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Abstract

Background: Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central
and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but
non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is
challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only
be gained from combinations of extensive field studies and spatial population dynamic modelling.

Methodology/Principal Findings: A spatially explicit population dynamic model was combined with a two-year field study
of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately
both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied
in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor
insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and
half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery.
Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect,
as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided
similar levels of control. However this required either house attractiveness to be null, or $5 lethal traps, at least as attractive
as houses, to be installed in each household.

Conclusion/Significance: Insecticide and insect screens used in houses at the periphery of the village can contribute to
reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a
unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of
insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-
domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of
control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors.
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Introduction

Chagas disease, also called American trypanosomiasis, is caused

by the protozoan parasite Trypanosoma cruzi, which is primarily

transmitted to humans by blood-sucking bugs of the Triatominae

subfamily. The disease is endemic throughout Latin America,

where it is one of the most important parasitic diseases with large

socioeconomic impact. According to various estimates, the

prevalence rate in humans varies between 0.1 and 45.2% (with

an average of 1.4%), 8 to 15 million people are infected with T.

cruzi (with 40–50,000 yearly new cases), and 28–75 million

individuals are at risk of infection [1–3]. The disease causes about

12,500 deaths a year, and is responsible for premature disabilities

of workers that are estimated to cost 670,000 disability-adjusted

life years lost [4].

Although international initiatives have been launched to reduce

transmission of Chagas disease, especially through vector control

and screening of blood or organ donors [5], there are still large

regions with active vector transmission [6]. One of the main

explanations for this is the transmission caused by non-domicil-

iated triatomines [7]. These vectors are not able to reproduce and

develop in the domestic habitat, and thus constitute typical ‘sink’

domestic populations sustained by peri-domestic and/or sylvatic

‘source’ populations [8]. Non-domiciliated vectors tend to
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jeopardize the efficacy of vector control by insecticide spraying in

the domestic habitat because of the re-infestation of treated houses

[9,10,11]. This situation has been described for several vector

species of triatomines as T. brasiliensis and T. pseudomaculata in

Brazil [12], T. mexicana in central Mexico [13] and T. dimidiata in

the Yucatan Peninsula of Mexico and Belize [14,15]. Accordingly,

the risk of transmission associated with non-domiciliated vectors is

now identified as a major challenge for the future of Chagas

disease control [16,17,18], and a key objective is to evaluate the

efficacy of classical or alternative control strategies to reduce their

abundance.

Identifying optimal strategies can hardly be achieved through

laboratory or field experiments, since testing a broad enough

number of alternatives would require very large human and

financial investments [11,19]. Alternatively, mathematical models

have proven to be very effective at evaluating the relative merit of

various alternative strategies to control parasitic diseases [11; and

references therein]. In addition, identifying optimal strategies

clearly requires a detailed understanding of the vector spatial and

temporal infestation dynamics. Valuable insights into such spatio-

temporal dynamics can be gained using the framework of meta-

population theory combined with presence/absence data [19–21].

Although appealing, the use of more elaborated models that

include quantitative information on local population sizes requires

even more data than the meta-population model sensus stricto [22].

In previous contributions, we developed spatially explicit

population dynamics models that were able to reproduce and to

predict the spatial and temporal dynamics of T. dimidiata house

infestation observed at the village scale in the Yucatan Peninsula,

Mexico. These models provided us with indirect estimates of the

origin and characteristics of dispersal of these triatomines [23,24].

Individuals found inside houses in the Yucatan Peninsula

originated in similar proportions from both sylvatic and peri-

domestic habitats, dispersed over rather small distances (40–60 m

per displacement) and were strongly attracted to houses [24].

Remarkably, the observed and predicted dynamics showed an

heterogeneity in transmission risk both in time, with a peak of

vector abundance during March–June [14,25], and in space, with

much higher abundance of insects in the periphery of the village

reflecting the influence of the sylvatic habitat [11,26]. The

temporal optimization of insecticide spraying with respect to this

pattern has already been investigated at the scale of one house

[11], but the spatial micro-scale heterogeneity suggests that

interventions could also be spatially targeted. Such interventions

would focus on the periphery of the village, where bugs were found

more abundant. While temporal heterogeneity adds constraints on

control strategies (i.e. the timing of intervention has to match the

seasonality of house infestation, [11]), spatial heterogeneity could

have beneficial consequences for control activities as it might allow

to reduce the overall surface (or number of houses) to be treated

and thus allow to reduce the cost associated with control. Properly

assessing whether such spatial design is relevant requires

evaluating not only the efficacy of control in the treated areas,

but also the impact of the control interventions in the untreated

areas of the same village.

In this contribution, we aimed to build on our understanding of

the temporal optimization of control strategies [11], as well as our

previous spatial modelling [23,24] to evaluate the potential of

several strategies. We first focus on conventional strategies —

namely indoor insecticide spraying, use of door/window insect

screens and peri-domicile management — that have been used to

control vectors of different diseases as well as T. dimidiata [27–29].

We further look at the potential of insect lethal traps that are

currently extensively investigated for the control of a variety of

vector species [30,31]. Finally, since we have previously found that

T. dimidiata was directly attracted to houses [24], a control

alternative could be to eliminate this house attractiveness, and the

potential of such a strategy was also explored.

Materials and Methods

General approach
We aimed to set up a spatial population dynamics model able:

(1) to reproduce and predict the temporal variations of vector

abundance in all the houses of one village in the absence of

control, and (2) to spatially represent various control strategies. We

adapted previous population dynamic models [23,24], and

combined them with a mathematical description of the control

strategies that we aimed at evaluating. The resulting model

predicts the temporal variations in vector abundance in every

house of the village as a function of survival, reproduction and

dispersal of the triatomines, and the effect of the above control

strategies on the demographic processes at each point of the

village. It was then used for the evaluation of the efficacy of

spatially targeted interventions based on each of those strategies.

Model predictions in absence of control were fitted through a

maximum likelihood approach to a first set of spatio-temporal data

describing house infestation dynamics by T. dimidiata within a

village in the absence of vector control. We tested the predictive

value of the resulting parameterized model on a replicate data set,

corresponding to the infestation dynamics observed in the same

village the following year.

