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Abstract
The combination of positron emission tomography (PET) and magnetic 
resonance imaging (MRI) as a multi-modal imaging technique is considered 
very promising and powerful with regard to in vivo disease progression 
examination, therapy response monitoring and drug development. However, 
PET–MRI system design enabling simultaneous operation with unaffected 
intrinsic performance of both modalities is challenging. As one of the major 
issues, both the PET detectors and the MRI radio-frequency (RF) subsystem 
are exposed to electromagnetic (EM) interference, which may lead to PET 
and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of 
electronic PET signals within the MRI bore helps to preserve PET SNR, 
but occurs at the expense of increased amount of PET electronics inside 
the MRI and associated RF field emissions. This raises the likelihood of 
PET-related MRI interference by coupling into the MRI RF coil unwanted 
spurious signals considered as RF noise, as it degrades MRI SNR and results 
in MR image artefacts. RF shielding of PET detectors is a commonly used 
technique to reduce PET-related RF interferences, but can introduce eddy-
current-related MRI disturbances and hinder the highest system integration. 
In this paper, we present RF interference reduction methods which rely on 
EM field coupling–decoupling principles of RF receive coils rather than 
suppressing emitted fields. By modifying clock frequencies and changing 
clock phase relations of digital circuits, the resulting RF field emission is 
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optimised with regard to a lower field coupling into the MRI RF coil, thereby 
increasing the RF silence of PET detectors. Our methods are demonstrated by 
performing FPGA-based clock frequency and phase shifting of digital silicon 
photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible 
Hyperion IID PET insert. We present simulations and magnetic-field map 
scans visualising the impact of altered clock phase pattern on the spatial RF 
field distribution, followed by MRI noise and SNR scans performed with an 
operating PET module using different clock frequencies and phase patterns. 
The methods were implemented via firmware design changes without any 
hardware modifications. This introduces new means of flexibility by enabling 
adaptive RF interference reduction optimisations in the field, e.g. when using 
a PET insert with different MRI systems or when different MRI RF coil types 
are to be operated with the same PET detector.

Keywords: PET–MRI, RF interference reduction, MR compatibility, FPGA, 
digital, SiPM

(Some figures may appear in colour only in the online journal)

1. Introduction

Multimodality imaging is nowadays an important part of clinical protocols whenever com-
plementary imaging information of anatomical, functional and physiological types leads to 
improvements with regard to diagnosis and therapy. These include a better lesion detectabil-
ity and localisation, improved patient response monitoring, optimisation and acceleration of 
imaging protocols, and enhancement of patient ease during imaging procedures (Townsend 
2008b, Zaidi and Del Guerra 2011). Positron emission tomography (PET), one of the main 
imaging techniques used in nuclear medicine, is capable of visualising a wide range of meta-
bolic processes at molecular level with the highest sensitivity while offering biomarker dis-
tribution quantification possibilities in vivo (Zaidi et al 2006, Kitson et al 2009). However, 
the downsides of PET are a relatively low spatial resolution (in the range of a few millime-
tres in case of clinical systems) and the fact that it delivers patho-physiological rather than 
anatomical information. With the introduction of single devices combining PET with comp-
uter tomography (CT) (Beyer et al 2000), patient studies undergone with PET–CT success-
fully demonstrated the benefit of combined PET–CT, particularly for cases of ambiguous or 
uncertain diagnostic situation, which could be clarified by the added value of CT imaging to  
precisely localise physiological lesions (Townsend 2008a).

Magnetic resonance imaging (MRI) is a modality enabling in vivo anatomy imaging at 
high resolutions. Compared to CT, it does not make use of ionising radiation, offers excellent 
soft-tissue contrast and provides functional information e.g. via spectroscopy, perfusion or 
diffusion imaging, thereby making hybrid PET–MRI highly desirable for e.g. paediatric, neu-
rology and cardiovascular imaging in addition to oncology (Raylman et al 2007, Judenhofer 
et al 2008, Cherry 2009, Kwee et al 2010, Buchbender et al 2012, Catana et al 2012). When 
performed simultaneously, PET–MRI benefits from very accurate temporal and spatial image 
registration, thereby allowing us to increase the quantitative as well as qualitative accuracy 
of PET images by applying MRI-based motion correction of PET (Tsoumpas et al 2010, 
Buerger et al 2012, Catana et al 2012, Chun et al 2012), which is inherently not possible 
with PET–CT or sequential PET–MRI. Furthermore, patients who need to undergo both a 
PET and an MRI scan usually experience a long total imaging procedure when scans are 
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done sequentially. Simultaneous PET–MRI benefits from shorter scan times compared to the 
sequential approach, which accelerates the clinical work flow and is of interest in terms of 
patient ease, particularly regarding paediatric, fragile and older patients.

The advantages and possibilities potentially offered by combined PET–MRI led numerous 
research institutions and companies during the last two decades to address the challenging 
task of integrating PET detectors into MRI systems with the aim of enabling truly simultane-
ous bi-modal image acquisition while keeping the intrinsic performance of PET and MRI 
subsystems unaffected. The latter is obtained by simultaneous operation of the two modalities 
without any unwanted, mutual interferences, which otherwise lead to image quality deteriora-
tion of PET as well as MRI.

These interferences, to be avoided by a careful PET–MRI device design, are (static and 
dynamic) magnetic as well as electromagnetic field related and can be classified as follows.

 (i) MRI-related interferences capable of negatively affecting PET operation.

  (a)  Strong, constant, magnetic MRI B0 field can cause electronic components to be 
disturbed (Hall effect affecting semiconductor devices such as digital temperature 
sensors) or to fail, e.g. coils equipped with ferrites saturating, Lorentz force applica-
tion on electrons in photomultiplier tubes (PMTs).

  (b)  Switching MRI gradient fields resulting in eddy current generation within conductors 
(cables and printed circuit board (PCB) traces) as well as conducting areas (surfaces), 
which may lead to electric signal disturbances and material heat-up.

  (c)  Electromagnetic (EM) excitation fields in the radio-frequency (RF) range (RF fields 
for short), also known as the MRI system’s B1 field, which induce voltages and eddy 
currents in conducting materials such as device housing and shielding, but also cabling 
and PCB traces. In the latter two cases, electric signal disturbances may result.

 (ii) PET-related interferences disturbing the MRI operation.

  (a)  Materials of the PET detector with non-zero susceptibility (especially ferromagnetic 
components) causing distortions of the MRI B0 field homogeneity, which results in 
MR image impairment.

  (b)  Potential MRI gradient field disturbances in a spatial and temporal sense caused 
by eddy currents originating from the PET detectors, which result in MRI spatial 
encoding perturbations.

  (c)  RF fields emitted by PET detectors, which might couple into the MRI RF receive 
coil and generate disturbances related to the MRI signal-to-noise ratio (SNR). This 
leads to an MRI SNR reduction when assuming an unaltered MRI signal strength and 
consequently introduces a deterioration of MR image quality.

