Indeed, when these mice
were challenged with a low dose (,0.5 LD50) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic
and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS),
displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with
mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some
hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also
developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout
their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated
megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis,
apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections
were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal
human ‘‘severe dengue’’ cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1
glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV
strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-
encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal
mice.
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Introduction

Dengue viruses (DENVs), which occur as four discrete

serotypes, are the most important vector-borne human viruses

[1]. Dengue hemorrhagic fever and dengue shock syndrome

(DHF/DSS), which are the most severe forms of disease were

previous classified into four grades (DHF I to IV) [2], but have

now been re-classified through a TDR/WHO program [3], in

which human ‘severe dengue’ cases that require urgent emergency

treatment have been characterized by: i) severe plasma leakage

leading to dengue shock and/or fluid accumulation with

respiratory distress, ii) severe hemorrhages, or iii) severe organ

impairment (hepatic damage, renal impairment, cardiomyopathy,

encephalopathy or encephalitis) [3]. DHF/DSS cases result from

the over-activation of patients’ immune responses, usually during

secondary DENV infections with virulent heterologous DENV

serotypes [4]. The severity of clinically-graded DHF/DSS directly

correlated with the plasma levels of the complement anaphylotox-

ins (C3a and C5a), histamine, particular cytokines (e.g. IFN-c,

TNF-a, IL-1, IL-6 and IL-10), and chemokines (e.g. IL-8 and

MIP-1), with increased clearance of the C1q (complement)

glycoprotein [5,6]. Numerous studies have shown that IgG

antibodies generated against the DENV virion-associated envelope

(E) and pre-membrane (prM) glycoproteins can increase DENV

replication in Fcc receptor (FccR)-bearing cells in vitro when they

are diluted beyond their effective neutralizing titers [4]. Some

monoclonal antibodies (MAbs), however, generated enhanced

disease in mice when they were administered before challenge with

other flaviviruses, but without increased viral replication [7,8].

The terms antibody-enhanced replication (AER) and antibody-

enhanced disease (AED) were, therefore, proposed to clarify these

different in vivo findings [9], both of which were previously

described as antibody-dependent enhancement (ADE) [7,8]. The

greatest DENV AER was, however, obtained in vitro using
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undiluted polyclonal antibodies (PAbs) obtained from children

during the acute-phase of DENV infections that subsequently

developed DHF/DSS [10], or at the age when most DHF/DSS

cases occurred [11]. Despite these findings and their importance

for understanding of DENV pathogenesis, the ability of undiluted

PAbs raised against DENV to subsequently generate AER of a

heterologous DENV serotype in vivo was assessed in only one study

[12]. In this study, approximately 50-fold increased DENV-2

titers, and longer durations of viremia were observed in monkeys,

but they did not develop disease symptoms [12]. DHF/DSS

patients generated much higher titers of DENV-specific antibodies

of the IgG1, than IgG2, subclasses during the acute-phase of

disease compared to those from DF patients [13], and which could

generate DENV AER in both FccRI- and FccRII-bearing cells

[14,15]. Antibodies of the human IgG1 and mouse IgG2a

subclasses are similar since they are stimulated by IFN-c, fix

complement and recruit ADCCs, and are uniquely bound by all

four FcR types, while those of the human IgG2 and mouse IgG1

subclasses are not stimulated by IFN-c, do not fix complement or

recruit antibody-dependent cytotoxic cells (ADCCs), and are only

bound by low affinity FcRs [16–18]. As such, the ability of DENV

E glycoprotein-specific antibodies to either neutralize or generate

AER was dependent on their ability to fix complement and,

therefore, their IgG subclasses [19].

The dengue virus nonstructural-1 (NS1) glycoprotein, which

provided Fc-dependent non-neutralizing antibody-mediated pro-

tection in animals [20,21], is a candidate vaccine proposed to

avoid the risk of DENV AER posed by generating unsustainable

neutralizing IgG titers against the virion-associated E/prM

glycoproteins [22]. We however previously showed that some

purified MAbs (e.g. MAb 1G5.3) generated against the DENV-2

NS1 glycoprotein, also cross-reacted with common epitopes on the

DENV envelope (E) glycoproteins, weakly neutralised them [23],

and also generated a dramatic DENV-2 antibody-enhanced

replication (AER) resulting in lethal antibody-enhanced disease

(AED) in mice [9]. In addition, MAb, 1G5.4-A1-C3 and mouse

PAbs generated against the DENV-2 NS1 glycoprotein in out-

bred (TO strain) or congeneic (H2 class II: B10 strain) mice, all

cross-reacted with human fibrinogen, platelets and endothelial

cells [24,25]. These PAbs generated by the low-responding (H2d:

B10.D2N and BALB/c strains) mouse haplotype or the low-avidity

MAb 1G5.4-A1-H6 subclone, and the high-responding (H2s:

B10.S strain) mouse haplotype or the high avidity MAb 1G5.4-A1-

C3 subclone, showed similar reaction patterns against the

immuno-dominant ELK/KLE-type epitopes as those generated

by DF and DSS patients, respectively [24,25]. In addition, MAb

1G5.4-A1-C3 more strongly reacted with the ELK/KLE-type

epitopes on the E glycoproteins of virulent (DHF/DSS-associated)

DENV-2 and DENV-3 strains [23]. Such PAbs were, therefore,

thought to play important roles in DENV AED, but which would

be dependent upon: a) the concentrations of their IgG subclasses

which could fix complement and recruit ADCCs, b) their relative

avidities for these epitopes on their DENV NS1 and E

glycoproteins, c) the relative concentrations of their DENV NS1

and E glycoproteins, d) the relative concentrations of fibrinogen,

platelets, endothelial cells or other auto-antigens against which

they cross-react, and d) the presence of complement, IFN-c and

ADCCs. Thus, we consider it to be absolutely essential to perform

these studies in vivo using undiluted PAbs.

The DENV titers present in different organs from DHF/DSS

patients have not yet been determined. Comparative studies have,

however, been performed on different organs from fatal DSS cases

using histo-pathology [5,26], DENV-isolation efficiencies [5,26], in

situ hybridization [27], and DENV-specific MAbs [27–30]. In

these studies, macrophages in their spleens, lungs and livers

contained DENVs or their antigens [5,24–28], as well as their

brain phagocytic microglia and astrocytes [28,29,31]. The spleen

and liver were major sites of DENV replication [27], and dramatic

DENV AER was generated in primary splenic macrophages (red

pulp), but not T or B cells (white pulp), using DHF/DSS patients’

PAbs in vitro [32]. DENV has frequently been isolated from DHF/

DSS patients’ livers [5,26], and histological analyses demonstrated

severe liver damage characterized by steatosis, necrosis and

apoptosis (pyknosis), with DENV antigen-positive Kuppfer cells

and hepatocytes [33,34], similar to, but less severe than, that

caused by yellow fever virus [35].

The great majority of these fatal DHF/DSS cases demonstrated

sufficiently severe lung histo-pathology to hinder gaseous exchange

which, therefore, contributed to hypoxia and metabolic acidosis

[26]. In a very large study of DHF/DSS autopsies, 85/100 (85%)

of them displayed dramatically increased infiltrations of mononu-

clear cells and megakaryocytes, with edematous septa containing

eosinophic precipitates [26]. These results, therefore, demonstrat-

ed that these lung pathologies observed in the majority (85%) of

these patients [26] were not due to therapeutic fluid overload,

which may also lead to respiratory distress [3]. Acute respiratory

failure was also reported to be the leading cause of death in DSS

patients who succumbed after plasma leakage was resolved [26].

Importantly, acute respiratory distress syndrome (ARDS) has

subsequently been reported to occur in patients with the most

severe DENV disease grades (DSS: DHF grades III and IV), was a

major cause child and adult deaths in some studies, and occurred

even when appropriate early hospital-based supportive therapy

was provided [36–39]. DENVs have increasingly been implicated

in causing ARDS [37], DSS was identified as the third most

common cause of ARDS in one study [36], and symptoms of ‘fluid

accumulation with respiratory distress’, have now been added as

symptoms of ‘severe dengue’ by the TDR/WHO steering

committee [3]. DSS-associated ARDS, as with other acute viral

diseases, occurs through the dramatic and diffuse alveolar damage

(DAD) due to edema and the infiltration of mononuclear cells,

which result from the excessive release of IFN-c and other

inflammatory mediators [26]. DSS-associated ARDS may also

cause multi-organ dysfunction syndrome (MODS) and dissemi-

nated intravascular coagulation (DIC), due to resultant metabolic

acidosis, which were also causes of DSS-associated mortalities [36–

39], as well as neurological disease [38]. Although rarer, DHF/

DSS-associated encephalopathy, myelitis, meningitis and enceph-

alitis, have been increasingly reported throughout the world, and

in some reports encephalopathy [40], myelitis or encephalitis [41]

were associated with poor prognoses. DENVs were the leading

cause of encephalitis (47%) in one DENV-endemic country (Brazil)

[42], caused 7% (28/401) of the encephalitis cases amongst those

with suspected viral CNS infections in a study conducted in

Jamaica [43], 7% in Indonesia [44], and the third highest cause of

viral encephalitis (4.6%) in a study conducted in Viet Nam, where

Japanese encephalitis virus was prevalent [45]. As a result, both

DENV encephalopathy and encephalitis are now classified as

criteria of ‘severe dengue’ in humans by the TDR/WHO steering

committee [3].

