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Objective. Esophageal cancer (ESCC) is reported to be the eighth most common malignant tumors worldwide with high mortality.
However, the functions of majority circRNAs in ESCC requires to be further explored. Methods. This study identified differently
expressed circRNAs in 3 paired ESCC using RNA-sequencing method. The interactions among circRNAs, miRNAs, and
mRNAs were predicted using bioinformatics analysis. Results. In this study, using RNA-sequencing method and integrated
bioinformatics analysis, 418 overexpressed circRNAs and 637 reduced circRNAs in ESCC sample were identified. Based on the
mechanism that circRNAs could play as ceRNAs to modulate targets expression, circRNA-miRNA and circRNA-miRNA-
mRNA networks were constructed in this study. Based on the network analysis, 7 circRNAs, including circ_0002255, circ_
0000530, circ_0001904, circ_0001005, circ_0000513, circ_0000075, and circ_0001121, were identified as key circRNAs in ESCC.
We found that circ_0002255 was related to the regulation of substrate adhesion-dependent cell spreading. circ_0001121 was
involved in regulating nucleocytoplasmic transport. circ_0000513 played a key role in regulating Adherens junction, B cell
receptor signaling pathway. Meanwhile, we observed circ_0000075 was involved in regulating zinc II ion transport, transition
metal ion homeostasis, and angiogenesis. Conclusion. We thought this study could provide novel biomarkers for the prognosis
of ESCC.

1. Introduction

In recent years, the functional importance of noncoding
RNAs (ncRNAs) in the tumorigenesis and the development
of cancers have been found. CircRNAs are a type of special
endogenous RNA molecules [1]. With the development of
high-throughput RNA sequencing, circRNAs were found to
be present in human cells. Emerging reports have revealed
the important roles of circRNAs in multiple human diseases,
such as malignant tumors [1–3]. The findings indicated that
circRNAs were abnormally expressed and involved in regu-
lating cancer proliferation and therapy resistance through
various mechanisms, such as sponging miRNAs or proteins,
and regulating RNA splicing and transcription [3–5].

Esophageal cancer (ESCC) is reported to be the eighth
most common malignant tumors worldwide with high mor-

tality [6, 7]. Previous studies showed more than 455800
patients were diagnosed with ESCC, and almost 400200
patients died from this disease [8]. Despite novel methods,
such as radiotherapy and chemotherapy, were used in the
ESCC treatment, the five-year survival rate of ESCC patients
is as low as about 25% due to distant metastasis and therapy
resistance [9, 10]. It is therefore of great importance to
explore an effective treatment to prevent ESCC progression.

A number of reports have indicated that circRNAs were
related to the development of ESCC. A report by Chen
et al. showed circLARP4 suppressed ESCC progression via
sponging miR-1323 and modulating PI3K signaling [11].
Another study by Pan et al. found that hsa_circ_0006948
modulated miR-490-3p/HMGA2 axis, thus regulating
tumorigenesis and EMT processes in ESCC [12]. Moreover,
the special expression pattern of circRNAs in ESCC was
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validated as potential biomarkers for the prognosis of this
disease. For example, hsa_circRNA_100873 upregulation
was correlated to lymphatic metastasis of ESCC [13], and
Circ-SLC7A5 was validated as a potential prognostic circu-
lating biomarker for detection of ESCC, which was corre-
lated to advanced stage and worse prognosis [14]. Despite
a few studies revealed the functions of circRNAs in ESCC
[15, 16], the functions of majority circRNAs require to be
further explored.

Recently, the progress in RNA-sequencing method had
expanded the understanding of the molecular mechanism
of cancers. A series of novel mRNAs and noncoding RNAs
were revealed to be related to the tumorigenesis. For example,
Li et al. revealed that circDDX17 was downregulated in colo-
rectal cancer with RNA sequencing and suppressed tumor
development [17]. Huang et al. reported abundant mRNA,
circRNA, and lncRNA in blood could act as diagnostic
markers for cancers by using extracellular vesicles long
RNA sequencing [18]. Yu et al. found hsa_circ_0001445
was identified to be downregulated by RNA-sequencing
and suppress liver cancer metastasis [19]. Also, using
RNA-sequencing method could provide novel biomarkers
for ESCC.