Compared to PMTs typically used for PET scintillation light detection, semiconductor-
based avalanche photo-diodes (APDs) and silicon photo-multipliers (SiPMs) can be operated 
within strong magnetic fields, thereby making APDs and SiPMs very suitable for PET detec-
tors to be operated within or in close proximity to an MRI bore (Vandenberghe and Marsden 
2015). Since their introduction, numerous PET detector systems for PET–MRI based on APD 
(Judenhofer et al 2007, Solis et al 2008, Catana et al 2008, Delso et al 2011, Maramraju  
et al 2011, Vaska et al 2011, Kolb et al 2012) or SiPM technology (Hong et al 2012, Yamamoto  
et al 2012, Yoon et al 2012, Hong et al 2013, Levin et al 2013, Weissler et al 2014, Olcott et al 
2015, Weissler et al 2015a) have been presented. In this case, the analogue APD/SiPM signals 
are either transmitted via copper-based, shielded cables or optical fibres from the MRI bore to 
the PET electronics residing outside the MRI bore to be digitized and processed (Judenhofer 
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et al 2007, Maramraju et al 2011, Hong et al 2012, Kolb et al 2012, Yamamoto et al 2012, 
Yoon et al 2012, Hong et al 2013, Olcott et al 2015), or are digitized within the MRI bore, 
requiring more electronics to be moved towards or housed within the MRI (General Electric 
(2014), Solis et al 2008, Maramraju et al 2011, Vaska et al 2011, Weissler et al 2014, 2015a)
(Vandenberghe and Marsden (2015), p. R140–1).

Analogue signals transmitted over a signal line with arbitrary length may alter regarding 
their original shape and intensity (amplitude) due to transmission-media-related attenuation 
and distortion, and the addition of undesired, disturbing signals along the transmission path. 
Unwanted signals adding to the original information signal by distorting it are referred to as 
noise (Ott 1988). In the case of electrical signalling, crosstalk of nearby (adjacent) signals as 
well as externally sourced electromagnetic fields irradiating signal lines are both causes of 
noise generation. When data are transmitted analogously, i.e. in the form of a signal with con-
tinuously varying values (frequency, amplitude), (pre-)amplifiers are usually used to increase 
the gain of signals e.g. originating from APDs or SiPMs. However, not only is the information 
signal amplified, but also the noise which adds to the signal during transmission towards the 
amplifier input, leading to decreased SNR. By using encoding to represent signal information 
digitally via discrete amplitude levels, undesired noise can be removed and its amplification 
overcome. For instance, when data are binary encoded, an amplitude level below a lower 
threshold is considered a logical ‘0’ and a level higher than an upper threshold means a logical 
‘1’. If the interval between the thresholds is large enough compared to the noise levels distort-
ing the actual information signal, noisy digital signal levels are correctly identified with regard 
to their binary value and can be recreated without the noise of the sampled signal.

Electrical signals are commonly transmitted using a single signal line per information 
channel between a sender and receiver, whereas a shared return path (usually ground) is used 
by many channels. This is known as single-ended signal transmission (Texas Instruments 
2002). Compared to differential signalling, it allows higher integration densities on PCBs 
and cabling, and is simple to implement and cost effective, but is very prone to noise genera-
tion as well as reception. Signal transmission lines implemented as ‘single ended’ emit EM 
fields when fast, high-bandwidth signal switching occurs, may receive EM fields, and create 
loops with the return path to form a closed area leading to unwanted voltage induction when 
exposed to time-varying magnetic fields. Consequently, as electrical analogue signal paths 
within strong switching MRI gradient and RF fields are prone to induction-related signal dist-
ortions (see (i)b above), PET performance is often impaired due to distorted PET timing and 
energy information during MRI. These effects were reported in Weirich et al (2012) and Yoon 
et al (2012) and were even intentionally used for temporal synchronisation between PET and 
MRT systems (Weissler et al 2015b). Therefore, the earlier components and electrical trans-
mission techniques both susceptible to RF-related signal disturbances such as APD/SiPM and 
any other single-ended-based analogue electrical signalling within the PET signal acquisition 
path located inside the MRI bore are digitized, the higher the likelihood of maintaining the 
intrinsic PET signal SNR and thus the PET performance.

However, digitizing earlier in the PET signal chain in this way unfortunately increases 
disturbances to MRI as described in (ii) because of additional PET electronics located within 
the MRI field of view (FoV). PCB design, signal transmission types such as ‘single ended’ 
and frequent signal switching combined with voltage level changes using strong signal slopes, 
as is the case for analogue SiPM signals or the periodic electrical signal switching associ-
ated with digital electronics, all have an impact on EM fields that are emitted by cabling and 
PCB traces. In this context, the latter act as antennas (Ott 2009). Such EM fields with field 
patterns and frequencies in the RF range to which an MRI system is sensitive couple into the 
MRI RF receive chain and deteriorate the MRI SNR and thus MR image quality as reported 

P Gebhardt et alPhys. Med. Biol. 61 (2016) 3500



3504

in Maramraju et al (2011), (2012), Wehner et al (2014), Weissler et al (2014), Yamamoto  
et al (2011) and Yamamoto et al (2012). For instance, Yamamoto et al (2012) reported an MRI 
SNR decrease from 350 (MR phantom imaging without SiPM PET) to 200 when their PET 
ring was operating during MR image acquisition. In Weissler et al (2014) an average MRI 
SNR degradation of 13% was determined for six standard MRI sequences caused by PET-
related RF interference. Usually, EM interference (EMI) shielding techniques for PET detec-
tor electronics located in or very close to the MRI bore are applied to suppress this unwanted, 
spurious RF signal coupling (Judenhofer et al 2007, Catana et al 2008, Olcott et al 2009, 
Peng et al 2010, Maramraju et al 2012, Yamamoto et al 2012, Hong et al 2013, Weissler et al 
2014), which we define in the scope of this paper as noise. As RF shielding always contains 
conducting materials, eddy currents generated within the shields by switching MRI magnetic 
fields ((ii)b and (ii)c) may result in MR image artefacts (Hennel 1997, Wehner et al 2015). 
Additionally, RF shielding increases system design complexity and costs and may be suscep-
tible to RF field leakage. Hence, to entirely prevent PET-detector-shield-related eddy currents 
to preserve MR image quality and to optimise costs and design, a PET detector operated with-
out any shielding at all would be a favourable approach, but would require us to avoid the PET-
related RF noise coupling into the MRI RF receive chain. For such a scenario, the RF emission 
of the detector would need to be reduced and adapted to minimise the RF interferences.

In Gebhardt et al (2015), a method was presented to reduce the PET detector’s RF emission 
by stopping the PET data acquisition during the active MR RF signal receive period. However, 
the higher the MR RF signal acquisition duty cycle is, the longer the overall PET scan time 
needs to be in order to account for the same number of recorded PET data used for PET image 
reconstruction when compared to an uninterrupted PET scan. Depending on the PET–MR 
image protocol and the radioisotope used, this trade-off between MRI SNR preservation and 
increased PET scan time might not be acceptable.

In this paper, we present initial investigations of techniques which aim at the modification 
of the PET electronics’ RF field emission. These techniques are demonstrated by specifically 
addressing the clocked digital part of the PET electronics. By shifting the clock frequencies 
and by modifying clock phases to obtain different clock phase patterns between electronic 
components and/or signal traces, RF field distributions and frequencies emitted by PET detec-
tors can be adjusted to couple as little as possible into the MRI RF coil, thereby reducing the 
PET-related MRI RF noise.