The description of the effect of the different control strategies

was then added to the model, and the resulting framework was

used to explore the efficacy of control interventions whose spatial

coverage was progressively increased from the border to the centre

of the village. The efficacy of each intervention was evaluated as

the percentage of reduction in the yearly abundance of vectors in

the village, in comparison with the expected abundance in the

absence of control intervention that we evaluated from the model

with no control. Efficacy was also related to the consented effort,

as measured by the number of households, where control strategies

Author Summary

Chagas disease is one of the most important parasitic
diseases in Latin America. Since the 1980’s, many national
and international initiatives have contributed to eliminate
vectors developing inside human domiciles. Today’s
challenge is to control vectors that are non-adapted to
the human domicile, but still able to transmit the parasite
through regular short stay in the houses. Here, we assess
the potential of different control strategies applied in
specific spatial patterns using a mathematical model that
reproduces the dynamic of dispersion of such ‘non-
domiciliated’ vectors within a village of the Yucatan
Peninsula, Mexico. We show that no single strategy
applied in the periphery of the village, where the insects
are more abundant, provides satisfying protection to the
whole village. However, combining the use of insect
screens in houses at the periphery of the village (to
simultaneously fight insects dispersing from the garden
and the forest), and the cleaning of the peri-domicile areas
of the centre of the village (where sylvatic insects are
absent), would provide a cost-effective control. This type
of spatially mixed strategy offers a promising way to
reduce the cost associated with the repeated interventions
required to control non-domiciliated vectors that perma-
nently attempt to infest houses.
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were applied (either in the domestic or peri-domestic habitats). We

performed a sensitivity analysis to each survival, reproduction or

dispersal parameter of the model to ensure the robustness of our

conclusions on the efficacy of the various interventions within the

confidence region associated with the maximum likelihood

estimate of model parameters. We further conducted a sensitivity

analysis to different parameters of the model that described the

efficacy of each of the strategies as measured by their impact on

the survival, reproduction or dispersal of triatomines.

Spatial and temporal abundance data sets
The spatio-temporal pattern of house infestation was observed

in the rural village of Teya, Yucatan, Mexico over a two-year

period from August 2006 to October 2008 [26]. All houses were

identified and geo-referenced with a handheld global positioning

system (GPS). Insects were collected by a standardized method-

ology based on community participation [32], and data were

imported into a geographic information system (GIS) database

(ArcView 3.2 -Environmental Systems Research Institute, Red-

lands, CA, USA) to produce maps of observed triatomine

abundance in the houses over 2-week intervals [32]. Participating

families provided oral consent prior to their participation, as

written consent was waived because the study involved no

procedures for which written consent is normally required outside

of the research context. Consent was logged in field notebooks. All

procedures, including the use of oral consent, were approved by

the Institutional Bioethics Committee of the Regional Research

Centre ‘‘Dr. Hideyo Noguchi’’, Universidad Autonoma de

Yucatan.

Spatially explicit population dynamic model with no
control

We set up a GIS-based Spatially Explicit Model (GIS-SEM) as

such modelling provides a suitable framework to investigate spatial

population dynamics in real landscapes by importing GIS data on

a grid representing the area under study [33]. Our GIS-SEM

model was based on Cellular Automaton (CA) formalism [34]. It

consisted of a grid of cells representing the village of Teya, and

allowed the calculation of the temporal variations of the vector

abundance in cells, referred to as state variables, according to both

local rules describing birth and death processes of bugs within cells,

and dispersal rules that allow accounting for walking and flight

movements between neighboring cells. This model was similar in

essence to the models built by Barbu et al. [24], but with two

necessary adaptations. First, the local and dispersal rules were

described in a deterministic rather than stochastic manner to

reduce the complexity of the model and shorten the simulation

time. Second, the time unit of the model was changed from 15

days to a day to allow specifying the effect of control on a daily

basis.

A deterministic CA such as the one intended here is defined as a

quadruple Q = (A,S,V,f ), where A is the grid of cells arranged

uniformly to represent the studied area; S is the set of values that

can be taken by the state variables; V is the neighborhood function

that allows identifying the set of neighboring cells V(c) that

contribute to the change of the state variable of any given cell c by

the mapping:

V : A?Av

c?V (c)~ c1,c2,:::,cvf g
ð1Þ

with v denoting the size of the neighborhood; and where f is the

function describing the local and dispersal rules and thus specifies

how the set of neighboring cells V(c) changes the state of the cell c

from one time step to another:

f : Nv?N

N(V (c),t)?N(c,tz1)
ð2Þ

with N(c,t), the state variable that tracks the status of cell c at time t.

Definition of the grid of cells A representing the study

area. A raster map of 886104 pixels was derived from a satellite

image and combined with the GPS coordinates of all the houses to

produce a grid that provided a spatial description of the village of

Teya as well as a basic description of the forest habitat by a single

layer of cells surrounding the village, as previously described [24].

Cells of size 13.5613.5 m were classified into four different types

corresponding to domestic (houses), peri-domestic (yards and

streets around the houses), border of the village, and sylvatic

habitat (bushes, forest and agricultural land around the village).

We referred to these different subsets of cells as Ad (480 cells), Ap

(4,847 cells), Ab (466 cells), and As (3,359 cells), respectively. The

distribution of the domestic and peri-domestic cells within the

village is described in Figure 1.

Definition of the set of values S for the state varia-

bles. To allow a deterministic description of the dynamic, state

variables were defined as a continuous version of the discrete state

variables used in our previous model [24]. We followed the

number of individuals in each set of domestic (Ad) and peri-

domestic (Ap) cells, but did not track the number of individuals in

the sets of cells representing the border (Ab) or the outside of the

village (As). Given the lack of abundance data on colonies in peri-

domestic area, we focused on the abundance of dispersers, i.e.

individuals that have left colonies located in the peri-domestic and

sylvatic habitats and are dispersing in the village. As in many

similar source-sink models [22], sources (colonies) were assumed to

produce dispersing individuals at a constant rate (see below).

Finally, we only modelled the adult part of the population since it

accounts for over 90% of the triatomines found inside houses [24].

Accordingly, we defined N(c,t) as the density of dispersing adult

triatomines in cell c at time t, with c M Ad < Ap (the domestic and

peri-domestic cells). These state variables took values on S = R+.