This study identified differently expressed circRNAs in
ESCC using RNA-sequencing method. The interactions
among circRNAs, miRNAs, and mRNAs were predicted
using bioinformatics analysis. We thought this study was able
to provide novel biomarkers for ESCC.

2. Materials and Methods

2.1. Tissue Specimens. Three paired ESCC tissues and adja-
cent normal tissues were collected from patients who
received radical gastrectomy at the Department of Thoracic
Surgery, The First Affiliated Hospital of Soochow University,
from 2019 to 2020. All specimens were collected under the
guidance of the HIPAA protocol and supervised by the ethics
committee. TNM stage classification complied with the TNM
classification system of the International Union Against
Cancer (7th edition). These patients were diagnosed with
ESCC with average age: 62.7.

2.2. RNA-seq Analysis. The total RNA was isolated with
RNAiso Plus (TaKaRa Japan). The Ribo-Zero rRNA
Removal Kit (Illumina, San Diego, CA, USA) and the
CircRNA Enrichment Kit (Cloud-seq, USA) were used to
remove the rRNA and enrich the circRNAs. The RNA-seq
libraries were constructed by using TruSeq Stranded Total
RNA Library Prep Kit (Illumina, San Diego, CA, USA). The
libraries were denatured as single-stranded DNA molecules,
captured on Illumina flow cells, amplified in situ as clusters,
and finally sequenced for 150 cycles on Illumina HiSeq™
4000 Sequencer (Illumina, San Diego, CA, USA). All these
assays were conducted according to the manufacturer’s
instructions. The raw data were listed as a supplementary
table 1.

2.3. Identification and Quantification of Human circRNAs.
For each sample, the cleaned RNA-seq reads were first

mapped to the human reference genome (GRCh37/hg19,
UCSC Genome Browser [20]) by TopHat2 [21]. Then, the
unmapped reads of each sample in the TopHat2 results were
used to identify the circRNAs by UROBORUS pipeline [22].

2.4. Differential Expression Analysis. Differentially expressed
circRNAs between ESCC and normal samples were deter-
mined using the “limma” package (3.38.3) in R (5.3.2) [23,
24]. A paired Student’s t-test was used to identify any signif-
icant differences in circRNA expression between tumor and
tumor-adjacent normal tissues. The thresholds of fold-
change>2 were set to screen the significantly DESCCs.

2.5. Functional Analysis. Bioinformatics analysis was con-
ducted using the DAVID online database (https://david
.ncifcrf.gov/home.jsp) [25]. The results were visualized by
the imageGP online software (http://www.ehbio.com/
ImageGP/index.php/Home/Index/index.html).

2.6. Correlation Analysis of circRNAs and mRNAs in ESCC.
An Agilent circRNA and mRNA expression profile microar-
ray was used to screen the differentially expressed circRNA
and mRNA gene expression. The regulation of the mRNA
target expression of circRNAs was evaluated to investigate
whether circRNAs could act as “miRNA sponges.”
CircRNA-miRNA interaction analysis was conducted by
Cytoscape 3.2.1 software (Cytoscape Consortium). The size
of each node represents the number of putative miRNAs that
were functionally connected to each circRNA.

3. Result

3.1. Identification and Validation of Differentially Expressed
circRNAs in ESCC. By analyzing the expression pattern of
circRNAs between ESCC tumors and normal tissues, 1055
circRNAs were identified to be differently expressed in ESCC
tissues with fold change ≥2 (Figures 1(a) and 1(b)). Among
these circRNAs, 418 circRNAs were overexpressed, and 637
circRNAs were reduced in ESCC sample compared to nor-
mal tissues (Figure 1(c)). Heatmap and volcano plot analysis
demonstrated these significant differentially expressed
circRNAs (Figures 1(a) and 1(b)).