In principle, these techniques are applicable to any clocked, digital circuits operating 
within or close to the MRI. This does not only include local PET signal digitization as done by 
dSiPMs in case of the Hyperion IID insert and analogue SiPMs combined with mixed-signal 
ASICs performing local digitization as done in the case of the clinical GE SIGNA PET–MR 
and the Hyperion I insert (Weissler et al 2014). It also covers digital electronics used e.g. to 
control the PET detector and monitor operating and ambient parameters such as voltages and 
temperatures.

We implemented the RF interference reduction techniques by solely modifying firmware 
of field-programmable gate arrays (FPGA). The FPGAs’ reconfigurability, flexibility and—in 
relation to their physical sizes—increasing amount of logic resources, which are of interest 
for the growing need of versatile data processing capabilities, make them very suitable for 
highly integrated, compact detector systems. We believe that the reconfigurability applicable 
to our proposed RF interference reduction methods could extend application-related possi-
bilities of PET–MRI and SPECT–MRI devices thanks to adaptive RF interference reduction.  
As examples, PET and SPECT detectors built as inserts for combined imaging with MRI 
could be adapted regarding RF field emission if they are to be used with different MRI sys-
tems. Similarly, by reconfiguring the FPGA firmware, the RF emission characteristics of a 
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PET/SPECT detector could be adapted to minimise RF emission with regard to different types 
of MRI RF coil such as commonly used body, head, breast and knee coils used with the same 
MRI system. It also allows for further steps towards highly integrated PET detectors within 
MRI systems to maintain a large, transaxial, bi-modal FoV.

2. Materials

To implement, test and study our RF interference reduction techniques, we used one PET 
module of our Hyperion IID PET insert for simultaneous PET–MRI (Weissler et al 2015a). 
This section  first gives an overview of the PET module with a focus on data-acquisition-
related parts. It follows a detailed description of the capabilities offered by the clock sig-
nal distribution and processing infrastructure that is used for the digital electronics and PET  
sensors. This will provide important background for the methods and applied investigations 
to be presented in section 3.

2.1. Singles detection module overview

A singles detection module (SDM) (depicted in figure 1) may include up to six detector stacks 
(Dueppenbecker et al 2012) in a ×2 3 stack arrangement. Every stack (shown in figure 2(a)) 
is composed of a lutetium–yttrium oxyorthosilicate (LYSO) scintillator crystal array with 
900 crystals (crystal dimensions: ( )× ×1 1 12  m3) and a light guide (2 mm thickness) glued 
between the crystal array and a sensor tile. The latter is a PCB equipped with SiPMs on top 
and connectors on the bottom side to be connected to an interface board. One sensor tile 
comprises 16 Philips DPC 3200-22 digital SiPMs (Degenhardt et al 2009, Frach et al 2009, 
2010) (see figure 2(b)), each of them combining four SiPM pixels with logic for triggering, 
photon counting and time stamping on a monolithic silicon die (Rabaey et al 2002), which is 
equal to 64 SiPM pixels per detector stack. To clearly differentiate between one logical SiPM 
pixel and one DPC sensor containing four of these as depicted in figure 2(c), a DPC sensor is 
also referred to as a sensor die for clarification purposes throughout this paper. Each sensor 
die is typically clocked with a frequency of 200 MHz, offers a bi-directional trigger port to 
either accept or drive an external trigger signal, uses a JTAG interface (IEEE 2001) for con-
figuration purposes and transmits sensor data via dedicated communication lines at half the 
sensor die clock frequency. The DPC sensors directly interface to the data-acquisition-and-
control architecture (DACA) (Gebhardt et al 2012) of the Hyperion IID PET insert. Sensor 

Figure 1. Singles detection module fully equipped with six detector stacks and removed 
carbon fibre shielding.
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die clocking, configuration, trigger line interfacing and sensor data reception are undertaken 
individually for each of the 16 sensor dies of a sensor tile by the stack FPGA (Xilinx Spartan-6 
(www.xilinx.com)) located on the interface board. DPC sensor data received by each stack 
FPGA is processed and transmitted via point-to-point links to a larger FPGA (Xilinx Virtex-5) 
of the SDM main board referred to as the singles processing unit (SPU) (Weissler et al 2012). 
There, data are further processed, concentrated and forwarded optically to the data-acquisi-
tion-and-processing server (DAPS) (Goldschmidt et al 2013) located outside the MRI room 
using Gigabit Ethernet and UDP-IP protocols.

2.2. Hyperion IID clock signal distribution and processing

In addition to the optical data communication link, every SDM is equipped with a dedicated 
optical link to accept external, PET-system-wide-synchronous clock signalling and control 
pulses from the central synchronisation unit (CSU). This clock signal is referred to as the 
PET system reference clock (refCLK) and sources clock-synthesizer- or clock-divider-derived 
clocks driving the sensor dies, FPGA PET data processing chains and time stamping units. 
For research purposes, the CSU and SDMs were designed to allow for versatile refCLK rout-
ing and processing capabilities at PCB as well as FPGA firmware levels, which is shown in 
figure 3. The CSU and the SPU boards make use of a dedicated high-speed, low-jitter and 
low-skew fan-out chip, which accepts two different clock signal inputs. They are software 
selectable using the PET insert control software, which configures a firmware module driving 
the ‘source control’ line of the fan-out chip. On the CSU, this allows us to select either a crys-
tal oscillator as the direct refCLK source or a refCLK signal, which may be modified using an 
FPGA-internal clock frequency synthesizer and phase shifter on the way to the fan-out chip 
input. The fan-out chip has the task of forwarding one of the input signals to all SDMs while 
keeping skew and jitter as low as possible.

The SPU FPGA of an SDM accepts three different refCLK signal inputs: one provided 
by the CSU, a clock signal source from a local crystal oscillator on the SPU board, or for 
test purposes a signal via a board connector to be provided from an external source such as a 
signal generator. Within the SPU FPGA, one of these three clock signals may be chosen via 
software to serve as the source for an FPGA-internal block offering clock frequency synthesis 
and phase shift. From there on, the resulting FPGA-internal clock signal or alternatively an 

Figure 2. (a) One complete detector stack (exploded view). PCB images taken from 
Weissler et al (2015a). (b) A sensor tile consisting of 16 sensor dies with one of them 
visualised by a white square. (c) A single sensor die.
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FPGA-external signal from the optional SPU connector is forwarded to the detector stacks via 
the SPU fan-out chip. Although depicted by a single line in the SPU clock signal diagram of 
figure 3 for simplicity reasons, six individual stack refCLK signal paths sourced by the fan-out 
chip are used; one per stack.

At stack level, the stack refCLK signal is routed to the stack FPGA on the interface board 
and drives the input of an FPGA-internal clock frequency synthesizer/phase shifter prior to 
being forwarded individually to each of the 16 sensor dies on the sensor tile.

With the above described capabilities, the presented clocking infrastructure allows us to 
vary the refCLK signal frequency and phase at different hierarchy levels of the DACA archi-
tecture: Clock modifications may be introduced at PET system level, SDM level or stack level 
down to the level of individual DPC sensors of each sensor tile while being derived from a 
common clock source to enable fixed phase and frequency relationships between sensor die 
clock signals.