Definition of the neighborhood function V. Vectors

present in a cell contributed to changes in vector abundance in

other cells through dispersal. As before [24], we modelled

immigration from the forest surrounding the village by a simple

input of bugs located at the forest border. Accordingly, the set of

cells a vector can disperse from is Ad < Ap < Ab. In addition, vectors

have been shown to disperse over rather small average distances

[24], so that V(c), the set of neighboring cells that contributed to

change the status of a given cell c, was defined to account for a

restricted range of dispersal:

V cð Þ~ c’ [Ad |Ap |Ab c’{ck kƒrj
� �

ð3Þ

where r is the size of the dispersal range.

Definition of the function f including the local and

dispersal rules. Function f accounted for vector demography

and dispersal within the village when no control strategies were

applied. It was subdivided into local rules describing the survival or

death of bugs within each cell, and dispersal rules that allowed

accounting for dispersal from colonies and walking/flight

movements between cells. The local rules involved survival of

adults in the domestic habitats (Sd – probability per time unit)

and peri-domestic habitats (Sp – probability per time unit). For

simplicity, reproduction in the domestic habitat was neglected

Spatial Control of Non-Domiciliated Triatomines
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since house infestation is associated with a limited or virtually null

fertility [8,11,25]. Reproduction in the peri-domestic habitat was

accounted for, but only by considering those cells as fixed ‘sources’

[35,36], where individuals are born and can disperse from;

consequently, this process was modelled via the dispersal rules (see

the definition of Kp below) [24]. The number of dispersing adults

after the death process N(c,t+t) can then be written for every cell

c [Ad |Ap:

N(c,tzt)~ScN(c,t) ð4Þ

where Sc M {Sd, Sp}. t is defined to apply the local and dispersal

rules in a sequential way, and does not take a specific time value.

Dispersal rules were based on previous estimates derived from the

comparison of stochastic models, through a selection model

approach [37,38]. To ensure the validity of these estimates with

the current deterministic model, a similar selection model

approach was performed with analogous deterministic models

and provided similar results (data not shown). The most supported

dispersal rules were defined by two sets of parameters [24]. First, the

number of individuals leaving colonies of the peri-domestic (Kp –

number of insects per time unit) and sylvatic (Ks – number of

insects per time unit) habitats to join the pool of dispersers and a

rate of flight/walk initiation (d – probability per time unit) for those

individuals that already are in the pool of dispersers [24]. Second,

a distribution of dispersal distance that combined a zero-truncated

Gaussian distribution with a modal distance (D – number of

meters per displacement) and a standard deviation (s – number of

meters per displacement), and a parameter H used to weight the

zero-truncated Gaussian distribution according to the type of cells

considered [24]. H was a ratio measuring the relative attractive-

ness of houses to bugs, as compared to the attractiveness of the

peri-domestic and sylvatic habitats for an equal surface. It was set

to 1 for both the peri-domestic and sylvatic habitats and was $1

for the domestic habitat.

Those two sets of parameters allowed to fully specify the set of

cells V(c) by cutting off dispersal distances that collectively

accounted for less than 1% probability, formally defining the

value of r appearing in equation 3. For each departure cell c’, this

restricted set of weighted probabilities was then normalized so that

dispersal probabilities add up to one when summed over all

possible arrival cells c. The dispersal rules then simply read:

N(c,tz1)~(1{d)N(c,tzt)z
X

c0[V (c)

pc0c d N(c0,tzt)zKc0ð Þ ð5aÞ

where pc’c stands for the normalized probabilities of dispersal from

cell c’ to c, and Kc0 [ Kp= Ap

�� ��,Ks= Asj j
� �

, where Ap

�� �� and Asj j
denote the number of cells in sets Ap and As. Since individuals were

not numbered in the forest habitat, individuals reaching or

crossing the border of the village disappeared according to

standard absorbing boundary conditions.

Finally, to mimic the seasonal dispersal of T. dimidiata, which

mostly takes place during a three months’ ‘immigration period’ in

spring [8,11,14,25], equation 5a was applied only from March 16

to June 15 in Year 1 and from April 1 to July 1 in Year 2

(according to the observations made during these two years).

During the rest of the year, vectors were assumed not to leave

colonies to join the dispersing pool, although already dispersing

individuals were still allowed to move between cells. During this

non-immigration period, Kp = Ks = 0, and the equation 5a was

replaced by:

N(c,tz1)~(1{d)N(c,tzt)z
X

c0[V (c)

pc0cd N(c0,tzt) ð5bÞ

The function f in the absence of control was then obtained by

applying sequentially equations 4 and 5 (a or b), and was used to

predict the spatial and temporal population dynamics within the

village by calculating the number of bugs at time t+1 (e.g., N(c,t+1))

as a function of those numbers at time t (e.g., N(c,t)), for any

c [ fAd |Apg. Changes in cells’ status, from N(c,t) to N(c,t+t) or

from N(c,t+t) to N(c,t+1) were evaluated simultaneously from the

earliest states of all cells.

Figure 1. Grid of the village of Teya, Yucatan (Mexico) and the control zones. The grid was derived from the satellite image and the GPS
coordinates of all houses. Each cell of the grid corresponds to a surface of 13.5613.5 m. The ten concentric zones that were used to test the efficacy
of spatially targeted control appear on the map. The table gives the proportion of houses, the proportion of peri-domiciles and the number of bugs
found (in the absence of control) between mid-September 2006 and 2007, and between mid-September 2007 and 2008, in each of these zones.
doi:10.1371/journal.pntd.0001045.g001
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Parameter estimates of the model with no control
Maximum likelihood estimates (MLE) of the parameters of the

model with no control were obtained using the spatio-temporal

data sets describing T. dimidiata infestation dynamics of the village

of Teya between mid-September 2006 and mid-September 2007.

Model predictions were fitted to the observed number of bugs in

each cell of the 24 maps describing the average biweekly

distribution within the village. The log likelihood (LLH) value

was then calculated as follows:

LLH~
X24

t~1

X
c[Ad

log p X (c,t)~O(c,t) hjð Þ ð6Þ

where log denotes the natural logarithm, X(c,t) is the statistical

variable corresponding to the number of adults in cell c, O(c,t) the

observed abundance in this cell, and h is a set of parameters of the

model. Probabilitiesp(X (c,t)~O(c,t) hj ) were defined assuming a

zero-inflated Poisson distribution to take into account an excess of

null abundance in the data set [39], possibly due to the non-

participation of a proportion (w) of householders, with w = 0.7 as

before [24].