Traditionally, the normal route of assessing both active and

passive protection against DENV infections in animals has been by

the intra-cerebral challenge of mice [46], but this challenge route

is still extensively used for these purposes, and also to confirm the

attenuation of candidate DENV vaccines. This model has,

therefore, also been used to test the protective roles of non-

neutralizing antibodies generated against DENV NS1 glycopro-

teins [47–50], and capsid (C) proteins [51,52]. Despite using this

Dengue Virus AER/AED
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challenge route, the type and quantity of DENV antigens

subsequently observed in the brains and livers of these mice were

similar [53], with both DENV structural (C and E) and non-

structural (NS1) proteins detected in them [54]. These results,

therefore, indicated that the DENV spread to their peripheral

organs when their blood-brain barrier was breached.

In this study, we tested whether PAbs raised against the DENV-2

NS1 glycoprotein could generate AER of two DENV-2 strains, one

of which possessed a less antigenic NS1 glycoprotein, and resulted in

AED in out-bred mice under normal physiological conditions. The

virological findings were then supported by comparative histo-

pathological and immuno-histological studies on their lungs, brains,

spleens and livers, and also with those reported in DSS patients. In

addition we: 1) assessed whether detectable IgG2a antibodies were

generated in these mice, 2) attempted to block the AED with high

concentrations of the NS1 glycoprotein, and 3) attempted to isolate

the DENV-2 from samples of lung, spleen and liver of these mice.

Materials and Methods

Ethics statement
All animal experiments adhered to UK Home Office regulations,

in accordance with the UK Animals (Scientific Procedures) Act

1986, were performed in approved animal facilities under relevant

project and personal animal procedure licenses (PIL 70/6903), and

were approved by the London School of Hygiene and Tropical

Medicine (LSHTM) ethics committee. These animal experiments

also conformed to European guidelines (European Convention for

the Protection of Vertebrate Animals used for Experimental and

other Scientific Purposes: Council Directive 86/609/EEC).

Dengue virus growth in vitro
Low passage DENV-2 of the New Guinea-C (NG-C) prototype

strain and the NSx (NSx) strain, which was a putative American/

Asian genotype strain that possessed a less antigenic NS1

glycoprotein due to either amino acid substitutions or genetic

recombination, were obtained from John Aaskov (Queensland

Institute of Technology, Brisbane, Australia) and Colin Leake

(LSHTM, London, UK), respectively. Both of these DENV-2

strains were isolated from DF patients, they were specifically

identified by the DENV-2- E glycoprotein-specific MAb 3H5, and

limited cDNA sequence determination confirmed that they both

encoded the non-American DENV-2 genotype 390-asparagine (N)

residue in their E glycoproteins [55]. The growth of dengue viruses

in mammalian (Vero) cells, insect (C6/36) cells and in suckling

mouse brains were performed as described previously [23,25,56].

Viruses were cultured in Vero cells maintained in complete

medium 199 (MCGM: mammalian cell growth medium) and C6/

36 cells maintained in complete Leibovitz L-15 medium (ICGM:

insect cell growth medium). Cell-culture supernatants were

collected on day 4 and 8 after infection.

Purification of the DENV-2 virions and NS1 glycoproteins
The purification of DENV-2 virions from infected mammalian

(Vero) and insect (C6/36) cell-culture supernatants and the

immuno-affinity purification of the native multimeric form of the

DENV-2 extracellular/secreted (e/sNS1) glycoprotein from the

supernatants of infected mammalian cells were performed as

described previously [23–25]. For this study, polyethylene glycol

(PEG) precipitated DENV-2 virions from infected insect cell-

culture supernatants were purified by ultra-centrifugation on

sequential 20/50% (wt/wt) discontinuous and 20–50% (wt/wt)

continuous sucrose gradients. Fractions containing the purified

DENV-2 virions were then diluted and the DENV-2 virions

re-precipitated using PEG and, after centrifugation, they were re-

suspended in the minimal volume of buffer and stored at 280uC.

The native extracellular/secreted forms of DENV-2 NS1

(e/sNS1) glycoproteins were obtained from mammalian (Vero)

cell cultures infected with the DENV-2 (NG-C and NSx strains)

and maintained in medium 199 containing 3.5% foetal bovine

serum and antibiotics as described previously [24,25]. The

supernatants were then collected 4 and 8 days after infection, a

cocktail of protease inhibitors was added, they were made to

30 mM Tris/HCl (pH 7.4), 0.02% (wt/vol) NaN3 containing 7%

(wt/vol) PEG 8,000 (P2139, Sigma) with 0.4 M NaCl, and the

DENV was allowed to aggregate overnight at 4uC. Mammalian

(BHK) cells, which stably expressed the DENV-2 (16681 strain)

NS1 glycoprotein [57], was kindly provided by Michael Diamond

(Washington University School of Medicine, St. Louis, USA), and

maintained in RPMI medium containing 10% FBS and 3 mg/ml

puromycin (P8833, Sigma), and the supernatants were harvested

when the cells reached 90% confluent. Protease inhibitors were

then added, and they were made to 30 mM Tris/HCl (pH 7.4)

with 0.02% (wt/vol) NaN3. These supernatants were then clarified

by centrifugation at 8,000 xg, and slowly (1 ml/min) passed

through an immuno-affinity column containing 12 mg of MAb

2A5.1. After washing, the bound DENV-2 NS1 glycoproteins were

eluted in their native hexameric forms using 20 mM diethyl-

amine/PPB (pH 11.2), and fractions were immediately neutralized

as described previously [57,58]. Protein concentrations were

determined against standard concentrations of bovine serum

albumin (BSA) by the microtiter plate-adapted bicinchoninic acid

(BCA) protein assay (Pierce, USA).

Dengue virus growth in mice
Pathogen-free out-bred Tyler’s original (TO) mice, which were

previously used for active and passive protection experiments

against DENVs [9,56], were employed to test whether polyclonal

antibodies (PAbs), generated against immuno-dominant epitopes

on the DENV-2 NS1 glycoprotein [23–25] which cross-reacted

with these determinants on the DENV E glycoproteins [23], could

all generate DENV-2 AER/AED in vivo, as was initially reported

[9]. For this study, the DENV-2 strains were grown once in 1–2

day old pathogen-free out-bred suckling TO mice (Harlan-OLAC,

UK) as described [56] by injecting 10 ml of DENV-2-infected

supernatant by the intra-cerebral (i–c.) route under anaesthesia

using 3% (vol/vol) halothane (Rhone Merieux, Ireland) in oxygen

at 1 dm3/min. When mice showed severe neuro-pathological

symptoms, they were killed by CO2 asphyxiation, frozen to –80uC,

thawed, and their brains were aseptically harvested. Foetal bovine

serum (50% vol/vol) in MCGM was added and brain homoge-

nates were prepared, clarified by centrifugation, the clarified 10%

(wt/vol) DENV-2-infected mouse brain extracts were collected,

and aliquots were stored at –80uC.

To determine the DENV-2 NG-C and NSx strain challenge

doses used in the subsequent DENV-2 AER/AED experiments,

four groups of 10 six week-old pathogen-free out-bred TO mice

(Harlan-OLAC, UK) were anaesthetised and challenged by the

intra-cerebral (i–c.) route with 40 ml of serial 10-fold dilutions of

the 10% (wt/vol) DENV-2-infected mouse brain homogenates

prepared in sterile RPMI-1640 medium. Severe morbidity in

which the mice showed severe respiratory distress and hind-leg

paralysis, which were classified as mortalities, were recorded daily

and when these mice were humanely killed. The dilution of

DENV-2 NG-C or NSx strains that caused 25% mortality

(0.5 LD50) was then determined.