From an electrical signal point of view, all refCLK signals are transmitted using the low-
voltage differential signalling (LVDS) standard on the CSU and SPUs to increase electro-
magnetic compatibility (EMC) of the PET insert’s electronics. Only the signalling between 
sensor dies and stack FPGAs was chosen to be of single-ended type to allow successful rout-
ing of all signal traces due to the high signal-lines-to-sensor-tile size ratio.

Figure 3. Clocking infrastructure of the PET insert visualised for the reference clock 
(refCLK) and refCLK-derived clocks at PET system, SDM and stack levels. Arrows 
with dashed lines indicate clocking-related control signals, arrows with full lines 
indicate clock signal paths. At SDM level, the number of individual stack refCLK signal 
lines on the SPU is indicated by the number Six below the signal line close to the fan-
out chip. The frequency and phase of the clock signals can be modified in each FPGA 
via integrated clock synthesizer and phase shifter blocks.

P Gebhardt et alPhys. Med. Biol. 61 (2016) 3500



3508

For research- and development-related applications making use of single SDM setups, the 
message-based data communication of the DACA conveniently allows SDMs to be directly 
connected to and operated by a control PC running Hyperion control software without the 
need for the data acquisition server system as normally used within the standard configuration 
in conjunction with ten SDMs mounted on the Hyperion IID gantry (Weissler et al 2015a).

3. Methods

3.1. Interference reduction methods overview

3.1.1. Clock phase shift method. The basic idea of the clock phase shift method is to modify the 
emitted RF fields by applying clock phase shifts between the clocked components of the PET 
detector. Since our PET detector consists of a plurality of clocked components emitting RF fields 
and thus contributing to the effective emitted field, the pattern of the field can be modified due to 
the superposition principle by applying the aforementioned phase shifts. This way, the emitted RF 
field pattern, which couples to the MRI RF coil, can be altered and the coupling of the externally 
applied RF fields can be reduced, thereby resulting in less interference between the PET system 
and the MRI RF receive chain. Here, the coupling is defined by the coefficients (determined by 
the overlap integral or coupling integral) of a mode expansion of the externally emitted fields 
in the mode basis function of the RF coil. A smaller coupling coefficient results in a decreased 
energy transmission efficiency due to the aggravated excitation of the RF coil’s modes.

3.1.2. Clock frequency shift method. Figure 4 depicts the resonance spectrum of our bird 
cage RF coil, which was measured with a network analyser (Agilent E5071C ENA, USA).  

Figure 4. Measured reflection coefficient (S11, magnitude) as a function of frequency 
for the birdcage resonator. The resonance spectrum includes resonance modes at 
which an energy transmission to the RF resonator is highly efficient. The mode that 
provides a homogeneous RF field distribution and is therefore used for spin excitation 
is highlighted with a grey-shaded area. In contrast, the modes at lower frequencies 
do not provide a homogeneous field distribution and are therefore not of interest for 
MRI applications. Hence, a band-pass filter (also indicated by the grey-shaded area) 
is applied around the Larmor frequency at 3 T. To avoid noise coupling, the sensor die 
clock frequency is shifted in such a way that as little energy as possible is emitted in the 
frequency region of the band-pass filter.

P Gebhardt et alPhys. Med. Biol. 61 (2016) 3500
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It visualises the different resonance modes of the coil. The energy of RF fields with frequen-
cies corresponding to these modes is transmitted with a high efficiency into the coil. The mode 
which is highlighted with a grey-shaded area provides a homogeneous RF field distribution 
and is therefore used to generate the B1 field required for spin excitation. The frequency of 
this mode is tuned to match the resonance condition (at 3 T:  ∼127.78 MHz). The other modes 
(visible at lower frequencies), not providing a homogeneous distribution, are not used for MRI 
acquisition purposes. Therefore, the MRI receive chain includes a band-pass filter around the 
127.78 MHz mode to suppress the energy potentially transferred via the lower modes.

The clock frequency shift approach aims at RF interference reduction by shifting the fre-
quencies of PET-detector-related clock signals away from the homogeneous coil resonance 
mode to reduce EM field amplitudes at the resonance mode frequency and thus reduce the 
noise coupling into the coil to a minimum.

3.2. Simulations of the clock phase shift method

3.2.1. Field emission distribution. In a first step, we analysed this technique regarding its 
feasibility by implementing a model based on the sensor tile of an SDM: according to the 
arrangement of the sensor dies on a sensor tile (see figure 5(a)) and since all sensor dies are 
clocked via single-ended clock lines, we modelled a sensor tile as a system of 16 EM field 
emitters. As a simplification, each emitter is described as a magnetic dipole sender, resulting 
in a dipole emitter system with the same spatial arrangement as the sensor tile structure (see 
figure 5(b)). Based on this model, we calculated the emitted magnetic field distributions using 
MATLAB in planes parallel to the sensor tile surface to study the compensating superposi-
tion effect of the dipole system with clock phase relationships between dipoles that are out 
of phase (unequal to zero). Here, we focused on two example systems: an in-phase model,  
in which the phase relation between neighbouring dipoles (sensor dies) is set to °0 , and a 
checkerboard model. In the latter, the phase relation between neighbouring dipoles is set to 
°180  (see figure 5(c)).

3.2.2. Field coupling simulation. In order to investigate the noise induction originating from 
external interferences to a birdcage resonator, the field coupling was simulated using a finite 
element method (FEM) toolkit (FEKO EM Software and Systems (www.feko.info)). Using 
this software toolkit, we implemented an FEM model of our PET-transparent mouse coil  

Figure 5. Phase-shift approach at stack level: each of the 16 squares represents a sensor 
die, which is modelled as a dipole loop. (a) The actual sensor tile with the PET sensor 
dies as seen from above. (b) The usage of an in-phase pattern. (c) A checkerboard-phase 
pattern.
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(see figure 6). Both phase pattern models were added via a modelled dipole arrangement in 
front of the RF screen in the simulation model, and the induced current distribution on the RF 
resonator was simulated for both phase patterns. To investigate the coupling at an operating 
point at which the resonator accepts external energy with most efficiency, we set the dipole 
frequency to the resonance frequency of the simulated RF coil.

3.3. Experiments

3.3.1. Sensor die clock frequency. To investigate the impact of the sensor die clock fre-
quency alternation with regard to resulting RF fields coupled into the MRI RF coil, an SDM 
was operated at different sensor die clock frequencies in addition to the typical sensor die 
clock frequency of 200 MHz. First, we chose a frequency equal to the Larmor frequency of 
the 3 T MRI because we expect the impact regarding RF field coupling into the MRI RF coil 
to be highest at this frequency, thereby demonstrating the influence of the sensor tile clock 
frequency related to the RF noise picked up by the MRI. Second, to study noise coupling for 
a clock frequency within the sensitive bandwidth of the MRI, but with less impact compared 
to a clock frequency at the Larmor frequency, 140 MHz was added for our measurements. 
Third, 100 MHz was chosen because its first harmonic is equal to the typical sensor die clock 
frequency of 200 MHz. Finally, we chose 160 MHz as a candidate located between clock-
ing frequencies in the MRI-sensitive frequency bandwidth and the typical DPC sensor clock 
frequency.