The parameters h of the model were identified using a genetic

algorithm run at the super-computing centre ‘Institut du

Développement et des Ressources en Informatique Scientifique

(IDRIS)’ located at Orsay, France (http://www.idris.fr/ - Project

IDRIS 112290). Genetic algorithms search for solutions using

techniques inspired by natural evolution. The interested reader

can find a detailed description of such methods and the typical

terminology we adopted below in [40]. The algorithm considered

the 8 parameters of the model (Sd, Sp, d, Kp, Ks, D, s and H) to be

estimated as independent quantitative traits with a continuum of

alleles representing possible trait values within biologically relevant

domains. The fitness function corresponded to the LLH value

defined with respect to the GIS-SEM model with no control

described above. The fittest individuals were selected to produce

offspring through free recombination and unbiased mutations.

The variance of the effect of the mutations was dynamically

adapted to the variance in the parental population. All codes were

written in C/MPI.

Confidence intervals were calculated by establishing the

profile likelihood for each parameter hi[h, and by using these

relationships to determine the 12a confidence region hi
lo,a,hi

up,a

h i

defined as:

LLH(hi
lo,a)~LLH(hi

up,a)~LLH(ĥhi){
1

2
x2

1,a ð7Þ

where ĥhi is the MLE of parameter hi and x2
1,a stands for the

(12a)th quantile of the x2 distribution on 1 degree of freedom [41].

Predictive quality of the model with no control
The ability of the parameterized model to predict other

infestation dynamics was tested by comparing its prediction to

the spatio-temporal distribution of bug abundance in a second

year of infestation of the same village. A Poisson regression

between observed and predicted abundances was performed after

data were pooled over 3-month periods (starting in mid-

September) and within three distance categories: 0–80 m, 81–

200 m and .200 m from the bush area outside the villages

[24,26]. The McFadden’s likelihood ratio index was used as a

pseudo R-squared.

Evaluation of spatially targeted control strategies
Because the spatial distribution of bugs follows a spatial gradient

with higher abundance at the periphery of the village [24,26], the

control strategies were applied to a ring of cells located at the

border of the village, the size of this ring increasing progressively

until the intervention covered the whole village (Figure 1). The

efficacy of any given spatially targeted strategies was measured in

terms of yearly bug abundance both in the whole village and in the

different concentric rings. This allowed us to quantify the

relationship between the effort in terms of control coverage and

the global efficacy, and to simultaneously assess the consequences

of interventions in the various parts of the village. The efficacy of

intervention was evaluated using the set of parameters’ estimates

providing the best fit to the data. It was complemented by a

sensitivity analysis of the corresponding results to the parameter’s

estimates. Each parameter hi was then independently set to the

boundary values of its confidence interval, i.e. hi
lo and hi

up, while

keeping the others to their MLE.

We evaluated the efficacy of five types of control strategies

applied individually, including indoor insecticide spraying, door

and window insect screens, peri-domicile cleaning, triatomine

lethal traps located in the peri-domestic habitat, and housing

improvement to reduce house attractiveness to bugs. The effect of

each strategy on bug survival, reproduction and/or dispersal was

modelled as described below (see also supplementary methods —

Text S1 — for the mathematical changes that were made to the

model to include these effects).

Indoor insecticide spraying was modelled by reducing

vector survival in each treated house as before [11]. The control-

induced mortality was calculated with respect to the residual dose

of insecticide that we adjusted daily, and to the lethality of the dose

as expected from a typical sigmoid dose-response relationship.

Assuming that the control-induced and natural mortalities act

independently (i.e. to survive one of the two causes of death does

not affect the probability to survive the second one), we combined

them multiplicatively to define the overall survival probability.

We considered a spray rate of 50 mg.m22 of pyrethroid

insecticide at the beginning of the infestation season (since it was

previously shown to be the optimal timing for spraying [11]), the

half-life of the insecticide was set to 38 days, and the lethal doses

50% and 90% were fixed to 32.2 mg.m22 and 182.4 mg.m22

[11]. A sensitivity analysis to insecticide dose was performed

predicting the effect of spraying at 100, 200 and 300 mg.m22.

Door and window screens were considered as physical

barriers impeding the arrival of a proportion of the non-

domiciliated vectors into the domestic habitat, and were thus

modelled by lowering immigration into the houses by a factor of

bug exclusion r set at 85% and constant over time [11,42]. Again,

a sensitivity analysis was conduced by considering r equals to 70,

80 and 90%. Because the efficacy of screens is likely to depend on

the behavioral response of dispersal bugs failing to enter houses

because of screens, and because no information was available

in the literature about such a response, we considered three

alternative assumptions. Bugs that could not enter into houses

were considered: (1) to stop dispersing and die, or (2) to stop

dispersing for one day before starting again with no learning in

their dispersal behavior (and thus possibly attempting to enter the

same house), or (3) to go on dispersing while avoiding the house

they could not enter.

Peri-domicile cleaning was assumed to eliminate all bug

colonies established in this habitat for the rest of the current year.

This reduced immigration from the cleaned sites, but did not have

any effect on individuals that originated from other areas and may

pass through the peri-domiciles where this control strategy was
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applied. In addition, we performed a sensitivity analysis by

considering that cleaning removes only 60% and 80% of insects

established in the peri-domestic habitat.

Manipulation of houses’ attractiveness to bugs was

achieved by decreasing H from its estimated value to 1, the value

for which houses are no more attractive than the peri-domestic and

sylvatic habitats. This represents the strongest possible effect and

allows evaluating the maximal potential for this strategy; a sensitivity

analysis for the intermediate values of H was then performed.

Triatomine lethal traps in the peri-domestic habitat were

assumed to attract and kill triatomines into the cells where they are

positioned according to an additional parameter Htrap that

measured the trap attraction. As for the study of the control of

houses’ attractiveness we first wanted to evaluate the maximal

potential of this strategy. The density of traps was then fixed at 2

traps per household, and attraction was set to a constant level

Htrap = 12, almost twice the attraction of houses. Sensitivity analysis

was then performed for different density of traps, in the range 5

traps per household to 1 trap for 10 households, and trap

attraction, in the range 1 to 50.