For the DENV-2 AER/AED experiments, groups of 14-16

three-week old pathogen-free out-bred TO mice (Harlan-OLAC,

Dengue Virus AER/AED
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UK) were immunized with 10 mg of immuno-affinity purified

multimeric e/sNS1 glycoproteins of the DENV-2 NSx (group A),

NG-C (groups B and C), or ovalbumin (control protein) (group D)

emulsified in Freund’s complete adjuvant (FCA) by combined

intra-peritoneal (i-p.)/sub-cutaneous (s-c.) routes. Two weeks later,

each mouse was boosted with the same antigen dose contained in

PBS by the i-p. route. One week later (i.e. at six-weeks old), each

mouse was anaesthetised, a blood sample was obtained from their

retro-orbital sinus for the ELISA and PRNT assays, and they were

challenged by the i-c. route with 40 ml containing less than 0.5

LD50 (approximately 0.5 to 1.06103 pfu) of either the DENV-2

NSx (groups A, B and D) or NGC (group C) strains. Severe

morbidity, displayed as severe respiratory distress and hind-leg

paralysis, was classified as mortality, and was recorded over a 14

day period after which time no further ‘mortalities’ occurred;

when observed such mice were humanely killed using CO2. For

the DENV-2 AER/AED blocking experiments, three groups (A, B

and C) of 14–16 three-week old pathogen-free out-bred TO mice

(Harlan-OLAC, UK) were immunized with 10 mg of immuno-

affinity purified multi-meric e/sNS1 glycoprotein of the DENV-2

NG-C strain emulsified in FCA by combined i-p./s-c. routes. Two

weeks later, each mouse was boosted with the same antigen dose

contained in PBS by the i-p. route. One week later (i.e. at six-

weeks old), 250 ml of sterile protein-free RPMI medium (negative

control) was administered intra-cerebrally to each mouse in group

A immediately prior to, and at the same site as, the challenge with

40 ml containing ,0.5 LD50 (approximately 0.5 to 1.06103 pfu) of

the DENV-2 NSx strain. At the same time, each mouse in the

other groups received 500 mg of the purified native multi-meric

forms of the DENV-2 e/sNS1 glycoprotein of either the NSx

(group B) or NGC (group C) strains contained in 250 ml of protein-

free RPMI-1640 0.2 mm filter-sterilized medium, by the i-c. route

immediately prior to, and at the same site as, the challenge with

40 ml containing ,0.5 LD50 of the DENV-2 NSx strain. Severe

morbidity, displayed as severe respiratory distress and hind-leg

paralysis, was classified as mortality, and was recorded over a 14

day period after which time no further ‘mortalities’ occurred;

when observed such mice were humanely killed using CO2.

Kaplan-Meier survival curves were used for statistical comparisons

between these different mouse groups using MedCalc statistical

software version 11.3 ( http://www.medcalc.be/ ).

A group of 5 three-week old out-bred TO mice were also

immunized using the same dose, adjuvant and routes with the

immuno-affinity purified DENV-2 (16681 strain) NS1 glycopro-

tein from the BHK replicon.

Positive control mouse PAbs for the immunoblot assays were

prepared in a group of three-week old out-bred TO mice

immunized every three weeks with approximately 26105 pfu of

live DENV-2 (NG-C strain) by the i-p. route before blood was

collected and the sera stored at 280uC.

Mouse tissue samples
Brains were aseptically collected from some of the mice 14 days

after challenge with the DENV-2 NSx strain, weighed and 10%

(wt/vol) DENV-2-infected mouse brain homogenates were

prepared as described above. The DENV-2 titres were determined

by plaque assays in 48-well cell-culture plates (Costar, USA). For

these assays, serial 10-fold dilutions from 1/10 were prepared in

250 ml of MCGM and 250 ml of MCGM containing 26105 Vero

cells/well were added. Each well was subsequently overlaid with

500 ml of 1.5% (wt/vol) carboxy-methylcellulose (C5678, Sigma)

prepared in MCGM. The wells were incubated for 7 days, fixed

with 8% (wt/vol) formaldehyde, washed, stained with 0.01%

(wt/vol) crystal violet in PBS, washed again with H2O, and

air-dried. The average DENV-2 titers (plaque forming units/gram

of mouse brain material) were determined by multiplying the

average numbers of plaques/well x 4 ( = plaques/ml) x the log10

dilution x 10. In addition, lungs, spleens and livers from the

DENV-2 AER/AED mouse group (n = 4) which died 8–9 days

after DENV-2 NSx strain challenge were collected after storage of

these mice at 280uC. These tissues were aseptically teased and

homogenised in ICGM using 3 ml mini-glass tissue homogenizers

(GP/20402, Camlab, UK), clarified by centrifugation and the

supernatants were used to infect 25 cm2 C6/36 insect cell

monolayers. After incubation at 28uC for 7 days, the supernatants

were collected and clarified by centrifugation. After discarding the

supernatants, the cells were re-suspended in a minimum volume of

PBS added to 12-well polytetrafluoroethylene- (PTFE-) coated

immuno-fluorescent slides (Hendley, UK), air-dried, fixed with

cold (-20uC) acetone, again air-dried and stored at 220uC (see

immunoassays).

Histological studies
Mouse brains, lungs, spleens and livers were aseptically collected

on day 14 after virus challenge, placed on 2 cm diameter cork discs

and covered with Tissue Tek OCT compound (PELCO Interna-

tional, USA), slowly frozen and stored at 280uC. Six mm tissue

sections were cut using a cryotome and placed on slides which were

fixed with cold (220uC) acetone, ethanol and again with acetone,

air-dried and stored at –80uC. Some of these slides were stained

using standard iron hematoxylin and eosin (H&E). Alternatively, the

sections were wetted with PBS, before a 1/1000 diluted pool of DF

patients sera that had a high ELISA titer (mean ELISA reciprocal

log10t50 5.83) against the E glycoproteins on purified DENV-2

(NSx strain) virions, but reacted very weakly with its NS1

glycoprotein (mean ELISA reciprocal log10t50 2.25), were reacted

with the sections for 1 hr at 25uC. After washing with PBS, A FITC-

labelled goat anti-human IgG (H and L) (109-095-088: Jackson

ImmunoResearch, USA), diluted at 1/1000 containing 0.03%

(wt/vol) Evan’s blue, was then reacted with the sections for 1 hr at

25uC. After washing with PBS, and briefly (3 secs) in H2O, they

were mounted in 90% glycerol/PBS pH 8.0. Photomicrographs

were taken for 4–6 mins using the appropriate excitation and

barrier filters on Fujichrome Sensia 400 film (Fuji Inc. Japan) and

subsequently converted to digital format. For these studies,

megakaryocytes and the DENV-2 target tissue macrophages in

the liver (Kuppfer cells), lungs (alveolar macrophages), spleen

(red-pulp macrophages) and brain (microglia cells) were identified

by their characteristic morphologies according to i) mouse histolo-

gical atlases [ http://ctrgenpath.net/static/atlas/mousehistology/

Windows/introduction.html , http://www.deltagen.com/target/

histologyatlas/HistologyAtlas.html , http://tvmouse.compmed.ucdavis.

edu , http://www.mbl.org/atlas170/atlas170_frame.html ], ii) histo-

pathological descriptions and photo-micrographs from patients with

DENV acute respiratory distress syndrome (ARDS) [5,26,59], iii)

megakaryocyte infiltration of patients’ organs during DENV infections

[5,26] or in the spleens of genetically modified (knockout) mice [60],

and, iv) DHF/DSS patients’ liver samples [5,26,33,34] that showed

DENV- infected Kuppfer cells [61]. The histological findings in the

brains of the DENV AER/AED mice were also compared with

encephalitis in humans or mice caused by West Nile virus [62], Saint

Louis encephalitis virus (slide 109) [ http://www.urmc.rochester.edu/

neuroslides ] and Japanese encephalitis virus [63].

Immunoassays
The indirect ELISAs and immunoblot assays, using the

immuno-affinity purified native hexameric DENV-2 e/sNS1

glycoproteins and purified DENV-2 virions, were performed as

Dengue Virus AER/AED
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described previously [23]. After loading the ELISA plates at either

0.6 mg/ml (purified DENV-2 virions) or 1.5 mg/ml (purified

DENV-2 NS1 glycoproteins), they were blocked using 1%

(wt/vol) gelatin in PBS. After PBS washing, serial PAb or MAb

dilutions were reacted. After washing, the bound PAbs were

detected by sequential reaction steps using a peroxidase-labelled

goat anti-mouse IgG (H & L) (115-035-062, Jackson ImmunoR-

esearch diluted to 1/2000, washing, and addition of standard

o-phenylenediamine dihydrochloride substrate solution containing

H2O2. After stopping the reaction with 0.2M H2SO4, the

absorbance values were measured at a dual wavelength of 490

and 620 nm (MRX, Dynex) and the average reciprocal log10 50%

end-point ELISA titers (1/log10t50) were determined.