3.3.2. Sensor die clock phase pattern. The MATLAB-based calculation presented in  
section 3.2.1 was used to study EM field emission changes upon modifications of the sensor 
die clock phase at stack level. However, this does not take into account all other electronic 
components and connectors of the complete stacks as well as the SPU board, which contrib-
ute to the overall field emission in addition to single sensor tiles. Therefore, the scope of our 
measurements to study phase-pattern-related influences was extended by including a complete 
SDM equipped with six stacks rather than a single detector stack. For the measurements with 

Figure 6. (a) The RF coil screen with the RF coil taken out and placed next to it (image 
taken from Wehner et al (2015)). (b) The FEKO simulation model.
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an SDM, we applied sensor clock phase variations at SDM level, meaning that all sensor 
dies of a sensor tile are clocked in phase and that a fixed clock phase relation is kept between 
adjacent sensor tiles of an SDM. To remain consistent with the clock phase pattern chosen for 
the MATLAB calculation at stack level, measurements with an SDM were performed with a 
phase shift of °180  between adjacent stacks, resulting in a checkerboard pattern as shown in 
figure 7(b). The measurement results of emitted field amplitudes and field pattern obtained 
with firmware designs applying clock phase shifts were compared qualitatively to reference 
measurements where no phase shifts were present.

3.3.3. SDM operation. As we used a single-SDM configuration for our investigations, the 
refCLK input signal of the SPU FPGA is not provided by the CSU. Instead, the refCLK  
signal for the SPU as well as the stack FPGAs is sourced by the 100 MHz oscillator residing 
on the SPU board. Clock signal frequencies and phases for clocking and data communication 
between the FPGAs within the SDM are kept identical between the single-SDM operation 
and the full-PET-ring operation. To obtain the desired clock and phase settings, the firmware 
design of the stack FPGAs is modified in such a way that the FPGA clock generator (a phase-
locked loop) feeding the clock inputs of the sensor dies and clocking the FPGA-internal data 
processing chain is programmed to our frequency and phase shift needs. These clocking modi-
fications thus only directly affect parts of the stack FPGA’s digital logic and the single-ended 
signal traces between the interface board and the sensor tile.

The modified FPGA designs undergo synthesis, mapping and routing for the stack FPGA 
platform using Xilinx ISE tools (Xilinx Inc. (www.xilinx.com)). Afterwards, the resulting 
bit-file streams are converted into XSVF format. This allows for a stack FPGA configura-
tion via the Hyperion software on the control PC, which communicates with an XSVF-JTAG 
programmer residing within the SPU FPGA firmware design. This avoids the need to access 
the SPU board of an SDM with an external JTAG programmer so that the SDM may remain 
entirely untouched during measurement series using different clock configurations.

Figure 7. Phase pattern schemes at SDM level for an SDM with six stacks: compared 
to the default sensor die clocking where no phase shift is applied (a) is a sensor die 
clock pattern with °180  clock phase shifts for complete stacks (stack level) to obtain a 
checkerboard pattern (b).
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To ensure that the PET data acquisition is correctly working with our modified firmware 
designs, we made singles measurements using one SDM with different firmware designs 
yielding sensor die clock frequencies and clock phase patterns as given in sections 3.3.1 and 
3.3.2 and one 22Na source with an activity of 3.95 MBq. The sensor die configuration para-
meters and operating conditions are set to values we typically use for PET measurements as 
described in Schug et al (2015), section  III D. The ‘center-of-gravity (CoG) with adaptive 
corner extrapolation’ (COG-ACE) algorithm (Schug et al 2015) was used to perform off-line 
PET singles clustering on the acquired raw PET data sets. The firmware design clocking the 
sensor dies in phase at 200 MHz is the one typically used for the DPC sensors and serves as 
the reference design.

The SDM operation for all other measurements presented in this paper is as follows.  
A single SDM is directly connected to a control PC running Hyperion software and all FPGAs 
of the SDM are configured after SDM power-up. The sensor die configuration settings corre-
spond to those as described above. Afterwards, the data acquisition is launched, during which 
RF-field-related measurements are made.

3.4. Characterisation

To characterise the different clocking schemes in detail, we performed broadband emission 
scans and field map scans as well as direct test measurements with the MRI system.

3.4.1. Broadband emission scans. For a detailed RF field emission characterisation, we used 
a spectrum analyser (Agilent N9320B, USA) in combination with a magnetic-field probe 
(Langer EMV, RF-R 400-1, Bannewitz, Germany) which is round-shielded with a diameter 
of 25 mm. In contrast to measurements with the MRI system, these measurements allow the 
acquisition of broadband emission spectra to obtain a better overview on the distribution of 
amplitude magnitudes over the measured frequency range. The different frequency designs 
were tested by acquiring emission spectra in the range from 50 MHz to 250 MHz. For these 
measurements, the magnetic-field probe was positioned on the top centre of the SDM and as 
close as possible to the SDM housing (see figure 8).

Figure 8. Overview of the laboratory bench setup used for RF field map and RF 
broadband measurements. Not shown in the picture are the cooling unit and the control 
PC running Hyperion software, which is connected to the SDM on the laboratory bench.
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3.4.2. Field pattern measurements. In addition to the amplitude measurement, the magnetic 
field component of the RF field pattern emitted by an SDM was measured and the result was 
visualised as a field map covering all magnetic-field probe measurement positions of one 
plane. We acquired field maps for the x and y components of the emitted 

→
H field on planes 

around the SDM (lateral surfaces of a cuboid) for a frequency range of  ±100 kHz around the 
sensor die clock frequencies (section 3.3.1). These maps were used to analyse changes in 
emitted RF field patterns depending on the chosen clock frequency and clock phase patterns 
and help to locate parts of the SDM which act as strong RF field emitters.

The magnetic-field probe was attached to an XYZ table (OWIS, Germany) enabling posi-
tioning in 3D space around the SDM under test and thus the acquisition of RF field patterns 
as shown in figure 8. All cuboid planes were covered by the probe by first measuring the top 
and left planes of the SDM (see figure 9) and then turning the SDM through °180  to repeat 
the measurement with the left plane becoming the right one and the top plane becoming the 
bottom one to complete the cuboid. The probe was moved 35 cm along the x, 10 cm along the 
y, and 9 cm along the z axis, thereby covering 2769 measurement points with a step of 5 mm.  
As the SDM was turned through °180  to measure the field pattern in the other two lateral 
planes of the SDM, the total number of measurement points is 5539, covering all four lateral 
planes of the SDM.