Results

The model with no control
The model predictions fitted very well the yearly spatio-temporal

dynamics of infestation observed in the village of Teya between mid-

September 2006 and mid-September 2007. The correlation

between observed and simulated spatio-temporal data indicated

that the model reproduced well both the seasonal variations in

triatomine densities, and the spatial spread of bugs from the border

to the centre of the village (Figure 2A, McFadden’s likelihood ratio

index = 0.93). Importantly, the model parameterized with the data

on this first year was able to predict the observed spatial and

temporal dynamics of bug abundance in the following year

(Figure 2B, McFadden’s likelihood ratio index = 0.67). We note

that while our model tends to predict well high abundances,

predictions at lower vector abundances seem less precise. However,

this is rather inconsequential since predicting fine variations in space

and time at low abundances is of little relevance for our ultimate

objective of evaluating control strategies.

The convergence of the presented results with a previous study,

that used a stochastic model [24], also showed that the selected

local and dispersal rules (see Definition of the function f including

the local and dispersal rules) were reliable in their ability to both

reproduce and anticipate the spatio-temporal dynamics of these

non-domiciliated vectors. Likelihood profile confidence intervals

gave further information on the estimated parameters of these

rules (Table 1). Those confidence intervals were quite narrow

around the MLE. The lower and upper boundaries were typically

located at less than 30% of the MLE of each of the parameters,

indicating that larger changes in one of the parameter estimates

would no longer allow properly reproducing the data. The

survival rates in the domestic and peri-domestic habitats were

very close to 0.2 and 0.9, respectively; the numbers of insects

immigrating from the colonies established in the sylvatic and peri-

domestic habitats were in the range 150–260 insects for 15 days;

there was nearly a 1:1 ratio between immigration from the

sylvatic and peri-domestic habitats; the attraction to the house

was always at least 5 times higher than attraction to the peri-

domestic area, and the optimal (and mean) distance of dispersal

was between 50 and 60 meters (Table 1). All of those results were

consistent with and supported our previous conclusions that

insects found in houses came in roughly similar proportion from

the sylvatic and peri-domestic habitats and that they disperse over

rather small distances and with a strong attraction to the domestic

habitat [24]. Overall, our spatial model with no control thus

offered a good framework where spatially targeted control

strategies could be evaluated.

Efficacy of spatially targeted single control strategies
We investigated the efficacy of the five strategies considered

independently by applying them to concentric rings defined from

the border of the village and whose size was increased until a

complete coverage of the village was reached. For each strategy,

we calculated its efficacy, measured as the post-intervention

reduction of bugs’ abundance in the whole village, in function of

the extent of village zones treated, i.e. the effort in terms of the

control intervention (Figure 3A–E). We also calculated the effect of

the interventions in each concentric village area, including those

without control intervention (Figure 3F–J). Finally, we performed

a sensitivity analysis to the parameter values by independently

replacing the MLE with the upper and lower values of each profile

likelihood based confidence interval (Table 1).

Figure 2. Correlation between observed and predicted bug abundance in the houses. (A) Descriptive value of the model: correlation
between predicted values and abundance data during the first year of field collections that were used to estimate the model parameters. Predicted
abundance = 0.97+0.36 x Observed abundance year 1 (McFadden’s likelihood ratio index = .93). (B) Predictive value of the model: correlation between
predicted values and the abundance data during the second year of field collections. Predicted abundance = 0.75+1.07 x Observed abundance year 2
(McFadden’s likelihood ratio index = 0.67). The grey lines indicate a perfect relationship.
doi:10.1371/journal.pntd.0001045.g002
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The first key point is that all the results obtained with each of

the five strategies were only weakly sensitive to changes in

demographic parameters values. Such changes indeed lead to no

qualitative change in the form of the relationships (Figure 3). As

expected, parameters with the strongest effect depend on the

control strategy considered. Maximal changes were obtained

when changing survivals (Sp, Sd) for insecticide spraying,

immigration rates (d) for screens and outdoor traps, houses’

attraction (H) for the control of houses’ attractiveness and the

number of individuals leaving colonies (Kp, Ks) for peri-domestic

cleaning (results not shown). However, these effects were

systematically lower than 5% on both treated (Figure 3A–E)

and untreated areas (Figure 3F–J). The results obtained are thus

very robust to variations of the parameters of the model with no

control, and we will thus further describe only the results obtained

with the MLEs.

Indoor insecticide spraying in the whole village allowed the

reduction of total bug abundance over a year by about 70% for

one year (Figure 3A). The relationship between the proportion of

treated houses and global efficacy was a slightly convex

diminishing return curve, so that half of the maximal decrease

could be obtained by spraying only the first two external zones of

the village (a third of the houses). We also evaluated the local

efficacy of insecticide in untreated village zones at the forefront of

the treated areas. Independently of the number of village areas

sprayed, the use of indoor insecticide only reduces the vector

abundance in the treated area; it has a negligible effect on

neighboring untreated areas (Figure 3F). To increase the dose

applied allowed the predicted levels of vector reduction to reach

higher levels (doses of 100, 200 and 300 mg.m22 lead to a 79%,

85% and 87% maximal control efficacy, respectively; data not

shown), with no change in the main conclusion: Insecticide

spraying in only the first two outer zones allowed for half of the

maximal control efficacy.

Door and window insect screens applied to all the houses

of the village decreased the total vector abundance by about 80%

when bugs that could not enter into houses were assumed to go on

dispersing (assumptions 2 and 3, the former including possible

attempts at entering again the house they just failed to infest)

(Figure 3B). As for insecticide spraying, there was a slightly convex

diminishing return between the number of treated zones and

efficacy. Accordingly, limiting the intervention to the first two

zones at the periphery of the village (a third of the village houses)

again led to half of the maximal reduction in abundance. Under

the two assumptions not including the death of the insects failing to

enter the houses [2–3], the analysis of insect screens’ local efficacy

indicated that while infestation was well controlled in houses with

screens, the control had a detrimental effect on the immediate

non-equipped neighbor: an increase of up to 40% in vector

abundance was estimated in the most proximate untreated village

zone (Figure 3G). This negative effect on neighboring areas

disappeared for untreated areas more than 3 zones away from the

treated one. On the other hand, when the vectors were assumed to

die when failing to enter a house (assumption 1), the effects of

screens were significantly different. In this case, vector abundance

was reduced slightly further (up to 90%) when screens were used in

all the houses of the village (Figure 3B upper dotted black line),

and the control strategy then had no negative effect on untreated

neighboring houses (Figure 3G upper dotted black line). To vary

the efficacy of screens produced only small linear changes in the

global efficacy. Under assumptions 2 and 3, a reduction factor r of

70%, 80% and, 90% lead to a 51%, 64% and 80% maximal

control efficacy, while under assumption 1, a reduction factor r of

70%, 80% and 90% led to a 73%, 82% and 91% maximal control

efficacy; data not shown. The above conclusions are consequently

very robust to variations of r, which is thought to be in the range

80–90% in the field [42].