3.2. Enrichment Analysis of circRNAs’ Parental Genes. Fur-
thermore, we perform GO analysis to explore the potential
functional roles of circRNAs’ parental genes. Our results
showed that the top 10 biological processes related to paren-
tal genes of differently expressed circRNA included cellular
component organization, biosynthetic process, macromole-
cule biosynthetic process, primary metabolic process, RNA
metabolic process, and transcription from RNA polymerase
II promoter (Figure 2(a)). Meanwhile, the top 10 molecular
functions and cellular components related to these circRNAs’
parental genes were shown in Figures 2(b) and 2(c).

The KEGG analysis revealed that the pathways related to
parental genes of differently expressed circRNAs included
ErbB signaling pathway, focal adhesion, and lysine degrada-
tion (Figure 2(d)).
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Figure 1: Analysis of differentially expressed circRNAs in ESCC by RNA-sequencing. (a) Heatmap analysis of differentially expressed
circRNAs between ESCC and normal groups. (b) The volcano plot analysis of differentially expressed circRNAs between ESCC and
normal groups. (c) The summarization of upregulated and downregulated circRNAs between ESCC and normal groups.
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Figure 2: Continued.
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3.3. Construction of circRNA-miRNA-mRNA Network. A
number of studies showed circRNAs act as sponges of
miRNA to suppress their activities. Therefore, we con-
structed a circRNA-miRNA interaction network using bioin-
formatics methods. The interaction between circRNA and

miRNAs was predicted using circinteractome database
(https://circinteractome.nia.nih.gov/) [26].

Next, we constructed a circRNA-miRNA-mRNA net-
work in ESCC. The miRNA-mRNA pairs were identified
using Starbase [27] and TARGETSCAN [28] database. A
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Figure 2: In silico analysis of circRNAs’ parental genes. (a) Enrichment of the top 10 BP of circRNAs’ parental genes. (b) Enrichment of the
top 10 MF of circRNAs’ parental genes. (c) Enrichment of the top 10 CC of circRNAs’ parental genes. (d) Enrichment of the top 10 pathways
of circRNAs’ parental genes. The size: the number of genes. MF: molecular functions; CC: cellular components; BP: biological processes.
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total of 8975 mRNAs were identified as potential circRNA-
miRNA targets. Then, we extracted differently expressed
mRNAs in ESCC using GEPIA database [29]. Finally, ESCC
specific circRNA associated ceRNA network was con-
structed with Cytoscape 3.6.1 software [30], which included
7 circRNAs (circ_0002255, circ_0000530, circ_0001904,
circ_0001005, circ_0000513, circ_0000075, circ_0001121),
7 miRNAs (hsa-miR-31-5p, hsa-let-7i-5p, hsa-miR-4644,

hsa-miR-105-5p, hsa-miR-370-3p, hsa-miR-544a, hsa-miR-
17-3p), and 548 mRNAs (Figures 3(a) and 3(b)).

3.4. Enrichment Analysis of Key circRNAs in This Network.
Next, we conducted the bioinformatics analysis of Key
circRNAs in this network using Clue-GO plugin [31] in
Cytoscape 3.6.1 software. The results revealed that hsa_
circ_0002255 was related to the regulation of substrate
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adhesion-dependent cell spreading (Figure 4(a)). hsa_circ_
0001121 was involved in regulating nucleocytoplasmic
transport and protein export from nucleus (Figure 4(b)).

Moreover, we identified hsa_circ_0000513 played a key
role in regulating Adherens junction, B cell receptor pathway,
ERBB signaling, pri-miRNA transcription, regulation of
phosphatase activity, histone phosphorylation, and protein
processing in endoplasmic reticulum (Figure 4(c)). Among
these pathways, we specially indicated that ERBB signaling
was potentially regulated by this circRNA via PTPRJ, SOS1,
HIP1, PXN, and PIGU.

Meanwhile, we observed hsa_circ_0000075 was involved
in regulating zinc II ion transport, transition metal ion
homeostasis, angiogenesis, blood vessel development, extrin-
sic apoptotic signaling pathway, response to amino acid,
nucleocytoplasmic transport, response to acid chemical,
toll-like receptor 4, cellular response to hepatocyte growth
factor stimulus, chemotaxis transforming, and growth factor
beta2 production (Figure 4(d)).