3.4.3. MRI noise scans. We used a clinical MRI scanner (Achieva 3.0 T, Philips, The Neth-
erlands) to evaluate the implemented frequency and phase pattern modifications with the full 
MRI acquisition chain (see figure 10). The carbon fibre shielding was removed to allow for 
larger differences in coupled RF noise for reasons of clarification between different measure-
ment results. To evaluate the RF field emission of an SDM for different sensor die clock fre-
quency and phase scenarios with regard to RF noise coupling into the MRI RF receive chain, 
dedicated spurious noise scans with the MRI and a PET-transparent Tx–Rx mouse coil (12-leg 
birdcage resonator, high pass) (Weissler et al 2015a) were performed. These MRI scans allow 
us to quantify the noise signal amplitudes as a function of frequency in the frequency region to 
which the MRI RF receive chain is sensitive. The measurement protocol is based on sequences 
provided by the MRI vendor and consists of five turbo-spin-echo (TSE) sequences (TR/TE 

Figure 9. Closeup view of the SDM positioned on the laboratory bench setup as seen 
in figure 8: the XYZ table moves the magnetic-field probe along the left and top planes 
to cover in-plane positions with a 5 mm step. Afterwards, the SDM is turned with the 
detector stacks in the direction of the laboratory bench to repeat the measurement.
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1044/256 ms, turbo factor (echo train length) 32, acquisition matrix ×1024 1024, bandwidth 
per pixel 180 Hz) executed with shifted frequency ranges to cover a total continuous band-
width of 1 MHz with the Larmor frequency as the centre frequency. As the vendor-provided 
MRI protocol includes RF pulse excitation (flip angle °1 ), the protocol was modified to exclude 
any MRI RF excitation so that noise measurement results are not affected by the presence of 
any subjects such as MRI phantoms in the MRI FoV, which provide RF signal due to MRI 
RF excitation (Wehner et al 2015). For these studies, the SDM was positioned on the most 
sensitive PET gantry SDM location regarding PET-related noise coupling into the RF coil. 
The location was determined by performing a noise scan using the SDM with the reference 
FPGA design (sensor die clock frequency 200 MHz) for all ten SDM positions of the gantry.

3.4.4. MRI SNR measurements. The impact of the DPC sensor clock frequency variation 
on MRI was visualised by scanning a cylindrical phantom containing 20 ml of a CuSO4 solu-
tion within the Tx–Rx mouse coil. We prepared a 2D TSE sequence ( =T T/ 400/157.46R E  
ms, flip angle °90 , turbo factor (echo train length) 12, voxel size  =   × ×0.07 0.07 0.5 mm3, 
number of slices 1, FoV size  ×80 80 mm2, acquisition matrix ×1144 1144, reconstruction 
matrix ×1600 1600) aiming at very high-resolution MR images with low SNR in order to 
visualise SNR differences. The SDM was again mounted without RF shielding on the gantry 
at the SDM position where the PET-related noise coupling to the RF coil was determined to 
be most sensitive and MRI scans were performed. Signal intensity values were determined 
along a horizontal line profile with a line width of 50 pixels, which crossed the phantom at 
its centre. Afterwards, the signal intensity values were normalised to the mean intensity at the 
phantom position and intensity values were averaged over ten histogram bins. With the plots 
normalised to the phantom signal intensity, the mean values of the noise level for each plot 
were calculated to determine changes in noise floor related to the SDM operation with differ-
ent sensor die clock frequencies.

Figure 10. A single SDM without carbon fibre shielding mounted on a PET gantry to 
make MRI noise measurements. The RF coil was connected via coil electronics to the 
MRI RF subsystem.
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4. Results

4.1. Simulations of the clock phase shift method

When simulating the superposed field emission as generated by the 16 sensor dies modelled 
as magnetic dipoles, the field distribution yielded one large dipole as shown in figure 11(a) in 
the case of applied in-phase clock pattern. The dipole peak amplitude is located in the centre 
of the sensor tile. Applying the checkerboard-phase-pattern clocking approach led to emis-
sion of a quadrupole field (see figure 11(b)) with peak amplitudes lowered by four orders of  
magnitude compared to the single peak amplitude generated by the in-phase clocking approach.

Figure 12 depicts the FEM simulation results of the RF screen and resonator when they are 
excited by RF field patterns which originate from 16 dipole emitters representing the sensor 
dies of a sensor tile. The dipoles are represented by the red arrows in front of the RF screen. 
Applying the in-phase pattern yields a current distribution over the entire RF screen which,  
in turn, creates RF fields to be coupled with high efficiency into the RF coil (see figure 12(a)). 
In other words, the RF field pattern created by the dipoles results in unwanted noise, which is 
strongly coupled into the RF resonator. In figure 12(b) is shown the result when the checker-
board pattern is used. Due to the compensational effect leading to a different field pattern (here 
of quadrupole type) and reduced peak amplitudes, only a localised current distribution with 
little overall excitation of the resonator is created. Therefore, the signal coupling into the RF 
resonator is greatly reduced, as the amplitude of the induced surface currents is reduced. The 
difference in highest current distribution amplitudes at red spots in figure 12(b) compared to 
figure 12(a) is equal to  −54 dBA m−1.

4.2. Experiments

4.2.1. SDM operation. All stack firmware designs generating sensor die clock frequencies 
different from the typically used frequency of 200 MHz (with all dies clocked in phase) as 
described in section 3.3.1 were successfully tested with regard to expected clock frequency 
and phase relationships using an oscilloscope (Tektronix MSO4104, USA). In figure 13 are 
shown the mean singles rates for firmware designs yielding the sensor die clock frequencies 

Figure 11. Calculated field emissions of a sensor tile given at a distance of 35 cm: 
(a) the result for applied in-phase pattern clocking with amplitudes with an order of 
magnitude of  −3; (b) a quadrupole-arranged field emission when checkerboard-pattern 
clocking is applied. The amplitudes’ order of magnitude in (b) is  −7.
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described in section 3.3.1. They vary between 115.4 and 118.3 kcps. The mean singles rates 
for the cases of in-phase and checkerboard-phase patterns at the same clock frequency of  
200 MHz are 119.7 kcps (standard deviation (STDd) 2.6 kcps) and 120.1 kcps (STDd  
3.2 kcps), respectively.

4.3. Characterisation

4.3.1. Broadband emission scans. Figure 14(a) shows the results of the EM emission  
measurements made with the laboratory bench setup using the spectrum analyser for all 
tested sensor die clock frequencies. It is clearly visible that the modification of the die clock  
frequency enables an alternation of the emitted spectrum. With respect to the sensitive band-
width of the MRI receive chain (depicted by the grey-shaded bar in figure 14), the die clock 
frequency resulting in lowest amplitudes around the Larmor frequency is the one at 160 MHz 

Figure 12. Simulated surface current distributions of the RF screen and the coil 
resulting from field emission by dipoles (visualised as red arrows) in front of the RF 
screen. (a) Field pattern generated by the in-phase pattern leads to distribution over 
entire the RF screen. (b) Checkerboard-pattern-related field emission yields a localised 
current distribution.
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(red), followed by the one at 100 MHz (light blue). Aside from the intentioned worst-case 
scenario using a die clock frequency of 127.78 MHz (yellow), equal to the Larmor frequency, 
the worst performance in terms of highest amplitudes within the MRI-sensitive bandwidth is 
observed with the design clocking the dies at 140 MHz (green). The RF emission distribu-
tion is shown in more detail in figure 14(b) for the bandwidth of the 3 T MRI as covered by 
MRI noise scans for an bandwidth of 1 MHz around the Larmor frequency as described in 
section 3.4.3. The worst-case scenario was not included in figure 14(b) to better depict the 
spectrum amplitude differences between the sensor die frequencies different from the Larmor 
frequency of the 3 T MRI system.