Peri-domicile cleaning reduced total bug abundance by up

to 62% for one year when performed in the whole village

(Figure 3C). The increase in efficacy with increasing coverage was

a concave relationship with a slightly increasing return. Because of

the lower efficacy of peri-domicile cleaning at the periphery of the

village, intervention in at least the first 3 zones (60% of the village

peri-domestic surface) was required to reach half of the maximal

reduction in abundance. Interestingly, when peri-domicile clean-

ing was performed only in some parts of the village it had an

important beneficial effect on untreated neighboring houses. The

vector abundance in the two closest non-treated zones was

reduced by 40% and 15% respectively (Figure 3H). Lowering the

rate of colonies’ destruction by peri-domicile cleaning, which was

initially set to 100%, lowered the total efficacy in an almost

perfectly linear way, but again had no effect on the above

qualitative conclusions. Typically, assuming that only 80% or 60%

of colonies are removed by cleaning peri-domiciles allowed for a

maximal control efficacy of 50% (<62%680%) and 37%

(<62%660%), and in both cases intervention in the first 3 zones

was needed to get half of these outcomes.

Manipulation of houses’ attractiveness was found 60%

effective when applied to the whole village and when such

attraction was completely eliminated, so that domestic habitat was

no more attractive than the peri-domestic and sylvatic habitats

(H = 1) (Figure 3D). Half of the maximal efficacy could be reached

by an intervention targeted on the first two zones of the village

representing a third of the village houses. However, such strategy

had an important negative impact on the abundance of bugs in

non-manipulated neighboring houses when applied to parts of the

village (Figure 3I). Indeed, the lack of attraction of manipulated

houses resulted in an increase of over 50% and 30% in bug

abundance in the next two untreated village zones. Importantly,

sensitivity analysis of intermediate values of reduction in house

attractiveness indicated that efficacy of the intervention was

rapidly lost as H was incompletely reduced: the maximal efficacy

was of 40%, 17% and less than 5%, for H values of 2, 4, and 6,

respectively (Figure 4).

Table 1. Maximum likelihood estimates (MLE) and 95%
profile-likelihood confidence interval of the parameters of the
model with no control.

Parameter1 MLE 95% CI

Adult survival in the domestic habitat Sd

(probability.time21)
0.21 [0.17, 0.25]

Adult survival in the peri-domestic habitat Sp

(probability.time21)
0.93 [0.91, 0.95]

Adults leaving peri-domestic colonies Kp (number.time21) 212 [180, 246]

Adults leaving sylvatic colonies Ks (number.time21) 203 [157, 259]

Rate of flight/walk initiation d (probability.time21) 0.27 [0.19, 0.36]

Dispersal distance mode D (m per displacement) 53.2 [50.9, 55.5]

Standard deviation of the dispersal distance s (m per
displacement)

1.05 [1.0, 3.8]

House attractiveness H (no dimension) 6.6 [5.2, 8.8]

Estimates of Sd, Sp, Kp, and Ks are given for a 15 days period (to allow direct
comparisons with previous estimates published in [24]), while d is given for a 1-
day period (the time step of the model) as it is not linearly scaling with time.
doi:10.1371/journal.pntd.0001045.t001
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Insect lethal traps were found potentially able to reduce

global vector abundance by up to 72% when considering a high

density (two traps per household) and a high attractiveness

(Htrap = 12, nearly twice the attractiveness of houses) and 100% of

lethality (Figure 3E). Under these conditions, an important

diminishing return was observed since to install traps in the first

Figure 3. Global and local efficacy of the five control strategies. (A–E) Global efficacy. Relationships between the post-intervention reduction
in bug abundance in the whole village, and the control effort, measured as the extent of village zones treated, expressed in proportion of the number
of houses in the whole village (below the axis) and in number of village zones (above the axis). (F–J) Local efficacy. Reduction of bugs abundance in
untreated village areas (.n) when the control intervention is limited to the n outer village zone(s). In A–J, grey dashed lines give the minimal and
maximal efficacies obtained when demographic parameter values were varied within the 95% confidence interval of their MLE. In B and G, dashed,
solid and dotted black lines correspond to the variation of efficacy according to the different assumptions made on bug behaviour after they fail to
enter a given house because of screens. Dotted line: assumption 1, to stop dispersing and die. Solid line: assumption 2, to stop dispersing for one day
before starting again with no learning in their dispersal behaviour (and thus possibly attempting to enter the house they just failed to infest). Dashed
line: assumption 3, to go on dispersing while avoiding the house they could not enter. In G the dashed line is confounded with the solid one.
doi:10.1371/journal.pntd.0001045.g003
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zone of the village (27% of the peri-domestic surface) allowed to

attain half of the maximal efficacy. Furthermore, this strategy had

substantial positive effects on the 4–5 neighboring areas without

traps, where insects’ abundance was decreased by 50%, 30%, 15%

and 7%, respectively (Figure 3J).

However, reducing the attraction factor of each trap had an

important effect at the village scale as the global control went

down from 72% to 55% when attraction of individual traps was

reduced from Htrap = 12 to Htrap = 5, a value similar to the

attractiveness of houses (Figure 5). On the contrary, to increase

attraction to higher levels had almost no effect whatever the

number of traps considered. To lower the number of traps also

had a strong detrimental effect, and the reduction of bug

abundance due to control was never found larger than 30% when

the number of traps was dropped to 1 trap for 10 households

(Figure 5). A nearly 100% control efficacy at the village scale was

reached only when more than 2,500 traps were used in the village,

which represent about 5 traps per household within the village.

Combined spatially targeted control strategies. The

above results suggest spatial combinations of strategies may

improve control efficacy. We thus evaluated a combination of

either insect screens (according to assumption 2) or insecticide

spraying in the outer part of the village, to target vectors

originating from both peri-domestic and sylvatic sources in this

area, with peri-domicile cleaning in the centre, where peri-

domestic colonies represent the major source of vectors infesting

houses. The spatial coverage of each strategy was systematically

varied to identify the optimum spatial combination. Combining

either the use of insect screens or insecticide spraying in the first

two outer zones of the village with peri-domestic cleaning in the

centre, allowed an optimum reduction in vector abundance of up

to 80% (Figure 6). Installing screens on larger parts of the village

while reducing the coverage of peri-domicile cleaning did not

provide any additional benefit and spraying on larger parts of the

village controls less optimally (Figure 6). The maximum of efficacy

observed for spraying in the two outer zones and peri-domestic

cleaning in the inner zones is induced by the high proportion of

insects from peri-domestic colonies in the inner areas; these insects

are better controlled by removing the colonies than by the fast

decaying insecticide, no more efficient at the end of the migration

period.