The plaque-reduction neutralisation tests (PRNTs) were per-

formed in 48-well plates using serial dilutions of both the DENV-2

NG-C and NSx strains from infected C6/36 supernatants subse-

quently diluted in MCGM against serial pre-challenge sera from mice

and 26105 Vero cells/well were performed as described previously

[23,56]. These wells were then overlaid with 1.5% (wt/vol) carboxy-

methylcellulose/MCGM and after incubation at 37uC for 7 days the

cell monolayers were fixed with 8% formaldehyde, washed and

stained with 1% (wt/vol) crystal violet/PBS before further being

washed and dried (see above). The PAb dilutions which reduced the

numbers of DENV-2 plaques by 50% were then calculated.

To investigate the possible contamination of the immuno-

affinity purified DENV-2 e/sNS1 glycoprotein samples with the

DENV E and prM glycoproteins, high (960 ng) concentrations of

the purified DENV-2 (NSx strain) virions also obtained from

DENV-infected mammalian cells and 200 ng concentrations of

the purified e/sNS1 glycoproteins of the DENV-2 16681, NG-C

and NSx strains were heated and subjected to 8% (wt/vol) non-

reducing SDS-PAGE. To identify the cross-reaction of PAbs

generated against the purified DENV-2 e/sNS1 glycoproteins of

the 16681, NG-C and NSx strains two (approximately 1000 ng

and 250 ng) concentrations of DENV-2 virions purified from

DENV-2 (NSx strain) infected C6/36 cell-culture supernatants

(see above) were heated at 100uC for 3 min before subjection to

9% (wt/vol) non-reducing SDS-PAGE. These gels were then

subjected to semi-dry electro-blotting onto 0.2 mm pore-sized

nitrocellulose membranes and air drying. After blocking with

PBS/M (see immuno-fluorescent assays), a 1/200 dilution of the

mouse or human PAbs, or 1 mg/ml of the IgG2a subclass MAb,

specific for the DENV-2 NS1 (MAb 2A5.1), E (MAb 2C5.1) or

prM (MAb 2A4.1) glycoproteins [23], were reacted with these

membranes. After washing, the bound PAbs were detected by

sequential reaction steps using a 1/2000 dilution of the

peroxidase-labelled anti-mouse IgG2a-specific second PAbs (115-

035-206, Jackson ImmunoResearch, USA), washing and standard

3,39 diaminobenzidine tetrahydrochloride/4-chloro-1-naphthol

(CND) substrate mixture containing H2O2.

Immuno-fluorescent antibody (IFA) assays to detect DENV-2

infected C6/36 cells were performed as described previously [64].

For these assays, MAb 3H5 specific for the envelope (E)

glycoprotein DENV-2 was diluted to 1/100 in PBS containing

2% milk powder (Marvel, Cadbury’s, UK) and reacted with the

fixed C6/36 cells on the IFA slides for 2 hr at 28uC. These slides

were then washed three times with PBS and gently blotted before

adding 10 ml of a 1/500 dilution of FITC-labeled goat anti-mouse

IgG (H&L) (115-095-062, Jackson ImmunoResearch, USA) and

incubated at 28uC for 1 hour. After washing again three times

with PBS, the slides were briefly dipped in distilled water, gently

blotted and mounted with 90% glycerol/PBS pH 8.3 and viewed

under immuno-fluorescent microscopy using the appropriate

FITC excitation and barrier filters.

Results

Affinity purified DENV NS1 glycoproteins did not contain
other DENV proteins

Since the NS1 glycoproteins were immuno-affinity purified from

DENV-2 infected mammalian cells, we initially tested whether these

preparations contained any contaminating DENV-2 E or prM

glycoproteins, which could affect the results. We also used a control

immuno-affinity purified NS1 glycoprotein recombinant expression

construct which expressed the NS1 glycoprotein of DENV-2 (16681

strain) in mammalian cells in the absence of genes encoding the

DENV-2 E and prM glycoproteins. In this study, no contaminating

E (gp60/55) or prM (gp20) glycoproteins were detected in

immunoblot assays using high (200 ng) concentrations of the

purified DENV-2 NS1 glycoproteins of the DENV-2 16681, NG-

C or NSx strains with MAbs specific for each of these DENV

glycoproteins (Figure S1).

Immunogenicity and antigenicity of NS1 glycoproteins of
different DENV-2 strains, and their ability to generate
DENV-2 E glycoprotein cross-reactive PAbs

The ability of normal out-bred mice to generate PAbs against

the native hexameric e/sNS1 glycoproteins of the DENV-2 16681,

NG-C or NSx strains, that cross-reacted with the virion-associated

E or prM glycoproteins was assessed. In this study, out-bred mice

repeatedly immunized with the NS1 glycoproteins of either the

DENV-2 16681, NG-C or NSx strains all generated high PAb

titres against the NS1 glycoprotein of the NG-C strain (mean

reciprocal log10t50 4.50, 4.33 and 4.13 respectively) (Table 1).

These PAbs, however, only weakly reacted with the NS1

glycoprotein of the DENV-2 NSx strain (mean reciprocal log10t50

2.82 (47.9-fold reduction), 2.68 (44.7-fold reduction) and 2.81

(20.9-fold reduction), respectively. The NS1 glycoproteins of the

DENV-2 16681, NG-C and NSx strains were, therefore, similarly

immunogenic, but that of the NSx strain was very weakly antigenic

in these ELISAs. The PAbs from each of the three mouse groups

showed similar cross-reactive titres against purified DENV-2

virions of the NSx strain (mean reciprocal log10t50 2.85, 2.78 and

2.65 respectively). Importantly, the PAbs generated against the

NS1 glycoproteins of the DENV-2 16681 and NG-C strains

showed higher mean ELISA titers against the virions, than the

NS1 glycoprotein, of the DENV-2 NSx strain strongly suggesting

that they were likely to generate AER of the DENV-2 NSx strain.

Whilst PAbs generated in mice to live DENV-2 infections showed

higher titers against the DENV-2 E glycoprotein, they also more

weakly reacted with the NS1 glycoprotein of the DENV-2 NSx

strain than the 16681 or NG-C strains.

The cross-reactions of the PAbs generated against the purified

NS1 glycoproteins of the DENV-2 16681, NG-C and NSx with

the virion-associated E or prM glycoproteins were further tested

using immunoblot assays. For this study, purified DENV-2 (NSx

strain) virions obtained from infected C6/36 mosquito cells were

used to more easily distinguish between the E (gp60 and gp55) and

NS1 (gp48) glycoprotein bands (Figure 1). In addition, the ability

to detect PAbs of the IgG2a subclass was assessed. In this study,

the PAbs generated against the purified e/sNS1 glycoproteins of

each DENV-2 strain all generated detectable PAbs of the IgG2a

subclass that reacted with the NS1 glycoprotein (gp48), and cross-

reacted with the E glycoprotein (gp60 and gp55) of the DENV-2

NSx strains, but not with its prM glycoprotein (gp20) (Figure 1).

All of these PAbs had a low plaque-reduction neutralisation titer

(PRNT) of 1/8 against both the DENV-2 NG-C and NSx strains,

suggesting that they may also generate DENV-2 AER. In contrast,

PAbs generated in mice against repeated live DENV-2 infections
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(anti-E, prM and NS1 glycoprotein PAbs) or anti-DENV E and

prM glycoprotein-specific MAbs, 2C5.1 and 2A4.1, strongly

reacted with the DENV-2 E and prM glycoproteins but less

strongly with the NS1 glycoprotein, while MAb 2A5.1 showed a

strong anti-DENV-2 NS1 glycoprotein-specific reaction. All of

their pre-immunisation PAb sera, as well as those generated

against ovalbumin (control glycoprotein), however, failed to cross-

react with any DENV-2 glycoproteins (Table 1, Figure 1).

Ability of PAbs raised against the NS1 glycoproteins of
DENV-2 strains to generate antibody-enhanced disease
(AED) in mice

Groups of out-bred mice immunized with either the NS1

glycoproteins of the DENV-2 NG-C or NSx strains and

challenged with a low dose (,0.5 LD50) of the live DENV-2

NSx strain all showed symptoms of severe respiratory distress and

hind-leg paralysis on, or before, day 14 after infection (Figures 2A
and 2B). Only 3/15 (20%) of the mice immunized with the NS1

glycoprotein of the DENV-2 NG-C strain and challenged with a

low dose (,1 LD50) of live DENV-2 NG-C strain, however,

showed symptoms of severe respiratory distress and hind-leg

paralysis on, or before, day 14 after challenge (Figure 2C), after

which no further cases of morbidity occurred. In contrast, only

1/14 (7.1%) of the mice immunized with the control protein,

ovalbumin (OA) and challenged with a low dose of the live

DENV-2 NSx strain displayed hind-leg paralysis on, or before, day

14 after challenge (Figure 2D), but this animal did not display

severe respiratory distress, and none of the other 13/14 animals

showed any signs of morbidity. These results using the control

mice therefore confirmed that the deaths that occurred in the

other mouse groups (2A, 2B or 2C) were not caused by another

Table 1. Mouse PAb and MAb reactions against DENV-2 virions and NS1 glycoproteins.