4.3.2. Field pattern measurements. The measurement results of the RF-field-related magn-
etic field component obtained for an in-phase and a checkerboard-phase pattern at SDM level 
and a sensor die clock frequency of 127.78 MHz are shown in figure 15 (x component of 
the emitted H field) and figure 16 (y component of the emitted H field). In both figures, the 
four planes of a measured H-field component are the following from top to bottom: bottom, 
right, top and left sides of the SDM. The application of a checkerboard-phase pattern leads 
to changes in the emitted magnetic field pattern and amplitudes when comparing the H-field 
component Hx as well as Hy between the two clock phase patterns.

4.3.3. MRI noise scans. The noise scan results obtained with the MRI using different  
sensor die clock frequencies are summarised in figure 17. Least noise was coupled into the 
MRI receive chain when the PET data acquisition chain of the SDM was operated with clock 
frequencies of 100 MHz and 160 MHz. A frequency of 140 MHz led to the worst case out of 
all chosen frequencies. In addition to the noise floor being raised to 350 floating point (FP) 
values, a distribution of distinct FP measurement points is spread between 350 and 460 FP 
values. In figure 17, the measurement results marked with black circles represent the MRI 
noise floor measured with a powered-off SDM.

The noise measurement comparison between in-phase pattern and checkerboard-pattern 
clocking is depicted in figure 18(a). Both measurements resulted in Lorentzian line shapes 
due to the clock frequency being at the Larmor frequency at 3 T. The noise floor ratio (see 
figure 18(b)) for the frequency range shown in figure 18(a) is in the range of 0.5–0.6, meaning 

Figure 13. Mean singles rates obtained with firmware designs implementing different 
sensor die frequencies as given in section 3.3.1. The error bars are given as standard 
deviations.
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that the noise generated with the checkerboard pattern is reduced by almost a factor of two 
compared to the in-phase pattern.

4.3.4. MRI SNR measurements. In figure  19 are shown three MR images which were 
acquired while the SDM was powered off (reference scan, image figure 19(a)), while the SDM 
was acquiring data with the DPC sensors clocked at 160 MHz (image figure 19(b)) and during 
SDM data acquisition with a sensor die clock frequency of 140 MHz (image figure 19(c)). The 
image quality is deteriorated in image (b) compared to (a) and is worst in image (c).

The clock-frequency-dependent impact on the noise floor is distinguishable via the line 
profile determined for the three different MR images as shown in figure 20. The noise floor is 
lowest for the reference scan (noise mean value ±0.722 0.004, SNR 1.385). When the SDM is 

Figure 14. EM emission of the SDM measured with a spectrum analyser for different 
sensor die clock frequencies. (a) The broadband measurement with the sensitive 
bandwidth of the 3 T MRI highlighted by the grey-shaded area around 127.78 MHz. 
(b) The laboratory bench results for a frequency range within the 3 T-MRI-sensitive 
bandwidth excluding the die clock frequency equal to the Larmor frequency for the 
worst-case scenario.
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in acquisition mode, the lowest noise floor (mean value ±0.800 0.004, SNR 1.25) is obtained 
using a DPC sensor clock frequency of 160 MHz. The highest increase in noise resulting in 
lowest SNR occurs when the SDM clocks the sensor dies at 140 MHz (noise mean value 

±0.839 0.004, SNR 1.192). The relative difference with respect to the noise floor measured 
for 160 MHz is 4.88%.

Figure 15. Field map measurement results (x component of the emitted H field) for 
sensor die clocking with in-phase pattern (a) and checkerboard-phase pattern (b) at 
SDM level and a sensor die clock frequency of 127.78 MHz.

Figure 16. Field map measurement results (y component of the emitted H field) for 
sensor die clocking with in-phase pattern (a) and checkerboard-phase pattern (b) at 
SDM level and a sensor die clock frequency of 127.78 MHz.

P Gebhardt et alPhys. Med. Biol. 61 (2016) 3500



3520

Figure 17. Noise scan results performed for sensor die clock frequencies between 100 
and 200 MHz. The SDM was powered off during the noise reference scan.

Figure 18. (a) MRI noise scan results for an SDM clocked at 127.78 MHz in-phase and 
with applied checkerboard pattern at SDM level. (b) Ratio of the noise floors shown  
in (a).

Figure 19. MRI phantom images with low SNR acquired while (a) the SDM is powered 
off, (b) the SDM operates with a sensor die clock frequency of 160 and (c) the SDM 
operates with sensor dies clocked at 140 MHz.
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5. Discussion

5.1. Simulations of the clock phase shift method

In principle, RF fields emitted by electronics can be altered with regard to amplitude and 
spatial distribution by e.g. adapting the signal trace layout on PCBs, choosing electrical signal 
transmission standards such as LVDS and adapting the frequency of digital, clocked comp-
onents and traces. Furthermore, the RF field emission may be altered and controlled (to a 
limited extent) if a plurality of a clocked, digital component type such as the DPC sensor can 
be identified within electronics and if clock phase shifting can be applied to such components. 
In our case, we illustrated this principle by calculating a model of the H-field distribution 
motivated by the geometry and electrical signal properties of our sensor tile. We modelled the 
sensors as magnetic dipoles which oscillate in opposite directions, thereby representing sen-
sor dies clocked with a phase shift of °180  compared to adjacent DPC sensors on a sensor tile. 
This yielded a change of the emitted RF field distribution and field amplitudes compared to 
the scenario where all sensors are clocked in phase. As the signal induced in the MRI RF coil 
depends on the coupling efficiency between RF fields and the RF coil, a modification of clock 
phases with a distribution different to the typical in-phase scenario can be used to control the 
spurious signal (noise) induction in the RF coil. These principles were demonstrated by per-
forming FEM simulations taking into account our RF shimming, coil geometry and its electri-
cal specifications, and an H-field excitation with field patterns as obtained by our MATLAB 
calculation for a sensor tile. The RF resonator signal intensities determined at the coil were 
reduced by about five orders of magnitude for the FEM simulation with the checkerboard-
phase pattern at sensor tile level compared to the simulation using the in-phase pattern. These 
simulations are based on a simplified model of the sensor tile and do not cover all details of 
the actual physical RF emission characteristics. Hence, our presented simulations serve as a 
proof of principle.

Figure 20. Signal intensities across a horizontal line profile crossing the MRI phantom: 
The noise floor varies depending on the sensor die clock frequency generated by the 
SDM firmware.
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5.2. Experiments

5.2.1. SDM operation. As shown by the results in figure 13, the SDM successfully acquired 
PET data even with our firmware modifications with regard to different clocking distribution 
patterns by means of sensor die clock frequency and phase shifts. However, a change of the 
clock frequency at which the DPC sensor is operated requires us to revise sensor-specific 
parameter settings which are clock-frequency dependent if aiming to keep values with regard 
to absolute time. Moreover, the lower the operating frequency of the sensor die, the higher 
the dead-time properties of the sensor. Dead-time in this context does not only refer to the 
amount of time needed to be able to successfully detect two successive scintillation events.  
It also covers the DPC sensor’s bandwidth limitation, which decreases with decreasing operat-
ing frequency. The frequency dependence is related to the digital, clocked logic of the main 
acquisition controller of the DPC sensor (Frach et al 2009, 2010). The deterministic behaviour 
of the finite state machines in the acquisition controller, on the other hand, allows us to predict 
the frequency-dependent maximum bandwidth limitation per DPC sensor and thus the count 
rate limitations by calculations and simulations. Summarised, it can be derived that an MRI 
noise reduction obtained via PET-data-acquisition-related frequency adaptations may result in 
a trade-off between the gained noise reduction on one hand and the PET detector dead-time 
on the other hand, provided that the frequency adaptations affect clock domains such as the 
dSiPM operation or digital hardware- and firmware-based PET data acquisition.