Cost-effectiveness of individual and combined control

strategies. Based on the potential cost of the different

interventions [42], insecticide spraying in the entire village

would quickly become expensive, as spraying needs to be

performed every year [27,42]. As for insect screens, although a

complete coverage of the village could control vectors effectively

over a longer period of time, the global cost remains high (Table 2).

Importantly, spatial targeting of combinations of strategies can

maintain (or even increase) vector control efficacy compared to

single interventions, while significantly reducing cost. Indeed,

either insecticide spraying or insect screens applied to houses in the

two outer zones of a village, combined with peri-domicile cleaning

Figure 4. Efficacy of control by manipulation of houses
attractiveness. Efficacy was measured as a percentage reduction in
vector abundance in the whole village, when manipulating the
attractiveness in all the houses of the village. Attractiveness was
decreased from H = 6.6, its estimated value in absence of control (see
Table 1), to H = 1 where houses were no longer attractive since they had
the same H factor as peri-domestic areas.
doi:10.1371/journal.pntd.0001045.g004

Figure 5. Efficacy of triatomine lethal traps according to their
potential attractiveness and density in the village. Efficacy was
measured as a percentage reduction in vector abundance in the whole
village, when traps were installed all across the village. Attractiveness
was increased from Htrap = 1, where traps are not attractive since they
had the same H factor as peri-domiciles, to Htrap = 50. Symbols stand for
different density of traps. Open circles: 1 trap for 10 houses, open
squares: 1 trap for 5 houses, open diamonds: 1 trap for 2 houses, closed
triangles: 1 trap per house, closed diamonds: 2 traps per house and
closed squares: 5 traps per houses.
doi:10.1371/journal.pntd.0001045.g005

Figure 6. Efficacy of spatial combinations of vector control
strategies. Insecticide spraying (squares) or insect screens installation
according to assumption 2 (diamonds) in the inner part of the village
are combined with peri-domestic cleaning in the remaining inner part.
The x-axis gives the number of zones controlled with insecticide or
screens (above the axis) and the fraction of the effort necessary to
control the whole village with these strategies (below the axis). Efficacy
was measured as a percentage of reduction in vector abundance in the
whole village.
doi:10.1371/journal.pntd.0001045.g006
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in the centre, would provide optimum vector control at the lowest

cost (Table 2).

Discussion

Although the elimination of transmission of Chagas disease was

targeted by the WHO for the year 2010 [4], there are still large

regions with active vectorial transmission mostly due to non-

domiciliated triatomines [6]. These vectors do not constitute

permanent colonies inside houses, so that domestic populations

actually are typical ‘sinks’ sustained by peri-domestic and/or

sylvatic ‘source’ populations [8]. The risk of transmission

associated with these non-domiciliated vectors is thus now

identified as a major challenge for the future of Chagas disease

control [5], and a key objective is to evaluate the efficacy of

classical or alternative control strategies to reduce their abun-

dance. Since non-domiciliated insects infesting houses typically

come from the sylvatic and peri-domestic habitat [11], to evaluate

the potential of various strategies requires a good understanding of

the village infestation dynamics in absence of control. In this

perspective, spatial population dynamic models able to reproduce

and predict the dispersion of individuals from these two non-

domestic habitats are valuable tools.

Taking advantage of previous field and modelling works on

well-studied populations of non-domiciliated triatomines in villages

of the Yucatan Peninsula, Mexico, we performed the first attempt

to evaluate the efficacy of putative control strategies applied

spatially. We identified triatomines’ dispersal characteristics

through a selection model approach based on maximum likelihood

estimates [37,38]. The best deterministic model and the associated

estimates of the dispersal characteristic identified here were found

very similar to the ones identified in a similar approach, but based

on stochastic models [24]. In addition, just as the previous more

complex stochastic model, our deterministic model reproduced

and predicted very well the spatio-temporal dynamic of the village

infestation. The present study thus confirmed that the selection

model approach is a well-adapted strategy to simultaneously

obtain indirect estimates of triatomines dispersal, hard to quantify

in the field [19], and robust GIS-based Spatially Explicit Models

(GIS-SEM) able to reproduce and predict the dynamic of

infestation in the absence of control. Such a model is required

for the evaluation of the efficacy of putative control strategies; to

this end we combined our selected model with a representation of

different strategies to evaluate their potential.

We found that indoor insecticide spraying and insect screens

applied to the entire village were able to reduce yearly vector

abundance in the whole village by 70 and 80%. Interestingly, in

both cases, half the maximal effect was obtained while interven-

tions were limited to the first two outer zones of the village. This

mostly reflected the higher abundance of insects typically found in

houses in the periphery of the village, where the vectors dispersing

from both the peri-domestic and sylvatic habitats contribute to

domestic infestation [23,24,26].

Although global efficacy was roughly similar for these first two

strategies, a possible difference between them could be on their

effect on untreated neighboring households. Indeed, insect screens

were shown to impose some additional infestation on nearby

untreated houses when vectors were allowed to go on dispersing

after failing to infest a protected house. However, this negative

effect was not present when vectors were assumed to systematically

die after their first attempt to infest a protected house.

Interestingly, the latter scenario is qualitatively consistent with a

field trial conducted in a village of the north of the Yucatan

Peninsula, in which the use of impregnated curtains and windows

screens in some houses seems to reduce bug abundance in nearby

untreated houses [42]. This may be due to some knockout effect of

the low dose insecticide used for impregnation, or to a poor

energetic status and/or exhaustion of bugs that could prevent re-

departure after a flight/walk to intent infest a first house.

Particularly in these conditions, and even if more empirical and

modelling studies are needed to quantify vector dispersal at the

individual scale, our results do support the idea of a spatially

targeted use of insect screens to control the higher bug abundance

at the periphery of the village as it maximizes the overall reduction

in transmission risk at the level of the entire village. The most cost-

efficient intervention would then be to treat the houses located in

the first two outer zones (about 33% of the total houses of the

village) to obtain around 50% bug abundance decrease in the

entire village.