50% end-point (1/log10t50) ELISA titer (s.d.)c

DENV-2 NS1 gp DENV-2 Virions

PAb/MAba Immunogenb NG-C NSx NSx Ovalbumin

Mouse PAbs DENV-2 (16681) NS1 gp 4.50 (0.41) 2.82 (0.22) 2.85 (0.27) 1.76 (0.16)

Mouse PAbs DENV-2 (NGC) NS1 gp 4.33 (0.41) 2.68 (0.25) 2.78 (0.29) 1.84 (0.16)

Mouse PAbs DENV-2 (NSx) NS1 gp 4.13 (0.39) 2.81 (0.22) 2.65 (0.27) 1.71 (0.18)

Mouse PAbs Ovalbumin 0.87 (0.07) 0.80 (0.06) 1.11 (0.12) 4.66 (0.24)

Mouse PAbs DENV-2 (NGC) infections 3.38 (0.11) 2.15 (0.12) 5.25 (0.25) 1.21 (0.12)

MAb 2A5.1 DENV-2 (PR159) NS1 gp 5.86 (0.03) 5.81 (0.04) 0.60 (0.02) 0.41 (0.02)

MAb 2C5.1 DENV-2 (PR159) E gp 2.32 (0.02) 2.13 (0.02) 5.51 (0.03) 0.17 (0.01)

MAb 2A4.1 DENV-2 (PR159) prM gp 2.05 (0.02) 1.87 (0.01) 4.36 (0.04) 0.18 (0.01)

aMouse monoclonal antibodies (MAbs) specific for the NS1 (2A5.1), E (2C5.1) or prM (2A4.1) glycoproteins or polyclonal antibodies (PAbs) generated against DENV-2
infections or immuno-affinity purified DENV-2 NS1 glycoproteins, and which were collected immediately prior to challenge with either the DENV-2 NG-C or NSx strains.

bImmunogen as either the immuno-affinity purified NS1 glycoprotein (NS1 gp) of the DENV-2 16681, NG-C or NSx strains, ovalbumin (control protein) or repeated live
DENV-2 (NG-C strain) infections.

cThe mean reciprocal log10 50% end-point ELISA titer (1/log10t50) and standard deviation (s.d.) of pools of mouse PAbs or MAbs, against the immuno-affinity purified
NS1 glycoproteins of the DENV-2 NG-C or NSx strains, ovalbumin (control protein) or purified DENV-2 (NSx strain) virions, when detected using peroxidase-labelled goat
anti-mouse IgG (H&L) second antibodies. Mouse PAbs which had higher ELISA titers against the DENV-2 virions of the NSx strain than its NS1 glycoprotein are
underlined.

doi:10.1371/journal.pone.0021024.t001

Figure 1. Immunoblot reactions of PAbs and MAbs against DENV-2 proteins. Approximately 1000 ng (odd numbered lanes) and 250 ng
(even numbered lanes) concentrations of purified DENV-2 (NSx strain) virions, obtained from infected C6/36 supernatants, were heated at 100uC for
3 min and subjected to 9% (wt/vol) non-reduced SDS-PAGE and immuno-blotting. These strips were then reacted with either 1/200 dilutions of
mouse PAbs generated against repeated infections with DENV-2 (NG-C strain) (lanes 1 and 2) or the pre-immunization (pre-i) and post-immunization
(post-i) sera pooled from mice that had been generated against the purified NS1 glycoproteins of the DENV-2 16681 (pre-i: lanes 3 and 4; post-i: lanes
5 and 6), NG-C (pre-i: lanes 7 and 8; post-i: lanes 9 and 10) or NSx (pre-i: lanes 11 and 12; post-i: lanes 13 and 14) strains or ovalbumin (pre-i: lanes 15
and 16; post-i: lanes 17 and 18) or 1 mg/ml of IgG2a subclass MAbs specific for the DENV-2 NS1 (MAb 2A5.1) (lanes 19 and 20) the DENV E and prM
glycoproteins (MAbs 2C5.1 and 2A4.1) (lanes 21 and 22) (Table 1). The bound MAbs were then detected using a peroxidase-labelled goat anti-mouse
IgG2a subclass-specific secondary PAbs and CND substrate. The locations of standard kilodalton (kD) molecular weight markers and the DENV-2 E
(gp60 and 55), NS1 (gp48) and prM (gp20) glycoproteins are shown.
doi:10.1371/journal.pone.0021024.g001
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contaminating infectious agent or brain material. These results

were strongly supported by significant Kaplan-Meier survival

curve statistics (Figure 2: group A versus C: x2 20.91, p,0.0001;

group B versus C: x2 20.84, p,0.0001; group A versus D

(control): x2 30.04, p,0.0001; group B versus D (control): x2

29.87, p,0.0001). Thus, the immunization of out-bred mice with

the native NS1 glycoproteins of either the DENV-2 NG-C or NSx

strains generated PAbs that caused dramatic and statistically

significant, DENV-2 AED when they were challenged with the

DENV-2 NSx strain, but not the DENV-2 NG-C strain. These

results indicated that the DENV-2 AED was generated only when

the mice were immunized with DENV-2 NS1 glycoproteins and

challenged with the DENV-2 NSx strain, because of their

relatively stronger PAb reactions against its E glycoprotein, and

weaker (44.7-fold and 20.9-fold reduced) antigenicity of its NS1

glycoprotein (Table 1). To confirm this hypothesis, the ability of

the NS1 glycoproteins of the DENV-2 NG-C or NSx strains to

block the DENV-2 AED was tested. In this study, three groups

(A, B and C) of 14-16 three-week old out-bred mice were all

immunized with the immuno-affinity purified multi-meric e/sNS1

glycoprotein of the DENV-2 NG-C strain, and again boosted two

weeks later with the same antigen dose in PBS. One week later

(i.e. at six-weeks old), 250 ml of sterile protein-free RPMI medium

(group A: controls) was administered intra-cerebrally to each

mouse in group A immediately prior to, and at the same site as, the

challenge dose containing ,0.5 LD50 of the DENV-2 NSx strain.

Each mouse in the other groups received 500 mg of the purified

DENV-2 e/sNS1 glycoprotein of either the NSx (group B) or

NGC (group C) strains by the intra-cerebral route immediately

prior to, and at the same site as, challenge with ,0.5 LD50 of the

DENV-2 NSx strain. In this study, all of the mice immunized with

the DENV-2 NS1 glycoprotein, that received protein-free RPMI

medium prior to challenge with the DENV-2 NSx strain (group A:

controls) developed severe respiratory distress and hind-leg

paralysis on, or before, day 14 after infection (Figure 3A). The

immunized mice that were pre-injected with the NS1 glycoprotein

of the NSx strain immediately prior to challenge with the DENV-2

NSx strain (group B) showed a delayed onset of severe morbidity,

but they all subsequently succumbed to severe respiratory distress

and hind-leg paralysis on, or before, day 14 after infection

(Figure 3B). Despite these findings, a statistically significant

difference was obtained between these two groups (Figure 3: group

A versus B: x2 7.10, p,0.008). In contrast, only 3/15 (20%) of the

immunized mice that were pre-injected with the NS1 glycoprotein

of the DENV-2 NG-C strain, immediately prior to challenge with

the DENV-2 NSx strain (group C), developed severe respiratory

distress and hind-leg paralysis on, or before, day 14 after infection.

The NS1 glycoprotein of the DENV-2 NGC strain therefore more

strongly blocked the DENV-2 AED, with 12/15 (80.0%) of these

mice surviving (i.e. showing no severe respiratory distress and/or

hind-leg paralysis) on day 14 after challenge (Figure 3C) (Figure 3:

group B versus C: x2 23.84, p,0.0001). There was also no

significant difference between the blocking of AED by the NS1

glycoprotein of NG-C (Figure 3C) and the DENV-2 non-AED

mice immunised with ovalbumin (control glycoprotein) before

viral challenge (Figure 2D) (Figure 3 group C versus Figure 2

group D: x2 1.07, p = 0.302). Thus, the treatment of the mice with

the NS1 glycoprotein of the DENV-2 NG-C strain significantly

blocked all evidence of DENV-2 AER/AED, while the NS1

glycoprotein of the DENV-2 NSx strain failed to prevent AED,

probably due to its much weaker antigenicity (Table 1) (Figure 3:

group B versus Figure 2 group D: x2 29.70, p,0.0001).