5.3. Characterisation

5.3.1. Clock frequency shifts. Since RF resonators are designed to have characteristic reso-
nance spectra (figure 4), the EM field coupling efficiency between a resonator and EM field 
transmitters strongly depends on the frequency of the field generated by external sources.  
As the spectrum measurements in figure  14(a) demonstrate, the spectrum of the EM field 
emission can be successfully altered by frequency modifications of the sensor die clock signal. 
Clock frequencies which fall within the bandwidth to which the MRI receive chain is sensi-
tive will inevitably lead to a strongly increased noise floor due to the high amplitudes of the 
first harmonics of the periodic clock signal. This was demonstrated for the clock frequency 
of 127.78 MHz in figures 14(a) and 18(a). In addition to distinct amplitude peaks visible in 
the measured broadband spectra, a noise floor covering a continuous frequency range (in the 
frequency domain) is usually a result of an overlap of many EM field sources such as non-
periodic electrical signal changes in components as well as PCB traces and connectors. The 
spectrum measured during SDM operation with a DPC sensor frequency of 140 MHz serves 
as a good example to demonstrate that, although this frequency does not fall directly within 
the MRI acquisition bandwidth (   ±128 MHz 500 kHz when performing noise scans), this 
clock frequency leads to a considerable noise floor rise around the Larmor frequency at 3 T, as 
visualised by the green plot in figures 14(a) and (b). This noise floor increase may be caused 
by non-periodic-data-line-switching-related field emission, whose spectra are influenced by 
the choice of the sensor die clock frequency while overlapping with RF fields originating 
from electronics not affected in their radiation behaviour by the sensor die clock frequency. 
Choosing a suitable clock frequency to lower the amplitudes of irradiated spectra within the 
MRI-sensitive bandwidth is therefore not trivial and in the end requires us to make spectrum 
measurements with analyser equipment and spurious noise measurements with the MRI and 
the desired RF coil setup. Our results obtained with frequencies of 100 MHz and 160 MHz 
clearly demonstrate that well chosen frequencies help to reduce PET-related RF noise, or in 
other words increase the RF silence of our PET detector.
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The low MRI SNR obtained with the MR sequence is visible in the reference scan shown 
in figure 19(a). Counts detected by the SDM were created by low LYSO background radia-
tion and dark counts related to thermal excitation. Except for the singles measurements, this  
corresponds to the measurement conditions in the laboratory and for the MR noise scans 
where no radioactive source was used. Placing a source in the vicinity of the SDM to change 
signal switching behaviour due to increased PET data message transmission between the stack 
and the SPU FPGAs may modify the RF field emission in such a way that the noise cou-
pling is increased to further illustrate differences in MRI SNR deterioration at a higher order 
of magnitude depending on the chosen clock frequency. This, however, was not possible as 
no radioactive sources were allowed in the MRI facility where the SNR measurements took 
place. Nevertheless, the lower noise floor measured with an SDM operating with a clock 
frequency of 160 MHz compared to one with 140 MHz demonstrates that clock frequency 
adjustments of digital circuits can reduce the noise coupled into the RF coil. We expect the 
differences in terms of visual artefacts in MR images for a broader range of sequences to be 
more pronounced for the case of a measurement setup scaled up to ten SDMs (a complete 
PET insert) and using a coil such as a birdcage rabbit coil (presented in Weissler et al (2015a)) 
located closer to the PET detector than the mouse coil.

5.3.2. Clock phase pattern changes. Our FEM simulations demonstrated that field pattern 
modifications can principally result in a reduction of RF field coupling into a RF resonator. 
These modifications were implemented and tested with an SDM by adapting the DPC sensor 
clock in-phase pattern to a checkerboard-phase pattern at SDM level. Comparing the charac-
terised field emission maps depicted in figures 15 and 16 yields the conclusion that the emit-
ted field distribution was modified upon a change of the clock phase pattern. In particular, the 
comparison of the top plane (which is oriented towards the PET module) measurements shows 
shifted peaks with similar peak amplitudes. Based on the simulation result, this alteration of 
the emitted field pattern is expected to change the coupling coefficient to the RF coil and thus 
is expected to show a different spurious signal (noise) production. This is indeed the case, as 
shown by the MRI noise measurements (figure 18).

6. Conclusion

For imaging systems aiming at simultaneous PET–MRI, the earlier the PET detector’s  
electronic signals representing PET information are digitized along the PET data acquisition 
chain residing within the MRI, the higher the likelihood is of avoiding PET signal degrada-
tion during MRI RF excitation to preserve the intrinsic PET signal SNR. The drawback is a 
potential increase of RF field emission caused by digital, clocked electronics within the MRI 
environ ment. This leads to an increase of PET-related spurious signal (noise) coupling into the 
MRI RF chain, which results in an MRI SNR decrease and thus image quality degradation. 
A conventional way to overcome this problem is the use of shielding materials to suppress 
PET-related RF field emission. However, shielding introduces the generation of eddy currents, 
which locally disturb the homogeneity of the MRI B0 and gradient fields, increasing costs and 
mechanical design complexity.

We have presented in this paper two methods to reduce PET-related noise coupling into 
the MRI RF receive chain which are unrelated to PET detector shielding techniques. Instead 
of suppressing RF fields emitted by PET, we influenced their generation by modifying the  
frequency and phase of the clock signal driving the DPC sensors in our Hyperion IID PET 
insert. The high flexibility of our FPGA-based PET architecture enables clock frequency and 
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phase modifications via firmware programming, which allows easy adaptations to demon-
strate our proof-of-concepts. As a first method, we shifted DPC sensor clock frequencies to 
values different from the typically used one of 200 MHz. The second method treating clock 
phase modifications was investigated by simulations as well as measurements.

The measurement results using a single SDM demonstrated that our methods principally 
influence the spectra and distribution of the emitted RF fields with the aim of obtaining RF 
interference reductions towards the MRI. Concluding, an optimised RF field emission yield-
ing reduced MRI noise coupling helps to mitigate PET detector RF shielding requirements 
and can allow for a reduction of MRI gradient field distortions close to PET detectors by using 
less or no RF shielding. Additionally, we believe that these methods have a great potential to 
support future PET detectors to be used in MRI systems of different field strengths or for one 
MRI system with different RF coil configurations. FPGA-based clock frequency adaptations 
applied in the field via software-based configuration choices could be performed and increase 
the PET–MRI performance and the imaging application versatility. The methods presented in 
this paper are not restricted to the DPC sensor and our PET insert. They can be applied regard-
less of the detector technology wherever digital electronics are used either near or within the 
MRI bore to optimise RF field emission in order to reduce PET-related RF interferences.
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