The weak effect of insecticide spraying on the neighboring

houses shown in this study is also consistent with a field trial [42].

Treating the first two outer zones would allow obtaining about

40% decrease in total bug abundance in the entire village but with

no efficiency on untreated areas. Those results suggest that the cost

associated to the temporary effect of insecticide spraying on non-

domiciliated vectors demonstrated at the house scale [9,11], can

only weakly be compensated for by spatially targeted strategies

that would exploit the typical gradient of abundance due to the

immigration of sylvatic bugs [26,43].

Peri-domicile cleaning appears to be an interesting alternative

strategy having the potential to substantially reduce vectors

abundance inside the treated zones and to exert a positive

influence on untreated areas. By eliminating all the colonies

established in the backyards, a perfect cleaning of the peri-

Table 2. Cost-effectiveness of individual and combined vector control strategies.

Strategy

Efficacy in all village
(% of reduction in
vector abundance)

Cost for
1 year ($)

Cost for
5 years ($)

Insecticide spraying in all villagea 70% 2,640 13,200

Insect screens in all villageb 80% 21,600 21,600

Peri-domicile cleaning in all villagec 60% 2,640 6,600

Insecticide spraying 2 zones in periphery+peri-domicile cleaning 8 zones in centre 80% 2,640 8,841

Insect screens 2 zones in periphery+peri-domicile cleaning 8 zones in centre 80% 9,078 9,078

aInsecticide spraying needs to be annual [9,11]. Cost estimates include materials and labour, but not transportation to the villages.
bEfficacy of insect screens is given for assumption 2 and insect screens are assumed to last for 5 years.
cPeridomicile cleaning needs to be repeated every 2 years [42].
doi:10.1371/journal.pntd.0001045.t002
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domiciles provided a 60% reduction of bug abundance in the

village, although it provided a substantially lower efficacy at the

periphery of the village, compared to the efficacy of residual

insecticides and insect screens. This lower predicted efficacy at the

village scale and in the outer zones is due to the absence of impact

of this strategy on insects dispersing from the sylvatic habitat. It is

also consistent with previous estimates indicating that infesting

bugs come from both peri-domestic and sylvatic sites, and that

both sources need to be controlled [24,44].

Interestingly, the positive effect of this strategy on nearby

households with no intervention confirmed results of a previous

field trial where peri-domicile cleaning (elimination of unnecessary

objects of the peri-domicile followed by insecticide spraying) also

reduced infestation in neighboring houses without intervention

[42]. Accordingly, peri-domicile cleaning could valuably be used

to significantly reduce bug abundance, especially in the centre of

the village where the majority of non-domiciliated vectors found in

houses come from the peri-domestic habitat [24]. Because it

targets specifically peri-domestic vectors, such a strategy could lead

to a substantial level of control when combined with insect screens

in the periphery of the village.

The manipulation of house attractiveness was explored here as a

potential novel vector control intervention based on the rationale

that triatomines were found to be directly attracted to the houses

[24]. We found that such an intervention could reduce domestic

infestation by up to 60% when applied to the entire village.

However, when applied to only a fraction of the houses, we show

that it would induce an increased infestation of neighboring

untreated areas as bugs no longer attracted to manipulated houses

tend to disperse to nearby domiciles. Control intervention based

on this strategy should thus preferentially be implemented in all

the houses of the village, and feasibility would then rely on the kind

of modifications to be done in the domestic habitat to limit

attraction.

The actual determinants for house attractiveness to bugs are still

unknown, but if light is proven to be a key factor [28,45,46], the

use of devices limiting the diffusion of the light may be considered.

Nevertheless, it is important to emphasize that the effect of the

intervention is rapidly lost if the reduction in the attractiveness is

only partial. This strategy would thus be of little interest if a nearly

complete reduction in house attractiveness to bugs could not be

achieved. Thorough research on the mechanism and factors of

triatomine dispersal toward houses would then be needed to allow

the implementation of such a strategy.

Triatomine lethal traps were also tested in an attempt to keep

bugs away from the houses. Such traps were estimated effective if

they were highly attractive and lethal, and used at very high

densities; in these conditions they would also have a marked

beneficial effect on neighboring houses without traps. The

attractiveness of potential traps such as yeast-baited traps is

difficult to estimate, but available studies suggest an attractiveness

H in the range of 2–3, i.e. rather less that the attractiveness of

houses evaluated at 6–7 [47–49]. In such conditions, the use of 5

traps per household, which would represent about 2,500 traps in

the whole village, only allows for about 30% reduction of

triatomines abundance in the village.

In addition, traps were assumed to be of constant efficacy in our

model, which seems to be highly unlikely in practice, as it would

raise the issue of the periodic maintenance/renewal of the traps

depending on their half-life. It thus seems that the performance of

potential outdoor traps would need to be dramatically improved to

become a viable strategy for non-domiciliated triatomine control.

Overall, this study has shown that control strategies applied at

the periphery of a village can contribute to reduce infestation in

untreated, more central houses, but only in limited proportions.

Typically, insecticide or insect screens used in the first two outer

zones of the village, which represents 33% of the households,

would only reduce vector abundance in the whole village by 40–

50%. In these conditions, spatial targeting of strategies based on

either insecticide spraying or insect screens applied to houses in the

two outer zones of a village, combined with peri-domicile cleaning

in the centre, would provide optimum vector control at the lowest

cost (Table 2). Essentially, such mixed strategy would remove peri-

domestic colonies where they are the major source of vectors, and

impede the insects to enter houses where they also come from non-

manageable sylvatic colonies.

At first, the costs of combining insecticide spraying or insect

screens with peri-domicile cleaning seem roughly equivalent.

However, the seasonal pattern of house infestation requires, for

insecticide spraying, the dispatch of a large number of spraying

teams to cover an entire region within 2 months [11], generating

additional costs of transportation and logistics [27].

Thus, a combination of insect screens in the periphery and peri-

domicile cleaning in the centre would be the most cost-effective

and sustainable strategy to be implemented in the Yucatan

Peninsula. The design of such spatially mixed strategies of control

offers a promising avenue to reduce the economic cost associated

to the repeated intervention intrinsically associated with the

permanent re-infestation of houses by non-domiciliated vectors

[9,11].
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