3.5. The Dysregulation of Key miRNAs Was Related to the
Survival Time in ESCC. Next, we predicted the prognostic
value of key miRNAs in ESCC with TCGA data. The results
showed that higher expression level of hsa−let−7i
(Figure 5(a)), hsa−mir−4644 (Figure 5(b)), hsa−mir−17
(Figure 5(c)), hsa−mir−544a (Figure 5(d)), hsa−mir−105
(Figure 5(e)) were associated with shorter overall survival
time in ESCC patients.

4. Discussion

Recently, the circRNAs have been reported to be related to
ESCC. CircRNA dysregulation was related to prognosis and
tumor proliferation regulation of ESCC. For example, Zhang
et al. revealed 2,046 circRNAs were frequently altered in
ESCC tissues [32]. Su et al. identified 57 induced circRNAs
and 17 reduced circRNAs in radioresistant ESCC cells com-
pared to normal ESCC cells [33]. Also, the special functions
of several circRNAs had been clearly demonstrated. For
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Figure 4: Enrichment analysis of key circRNAs. (a) Enrichment of hsa_circ_0002255 in esophageal cancer. (b) Enrichment of hsa_circ_
0001121 in esophageal cancer. (c) Enrichment of hsa_circ_0000513 in esophageal cancer. (d) Enrichment of hsa_circ_0000075 in
esophageal cancer. The circle: biological pathways; the dots: genes.
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Figure 5: The dysregulation of key miRNAs was related to the survival time in ESCC (a–e) higher expression level of hsa−let−7i (a), hsa−mir
−4644 (b), hsa−mir−17 (c), hsa−mir−544a (d), hsa−mir−105 (e) were associated with shorter overall survival time in ESCC patients.
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example, CiRS-7 promotes growth and metastasis of ESCC
via regulation of miR-7/HOXB13 [34]. However, these stud-
ies just revealed a limited amount of circRNAs in ESCC.
According to circBase database, more than 50000 circRNAs
exited in human cells [35]. Therefore, this was still an urgent
need to identify differently expressed circRNAs in ESCC to
expand our understanding of the mechanism related to
ESCC development. In this study, using RNA-sequencing
method and integrated bioinformatics analysis, 418 overex-
pressed circRNAs and 637 reduced circRNAs in ESCC sam-
ple were identified. Based on the mechanism that circRNAs
could play as ceRNAs to modulate targets expression [36,
37], circRNA-miRNA and circRNA-miRNA-mRNA net-
works were constructed in this study. Based on the network
analysis, 7 circRNAs, including circ_0002255, circ_
0000530, circ_0001904, circ_0001005, circ_0000513, circ_
0000075, and circ_0001121, were identified as key circRNAs
in ESCC. We found that circ_0002255 was related to the reg-
ulation of substrate adhesion-dependent cell spreading. circ_
0001121 was involved in regulating nucleocytoplasmic trans-
port. circ_0000513 played a key role in regulating Adherens
junction, B cell receptor signaling pathway. Meanwhile, we
observed circ_0000075 was involved in regulating zinc II
ion transport, transition metal ion homeostasis, and
angiogenesis.

CircRNAs have been shown to function as regulators of
parental gene transcription and alternative splicing and
miRNA sponges. Exon–intron circular RNAs (EIciRNAs)
hold U1 snRNP through interaction with U1 snRNA, and
then, the EIciRNA–U1 snRNP complexes further interact
with Pol II transcription complex at the promoters of paren-
tal genes to enhance gene transcription and expression [38,
39]. Zhang et al. [39, 40] found that circEIF3J and circPAIP2
with higher expression levels can complement U1 and inter-
act with U1 small ribonucleoprotein to promote the tran-
scription of EIF3J and PAIP2 genes in cis. Intronic
circRNAs (CiRNAs) also positively regulate Pol II transcrip-
tion. For example, ci-ankrd52, generated from gene
ANKRD52, is capable of accumulating to its transcription
sites and regulates elongation Pol II machinery acting as a
positive regulator for transcription [39]. Moreover, circRNAs
could acted as ceRNAs to affect parental gene expression. For
example, circ-VANGL1 as a competing endogenous RNA
modulates VANGL1 expression via miR-605-3p [41]. Thus,
prediction of the molecular functions related to circRNAs’
parental genes could provide more clues to understand the
potential functions of circRNAs. The present study showed
the pathways related to parental genes of differently
expressed circRNAs included ErbB signaling pathway, focal
adhesion, and lysine degradation.