Figure 2. Ability of DENV-2 NS1 glycoproteins to generate DENV-2 AED. Groups of 14-16 out-bred mice were repeatedly immunized with
the DENV-2 NS1 glycoproteins of either the NSx (NSx-NS1) (Group A), NG-C (NGC-NS1) (Group B and C) strains, or ovalbumin (OA) (Group D)
(immunogens) by the combined i-p./s-c. route, and challenged by the intra-cerebral route with a low (,0.5 LD50) dose of either the DENV-2 NSx
(Group A, B and D) or NG-C strain (Group C). The survival (%) for each group is shown from day 7 to 14 after DENV-2 challenge by colored bars and
Kaplan-Meier survival curves were compared to obtain statistical values for groups A versus B (x2: 0.06; p = 0.81), A versus C (x2 = 20.91; p,0.0001), A
versus D (x2 = 20.80; p,0.0001) and B versus C (x2 = 20.80; p,0.0001).
doi:10.1371/journal.pone.0021024.g002
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Brain homogenates were prepared from the mice on day 14

after challenge to confirm that the AED was caused by DENV-2

AER. Since the high lipid and protein concentrations in these

homogenates affected DENV-2 plaque-formation, initial dilutions

were started at 1/10 of the 10% (wt/vol) brain homogenates

(i.e. 1/100 dilution/gram of brain homogenate). In these assays,

the DENV-2 AED mice tested (n = 6) showed consistent DENV-2

AER with an average DENV-2 NSx strain titer of 8.56107

(standard deviation 2.66106) plaque-forming units/gram of brain

homogenate, while no plaques could be detected in brain

homogenates of the non-AER/AED animals at the starting

dilution of 1/400. The average DENV-2 NSx strain AER was

therefore at least 90,000-fold, but was likely to be higher since

DENV-2 E glycoproteins could not detected in the brains of the

DENV-2 non-AER/AED mice by immuno-histology (see later). A

dramatic AER of the DENV-2 NSx strain which resulted in

DENV-2 AED was, therefore, confirmed in these animals.

DENV-2 was also isolated from lung, spleen and liver

homogenates from each of four DENV AER/AED mice that

died on day 8-9 after challenge using C6/36 cells. These results,

therefore, confirmed that the DENV-2 NSx strain had spread to

infect these peripheral organs.

Histological studies on organs from the DENV-2 AER/AED
mice and non-AER/AED mice

Normal histological and immuno-histological analyses on

various organs of the DENV-2 AED mice (groups A and B from

Figure 2A and 2B) and DENV-2 non-AER/AED mice (group D

from Figure 2D), collected on day 14 after infection, were

performed to i) contrast the pathologies observed in these organs,

ii) identify the DENV-2 antigen-positive cell-types in these organs,

and iii) compare these results with those reported in DHF/DSS

patients’ organs. In this study, the DENV-2 AED mice (groups A

and B) all showed severe meningitis and displayed dramatic

mononuclear cell infiltration, predominantly of lymphocytes and

plasma cells, over a background of fibrinoid material (Figure 4A).

The encephalitis was characterized by the presence of eosinophil-

ic-staining dead neurones and lymphocytic infiltration of the brain

parenchyma, with the formation of microglial cell nodules around

necrotic neurons (Figures 4A and 4B). Perivascular lymphocytic

cuffing, composed mainly of lymphocytes and plasma cells with a

thickness ranging from 2-5 cell layers, was evident in the brain

hemispheres (Figures 4A and 4B). Interestingly, DENV-2 E

glycoproteins were not identified in the mononuclear cells within

either the meninges or the perivascular infiltrate in the brain

parenchyma, but were identified in the phagocytic microglial cells,

including those that formed nodules throughout the brain

parenchyma (Figure 4C). These histopathological changes were

predominantly observed in the grey matter, consistent with its

higher density of neurons. The microglial nodule formation and

apoptotic neurones observed in the DENV-2 AER/AED mice also

accorded with histological studies on encephalitis in humans or

mice caused by neurotropic flaviviruses (e.g. West Nile [62] or

Japanese encephalitis [63] viruses). In contrast, the DENV-2 non-

AED mice (group D) showed normal meninges and brain

parenchyma (Figures 4D and 4E), consistent with the inability

Figure 3. Ability of DENV-2 NS1 glycoproteins to block the DENV-2 AED. Groups of 14-16 out-bred mice were repeated immunized with the
immuno-affinity DENV-2 NS1 glycoprotein of the NG-C strain (NGC-NS1glycoprotein immunogen) by the combined i-p./s-c. route, and either pre-
treated intra-cerebrally with protein-free RPMI medium (A), or pre-treated intra-cerebrally with 500 mg of the purified NS1 glycoproteins of either the
DENV-2 NSx strain (NSx-NS1) (B) or the NG-C strain (NGC-NS1) (C), immediately prior to and at the same intra-cerebral site as the subsequent
challenge with a low dose (,0.5 LD50) of the DENV-2 NSx strain. The survival (%) for each group is shown from day 7 to 14 after challenge by colored
bars and Kaplan-Meier survival curves were compared to obtain values for groups A versus B (x2 = 7.10; p ,0.008), A versus C (x2 = 27.46; p,0.0001)
and B versus C (x2 = 23.84; p,0.0001).
doi:10.1371/journal.pone.0021024.g003
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to detect any DENV-2 E glycoproteins in any cells within these

tissues (Figure 4F).

The lungs of the DENV-2 AER/AED mice showed dramatic

edema and a severe state of acute respiratory distress syndrome

(ARDS) displayed by diffuse alveolar damage (DAD), with the

extensive thickening of the alveolar walls by the infiltration of

macrophages and lymphocytes and occasional hyperplasia of

alveolar type II pneumocytes (Figure 5A). In addition, there was

copious intra-alveolar proteinaceous secretion with the occasional

formation of hyaline membrane-covered alveolar walls. DENV-2

E glycoproteins were present in their alveolar macrophages, which

had characteristic morphologies (data not shown). These findings

were therefore typical of life-threatening ARDS, thereby account-

ing for the severe symptoms of respiratory distress displayed by

these animals. In contrast, the DENV-2 non-AER/AED mice

showed a slight degree of edema in their lungs, but many alveolar

walls were still one cell thick, there was no hyaline membrane

formation (Figure 5B), and no DENV-2 E glycoproteins were

detected in their alveolar macrophages. These results therefore

accorded with the histo-pathological descriptions of lung pathol-

ogy observed in fatal DHF/DSS cases, in which oxygen-exchange

was severely inhibited [26], and as was observed in histological

photomicrographs obtained from a fatal DHF/DSS case [59]. The

livers of the DENV-2 AER/AED mice displayed extensive

necrosis and micro- and macro-steatosis, with many cells diplaying

pyknosis (apoptosis) (Figure 5C). DENV-2 E glycoproteins were

identified in many Kuppfer cells with their characteristic

morphologies [61], and hepatocytes using immuno-fluorescent

microscopy (data not shown). The DENV-2 AER/AED mice,

therefore, demonstrated severe liver disease, while the DENV-2

non-AER/AED control mice displayed normal liver histologies.

These results therefore accord with those described in fatal cases of

‘severe dengue’ disease in humans [5,26,33,34]. High numbers of

megakaryocyte (platelet precursor) cells, with their characteristic

multi-lobed nuclei, had infiltrated the spleens of the DENV-2

AER/AED mice, and DENV-2 E glycoproteins were identified in

many of the macrophages located throughout the red pulp, but in

only relatively low numbers of cells in the white pulp (Figures 5D,
5E and 5F). The DENV-2 non-AER/AED mice also showed

some infiltration of megakaryocytes in their spleens (data not

shown), but DENV-2 E glycoproteins were not detected in their

spleens. These results, together with the ability to isolate DENV-2

from lung, spleen and liver homogenates from the DENV AER/

AED mice on day 8–9 after challenge, therefore, confirmed that

the DENV-2 NSx strain had spread to infect the peripheral

organs, probably when the blood-brain barrier was breached

during DENV-2 challenge, and when bleeding was observed at

these injection sites.