Recently, circRNA-mediated ceRNA pathways played a
crucial role in cancer initiation and development. For exam-
ple, circRNA-UCK2 suppressed prostate cancer viability and
metastasis through sponging miRNA-767-5p [42]. cir-
cFOXO3 was found to promote prostate cancer and glioma
progression through sponging miR-29a-3p [43] and miR-
138-5p [44]. CircPTPRA suppressed bladder cancer via
sponging miR-636 [45]. Also, several cancer-related ceRNA
networks were identified. Song et al. constructed a colorectal

cancer-related ceRNA network, which includes 13 circRNAs,
62 miRNAs, and 301 mRNAs [46]. In this study, we for the
first time built a miRNA-mRNA network in ESCC, containing
33 circRNAs and 158 miRNAs. hsa_circ_0001904, hsa-miR-
1273g-3p, hsa-miR-6089, hsa-miR-6873-3p, hsa-miR-8485,
and hsa-miR-939-5p were identified as key regulators in
ESCC. miR-1273g was found to suppress colorectal cancer
proliferation via activation of AMPK signaling [47]. hsa-
miR-6089 played a crucial role in regulating inflammation
through regulating TLR4 [48, 49]. miR-939 had been revealed
to be a key regulator in human cancers, including lung cancer
[50], colorectal cancer [51], tongue squamous cell carcinoma
[52], epithelial ovarian cancer [53, 54], and gastric cancer
[55]. Overexpression of this miRNA enhanced lung cancer
progression [50]. In gastric cancer, knockdown of miR-939
modulated metastasis and chemoresistance via dysregulation
of SLC34A2 and Raf/MEK/ERK pathway [55].

Also, we built an ESCC-related circRNA-miRNA-mRNA
network, including 7 circRNAs, 7 miRNAs, and 548 mRNAs.
Very interestingly, bioinformatics analysis showed that hsa_
circ_0000513 played a key role in regulating ERBB signaling
pathway, regulation of pri-miRNA transcription, and histone
phosphorylation in endoplasmic reticulum. ERBB signaling
pathway was reported to be activated in ESCC [56, 57]. For
example, inhibitors of ERBB signaling were found to sup-
press ESCC cell migration. miRNAs played an important role
in ESCC via affecting cell growth, migration, and autophagy.
Very interestingly, we showed hsa_circ_0000513 may affect
miRNA functions through modulating their transcription.
A recent study showed hsa_circ_0000075 participated in
the AF pathogenesis via TGF-beta signaling pathway.
However, the roles of hsa_circ_0000075 in ESCC remained
unclear. The present study showed that hsa_circ_0000075
was involved in regulating angiogenesis, blood vessel
development, and regulation of extrinsic apoptotic signal-
ing pathway.

Despite this study identified differently expressed cir-
cRNAs and predicted their functions in ESCC with bioinfor-
matics method, several limitations should be noted. Firstly,
the molecular functions and mechanisms of these circRNAs
should be further confirmed using experimental assays.
Secondly, the prognostic value of key circRNAs should be
further explored. The correlation between circRNAs expres-
sion and tumor stage, survival time should be further evalu-
ated with collected clinical samples. Finally, the raw data of
the Ribo-zero library-based RNA-seq data should be further
analyzed to confirm circRNA-mRNA interaction in the
future study.

In our study, we identified 418 overexpressed circRNAs
and 637 downregulated circRNAs in ESCC and conducted
bioinformatics to reveal the potential mechanisms and
molecular functions of these circRNAs in ESCC. We thought
this study could provide novel biomarkers for the prognosis
of ESCC.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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