Discussion

The main findings from this study were: 1) that PAbs generated

against the DENV-2 NS1 glycoprotein could cross-react with the

E glycoprotein and generate the highest DENV ($90,000-fold)

AER titers so far reported in vivo using undiluted PAbs with a wild-

type DENV-2 strain, 2) that this dramatic DENV-2 AER/AED

Figure 4. Comparative DENV-2 AER/AED and non-AER/AED mouse brain histologies. Representative DENV-2 AER/AED mouse brain
sections (A, B and C) from group A/B mice (Figure 2A/B) and DENV-2 non-AER/AED mouse brain sections (D, E and F) from group D mice (Figure 2D),
immunized with either the NS1 glycoprotein of the DENV-2 NSx strain or ovalbumin by the combined i-p./s-c. routes, respectively, prior to challenged
with the DENV-2 NSx strain by the i-c. route, collected on day 14 after challenge. Cryostat-cut sections were either stained with standard hematoxylin
and eosin (H&E) (A, B, D and E) or tested in immuno-fluorescence antibody (IFA) assays using human PAbs reactive against the DENV E glycoprotein
and FITC-labelled secondary PAbs. The DENV-2 AER/AED mouse meninges showed extensive mononuclear cell infiltration (arrowed) with microglial
nodule formation and many eosinophilic-staining dead neurones (asterixed) (100x: 100 mm bar) in their brain parenchyma (A). The DENV-2 AER/AED
mouse microglial nodules were located throughout their brain parenchyma (arrowed) and blood vessels showed perivascular cuffing with
mononuclear cells (asterixed) (200x: 50 mm bar) (B). DENV-2 E glycoproteins were present in the microglial cells, including those which formed
nodules (arrowed) throughout their brain parenchyma, but not in the mononuclear cells in the perivascular infiltrate (asterixed) (400x: 20 mm bar)
(C). In contrast, the DENV-2 non-AER/AED mice showed normal meninges (arrowed) (100x: 100 mm bar) (D) and no pathological changes in their brain
parenchyma (200x: 50 mm bar) (E) and no DENV-2 E glycoproteins were present in these cells (400x: 20 mm bar) (F).
doi:10.1371/journal.pone.0021024.g004
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could be blocked using a more antigenic NS1 glycoprotein of

another DENV-2 strain, 3) that DENV-2 was confirmed to have

spread to the peripheral organs by isolation of the virus after intra-

cerebral challenge, and that intra-cerebral challenge was a suitable

route for testing the ability of PAbs to provide either DENV-2

protection or AED in both the CNS and peripheral organs, 4) that

this was the first report in which severe, life-threatening DENV

acute respiratory distress syndrome (ARDS) was generated in an

animal model, 5) that this was also the first study to observe

increased megakaryocyte (platelet precursor) cell numbers result-

ing from DENV-2 AER/AED in an animal model, 6) that the

severe pathological findings in lung (ARDS), brain (encephalitis),

liver (necrosis and apoptosis (pyknosis), with macro- and micro-

steatosis) and spleen samples with DENV-2 antigen-positive tissue

macrophages from the DENV-2 AER/AED animals accorded

with those found in fatal human ‘severe dengue’ cases, and 7) that

candidate DENV NS1 glycoprotein-based vaccines may thus be

hazardous, particularly when used against DENV strains that

possess less antigenic NS1 glycoproteins.

These PAbs did not increase the replication of the prototype

DENV-2 NG-C strain, probably due to the stronger antigenicity of

its NS1 glycoprotein, which was supported by the ability of its NS1

glycoprotein to block the DENV-2 AER/AED caused by the NSx

strain. The NS1 glycoprotein of the DENV-2 NSx strain was,

therefore, chosen as a natural low passage DENV-2 isolate to

demonstrate the proof of principle that PAbs raised against the NS1

glycoprotein candidate vaccine could generate DENV-2 AER

under physiological conditions (i.e. undiluted PAbs in the presence

of complement and auto-antigens). Interestingly, a MAb generated

against the DENV prM glycoprotein that also cross-reacted with

proteins on mammalian cells generated DENV AER in the absence

of FcRs in vitro [65]. Thus, while the DENV-2 AER generated here

was likely to be FccR-dependent, the dual specificities of these PAbs,

against both the DENV-2 E glycoprotein and host cell-surface auto-

antigens [23–25] may also occur through a FccR-independent

mechanism. We opted to assess this possibility using panels of MAbs

(e.g. MAb 1G5.4-A1-C3), rather than these mouse PAbs which

contain antibodies of different IgG subclasses, since the double-

cleavage reactions required to obtain F(ab’)2 fragments of IgG1 and

other IgG subclasses [66,67] was likely to result in the disruption of

antigenic binding. This study demonstrates the first evidence that

PAbs raised against the DENV NS1 glycoprotein could generate a

dramatic AER of a DENV-2 strain in out-bred mice in vivo, with

lethal multi-organ disease similar to that observed in the most severe

and lethal DSS cases. These results therefore raise further concerns,

in addition to the ability to generate auto-immune disease [24,25],

over the safety of any DENV NS1-based candidate vaccines.

The challenge route used for the DENV-2 NSx AER/AED

experiments was by intra-cerebral inoculation, as has been used as

for testing DENV active and passive protection experiments [46].

This model has therefore been extensively used to evaluate the

protective capacity of neutralizing PAbs and MAbs generated

against the DENV E and prM glycoproteins, as well as non-

neutralising PAbs and MAbs generated against the DENV NS1

and C proteins [47–52]. We have also generated this DENV-2

AER/AED in CD1 Swiss (out-bred) and BALB/c (inbred) mouse

Figure 5. Comparative DENV-2 AER/AED and non-AER/AED mouse lung histologies and DENV-2 AER/AED mouse liver and spleen
histologies. Representative DENV-2 AER/AED mouse lung, liver and spleen sections (A, C, D, E and F) from group A/B mice (Figure 2A/B) and DENV-2
non-AER/AED mouse lung sections (B) from group D mice (Figure 2D), immunized by the combined i-p/s-c. route with either the NS1 glycoprotein if
the DENV-2 NSx strain or ovalbumin, respectively, and challenged with the DENV-2 NSx strain by the i-c. route, collected on day 14 after challenge.
Cryostat-cut sections were either stained with H & E (A, B, C, D and F) or tested in immuno-fluorescence antibody (IFA) assays using human PAbs
reactive against the DENV E glycoprotein and FITC-labelled second PAbs (E). The DENV-2 AER/AED mouse lung showed extensive edema,
mononuclear cell infiltration with dramatic alveolar wall-thickening, protein-rich fluid-filled alveolar spaces (arrowed) and hyaline membrane
formation (200x: 50 mm bar) (A). In contrast, the DENV-2 non-AER/AED mouse lung showed slight oedema, with some alveolar walls still one cell thick
(arrowed) and no hyaline membrane formation (200x: 50 mm bar) (B). The DENV-2 AER/AED mouse liver showed some mononuclear cell infiltration,
macro-steatosis (asterixed) and micro-steatosis, with many cells displaying apoptosis (pyknotic nuclei) (some arrowed) (200x: 50 mm bar) (C). The
DENV-2 AER/AED mouse spleen contained numerous megakaryocytes, with characteristic multi-lobed nuclei, in the red pulp (arrowed) (D) but not
the white pulp (asterixed) (200x: 50 mm bar), with some arrowed in a higher magnification photomicrograph (400x: 25 mm bar) (F), and DENV-2 E
glycoprotein was found in the cells throughout the red pulp, but not the white pulp (asterixed) (200x: 50 mm bar) (E).
doi:10.1371/journal.pone.0021024.g005
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strains, thereby suggesting that any mouse strain may be used for

this model (data not shown). In a previous study, we showed that

mice challenged with sub-lethal doses of DENV-2 by the intra-

cerebral route, generated peak titers 8 days later, but which

became undetectable on day 10 [9]. In contrast, lethal DENV-2

AER reached maximum titers on 9 days after challenge, and

remained the same until their deaths on day 12–14 after challenge

[9]. As such, the control mice generated much lower DENV-2

titers and showed no disease symptoms, probably due to DENV-2

clearance by the rising titers of protective PAbs. This was

consistent with our inability to detect any DENV-2 virus, antigens

or pathology in the brains of the non-AER/AED mice on day 14

after challenge in this study. Microglial cells are the principal

resident macrophages in the CNS, and which express all four

classes of mouse FccRs [68]. Their FccRI-expression was greatly

increased by IFN-c [69] and they were also activated by antigen-

IgG complexes binding to their Fc-cRIs (IgG2a only) and Fc-

cRIIIs [68], which resulted in MIP-1a-release and neuronal

apoptosis, and which has been implicated in a wide range of

neurological diseases [70]. Of particular concern is that DENV

encephalitis has increasingly been reported in both Asia and South

America [71], was the principal cause of encephalitis in one

DENV-endemic area [42], 7% in studies conducted in Jamaica

and Indonesia [43,44], and 4.6% in a study conducted in Viet

Nam, where Japanese encephalitis virus was prevalent [45].

DENV encephalitis has been associated with a poor patient

prognosis [41], and has been added as a symptom of ‘severe

dengue’ by the TDR/WHO steering committee [3]. Our DENV-

2 AER/AED model is, therefore, likely to be valuable in testing

potential therapies for these patients.

Despite using the unnatural intra-cerebral challenge route, the

DENV-2 was disseminated to the peripheral organs of the DENV-

2 AER/AED mice at the time of DENV-2 challenge when the

blood-brain barrier was breached, and bleeding was observed at

these injection sites. This was confirmed by isolation of DENV-2

by cell culture from the lungs, spleens and livers of the DENV-2

AER/AED mice on day 8–9 after challenge. These results,

therefore, support those previously found in liver samples of mice

after DENV challenge doses by the intra-cerebral route [53,54].

This challenge route, therefore, yielded very clear hind-leg

paralysis and life-threatening ARDS end-points for the DENV

AER/AED and blocking studies, which will be very useful for

passive protection studies using both PAbs and MAbs (see below).

We previously showed that some MAbs of the non-complement-

fixing IgG1 subclass (e.g. MAb 1G5.3) that were generated against

the DENV-2 NS1 glycoprotein identified common epitopes on the

DENV E glycoproteins, weakly neutralised them [23], and also

generated DENV-2 AED [9]. Affinity purified IgG obtained from

out-bred mice immunized with the DENV-2 NS1 glycoprotein

have also been used to generate DENV-2 AER/AED in naı̈ve

mice after challenge with the DENV-2 NSx strain (Falconar,

manuscript in prep). MAbs of the IgG1, IgG2b and IgG2a

subclasses, some of which fixed serum complement (e.g. MAb

1G5.4-A1-C3: IgG2b subclass), and also defined common epitopes

on the DENV E and NS1 glycoproteins [23], have been tested for

their abilities to generate DENV AER/AED resulting in similar

multi-organ pathologies in mice (Falconar, manuscript in prep).

While there have been differences reported in the ability of

DENVs to infect cells of the non-monocyte/macrophage lineages

(e.g. lymphocytes, hepatocytes, endothelial cells and megakaryo-

cytes) [5,26–34,72,73], Fc receptor bearing monocytes and tissue

macrophages are universally considered to be the principal target

cells for DENV replication. This was confirmed in the DENV-2

AER/AED mice by finding that, with the exception of

hepatocytes, DENV-2 antigens were only found in tissue

macrophages possessing their characteristic morphologies, in each

of the organs studied (lungs, livers, spleens and brains). In our

study, we also observed that much higher percentages of the

macrophages present in the splenic red pulp and liver, rather than

the lungs, contained DENV-2 E glycoproteins, consistent with the

spleen, as well as the liver, being a principal site for DENV

replication [27], together with high megakaryocte numbers in the

spleen. This was, therefore, the first observation of increased

megakaryocyte numbers in animals infected with DENV, as has

been a frequent observation in histological studies on DHF/DSS

patient autopsies [5,26]. Young megakaryocytes were, however,

reported to be present in both the bone marrow and peripheral

organs of DHF/DSS patients [5,74], but in other reports these

increased numbers of megakaryocytes displayed vacuolation or

disintegration, which subsequently resulted in bone marrow

suppression [72,73]. Since the megakaryocytes located in the

splenic red pulp of the DENV-2 AER/AED mice were

morphologically mature, further studies are required to account

for these different observations.

Interestingly, pulmonary congestion with liver steatosis was

observed in BALB/c after the administration of high doses of a

low-passage DENV-2 strain by the peripheral route [75]. These

symptoms were, therefore, similar to those observed in our study,

but those mice only transiently displayed the severe lung

congestion before it was resolved, and no mortalities occurred.

In contrast, the ARDS was sufficiently severe and prolonged

(studied on day 14 after DENV challenge) in our DENV-2 AER/

AED mice, that it per se could cause death, and probably also

contributed to the severe liver necrosis with macro- and micro-

steatosis observed in these animals, since multi-organ or systemic

pathology due to hypoxia and metabolic acidosis are common

complications of ARDS [76,77]. Importantly, in several reports

ARDS was the main cause of mortality in DSS patients either

alone or through its cause of, or contribution to, multi-organ

failure and DIC, and this often caused death even when these

patients received early fluid replacement [36–39], and after their

plasma leakage was resolved [26]. The previous results [75],

together with finding of severe pathology in the peripheral organs

of the DENV-2 AER/AED mice, from which DENV-2 was

isolated, strongly suggest that our DENV-2 AER/AED model

may also be used when the DENV-2 NSx strain is delivered by the

intra-peritoneal challenge route. This is therefore the first report

demonstrating severe life-threatening DENV-2 induced ARDS in

an animal model. Further studies are also needed however to

identify the role of auto-antibody reactions [24,25], complement,

and cytokines/chemokines secreted from different macrophage

populations and T-cells in the different organ pathologies observed

in these mice.

AG129 mice, deficient in IFN-a, b and c receptors, generated

antibodies of IgG1, but not the IgG2a, subclasses [78], were also

not protected by MAbs of the IgG2a subclass (e.g. MAb 4G2: CF

titer: 1/16 [56]) when administered at 50 mg concentrations that

would solidly protect normal mice [79]. AG129 mice also did not

show pathological symptoms in their lungs when infected with

different DENV-2 strains [80,81], or when low concentrations of

PAbs, generated against live DENV-1 infections in AG129 mice,

were passively administered (100 ml of serum/mouse) to naı̈ve

AG129 mice before challenge with DENV-2 [82]. These results

were in stark contrast to those observed in our normal mice, and in

fatal DSS cases [5,26], probably due to the failure of AG129 mice

to activate their macrophages and other ADCCs with IFN-c [83].

This would be consistent with the higher levels of IFN-c and

macrophage-activation reported in DHF/DSS patients [84,85].
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IFN-c from splenic NK cells, together with rising antibody

titers, resulted in rapidly reduced DENV-2 replication in A/J

mouse spleens [86]. Similarly, peak DENV-2 titers occurred in the

spleens of AG129 mice, before being reduced soon after DENV

challenge [81,87,88]. Thus, our ability to isolate the DENV-2

from lung, spleen and liver samples collected on day 8-9 after

challenge suggested that clearance from these organs was delayed

due to its AER.

Since the DENV E and NS1 glycoproteins appeared to co-

evolve antigenically [89], variations in their antigenicities and

therefore their potentials to generate AER/AED are likely to

occur through mutations or genetic recombination events.

Recombination has been identified in the genes encoding the E

and NS1 glycoproteins of a number of DENV strains of the same,

as well as different genotypes [90–92], and in one study occurred

between strains of the DENV-2 American (weakly pathogenic),

Asian/American (highly pathogenic) and Cosmopolitan (patho-

genic) genotypes [92]. The NS1 glycoprotein of the DENV-2 NSx

strain therefore appeared to have a reduced antigenicity due to

either multiple amino acid substitutions, or possibly by a major

recombination event between heterologous DENV-2 genotypes or

a different DENV serotype. These possibilities are being

investigated using DENV-2 NSx cDNA sequence determination

and AER/AED studies using panels of MAbs generated against

the DENV NS1 glycoprotein, which defined single or multiple

epitopes on DENV NS1 and E glycoproteins of different DENV

strains [23–25].

Most importantly, blocking DENV AER/AED to prevent the

ARDS and multiple organ dysfunction syndrome (MODS), would

be particularly useful for DSS patients.

Supporting Information

Figure S1 Immunoblot reactions of immuno-affinity
purified NS1 glycoproteins. High (960 ng) concentrations of

purified DENV-2 (NSx strain) virions (lanes 1 and 5) and high

(200 ng) concentrations of the purified e/sNS1 glycoproteins of the

16681 (lanes 2 and 6), NG-C (lanes 3 and 7) and NSx (lanes 4 and

8) were heated at 100uC for 3 min and subjected to 8% (wt/vol)

non-reduced SDS-PAGE and immuno-blotting. These strips were

then reacted with 1 mg/ml concentrations of MAbs specific for

either the DENV NS1 (MAb 2A5.1) glycoprotein (lanes 1 to 4) or

the E (MAb 2C5.1) and prM (MAb 2A4.1) (lanes 5 to 8)

glycoproteins. The bound MAbs were then detected using

peroxidise-labelled anti-mouse IgG2a subclass-specific secondary

PAbs and CND substrate. The location of the standard kD

molecular weight markers and the DENV-2 E (gp60/55), e/sNS1

(gp48) and prM (gp20) glycoproteins are shown.

(TIF)
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