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Abstract: Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is
limited due to low water solubility and possible instability. The aim of this study was to evaluate the
possibility to incorporate OrO in an aqueous dispersion of chitosan—alginate nanoparticles and how
this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification
and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-
NP) have small size (320 nm) and negative charge (−25 mV). The data from FTIR spectroscopy
and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of
thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory
concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens
(ISO 20776-1:2006) are 4–32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of
the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations
still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure
OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10)
shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system
of oregano oil possesses strong antimicrobial activity and is promising for development of food
additives.

Keywords: oregano oil; chitosan—alginate nanoparticles; antimicrobial activity; in vitro cytotoxicity;
skin irritation test

1. Introduction

The antimicrobial resistance to clinically approved antibiotics and chemotherapeutics
rapidly growing all over the world warrants the search for alternative sources of antimicro-
bial compounds, both for the prevention and treatment of infectious diseases in human and
veterinary medicine and for the preservation of food products in the food industry. In this
aspect, the use of modern nanotechnological approaches is essential for the development of
new products with known antimicrobial ingredients aiming to increase their effectiveness.
Oregano (Origanum vulgare L.) is a herb prominent in the Mediterranean and particularly
in the Bulgarian diet. It has been shown to possess numerous bioactive properties such as
antimicrobial, anti-inflammatory, antioxidant, and analgesic properties [1,2]. According
to ethnopharmacological data, oregano oil (OrO) has been known since ancient times as
the strongest natural antibiotic and has been used successfully in traditional medicine to
relieve diseases of the gastrointestinal tract (e.g., diarrhea, indigestion, stomachache), dia-
betes, respiratory (e.g., asthma, bronchitis, cough), infectious, inflammatory, and menstrual
disorders [2–4]. In addition, it is widely used as a spice in cooking and is part of many food
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products on the food market [1]. OrO from Origanum vulgare is currently authorized as
a feed additive according to the entry in the European Union Register of Feed Additives
pursuant to Regulation (EC) No. 1831/2003 [5].

Recent preclinical pharmacological studies on the therapeutic properties of OrO
and both of the main molecules in its composition, the terpenoid thymol and its phenol
isomer carvacrol, have demonstrated a wide spectrum of pharmacological activities such as
antibacterial [6–24], antifungal [22,23,25,26], antiviral [27–30], antioxidant, etc. According
to the published data, OrO, carvacrol, and thymol exert a bacteriostatic or bactericidal
effect in a concentration-dependent manner against food-borne pathogens, human or
animal clinical isolates, including a broad spectrum of Gram-positive (Staphylococcus spp.,
Streptococcus spp., Enterococcus spp., Acinetobacter spp., Bacillus spp., Listeria monocytogenes,
etc.) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp., Salmonella
spp., Propionibacterium acnes, etc.) species.

Undoubtedly, the most widespread current application of OrO is in the food industry
because of its bactericidal effect against a wide range of food-borne pathogens. Despite
all different techniques used in food industry for ensuring food safety and quality, food-
borne diseases are still a serious public health problem [10]. For the last two decades, four
food-borne bacterial species represent a major problem in Europe and are in the focus of
government agencies and the food industry: Salmonella spp., E. coli, Campylobacter spp.,
and Yersinia spp. [31,32]. An important challenge for the food industry is also the increased
use of ready-to-eat, ready-to-cook, and heat-and-eat foods in industrialized countries.
The new trend and regulations for the production of all-natural food without artificial
preservatives which may have toxic properties or cause allergies require new approaches
for food preservation [12,33]. Many studies report on the activity of OrO against food-borne
pathogens which together with its meat seasoning properties makes it a suitable candidate
for a food preservative agent [1,10,12,20,22]. Boskovic et al. [20] demonstrated that OrO
inhibited the growth of S. typhimurium and B. cereus at the concentration of 160 µg/mL,
whereas S. enteritidis, E. coli, and MRSA were susceptible to 320 µg/mL. Pesavento et al. [12]
showed that a 0.5% OrO concentrate exerted a bacteriostatic effect on L. monocytogenes in
raw minced meat up to the 11th day and a bactericidal effect after 14 days of incubation.
Greater concentrations of 1–2% OrO killed the bacteria on the second day of the experiment.
In the same study, the MICs for L. monocytogenes, S. aureus, S. enteriditis, and Campylobacter
jejuni were in the range of 0.006–0.05% as determined by the broth microdilution method.
Cattelan et al. tested in their study four food-borne pathogens—B. cereus, B. subtilis, E.
coli, and S. typhimurium and reported that all these species were susceptible to OrO, but
the highest concentration (5%) was most efficient against B. cereus [10]. Cattelan et al. [34]
studied the effects of OrO on the survival and growth of E. coli in salad dressings and
demonstrated that the use of OrO can be considered promising as far as it allows reduction
in the bacterial count and the levels of salt to be incorporated in food. OrO was also
tested as an additive to different meat products such as chorizo [35] and tsamarella [36]
in concentrations of 0.1% and 1%, respectively. According to the published data, OrO
did not affect the growth of the starter cultures in both meat products and decreased
the bacterial pathogen count (Enterobacteriaceae) in tsamarella. OrO also significantly
reduced the heat treatment time required for the inactivation of L. monocytogenes in products
containing sous-vide salmon [37]. Based on these reports, OrO can be considered a healthy
ingredient for food products where applicable but its application is often limited due
to flavor considerations since effective antimicrobial doses may exceed organoleptically
acceptable levels [7,12,36]. In general, it was found that concentrations between 0.1% and
1% are suitable regarding the taste for meat preservation [12,35,36]. The use of OrO as a
food additive has already been recognized in the European Union in the concentrations
of 2.0 mg/kg bw/day for women and 2.3 mg/kg bw/day for men, respectively [1,38].
For the purposes of the food industry, OrO is often not added to the product itself, but is
incorporated into biocomposite packaging films or other types of edible coatings. Edible
coatings based on polysaccharides are environmentally friendly alternatives and can reduce
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the use of chemical preservatives [39–44]. The application of such packages is investigated
for numerous types of raw or processed foods such as pork, ham, chicken wingettes, fish
fillets, seafood, vegetables, fruits, juices, etc. [39,40,45–52]. The incorporation of 2% OrO
in a chitosan-based biocomposite film achieved a growth inhibition rate of 99% against E.
coli and L. monocytogenes [41]. Edible Na alginate films with OrO significantly reduced the
count or killed L. monocytogenes in packages with ham slices.

In general, application of the oregano oil is limited to formulation in lipid vehicles,
mainly for external treatment. On the other hand, oregano oil is volatile and susceptible to
degradation, which additionally hinders its pharmaceutical application. The aim of our
study was to develop a nanosized system that would either enable formulation of oregano
oil in an aqueous dispersion or potentiate its antimicrobial effect. Chitosan and sodium
alginate were selected as vehicles of the nanosystem because of their biocompatibility and
the antibacterial properties of chitosan itself. Further, part of the studies was focused on the
evaluation of in vitro cytotoxicity of the developed nanodelivery system in normal human
keratinocytes and in vivo skin irritation test on rabbits.

2. Results
2.1. Phytochemical Characterization of the Oregano Oil

Oregano oil was obtained by distillation using a Clevenger apparatus with a yield of
1.5%. Characterization of the chemical constituents of the essential oil was performed by
thin-layer chromatography and gas chromatography–mass spectrometry (GC–MS). After
calculating the area under the curve using the Genesis algorithm in the NIST program, the
relative concentrations of the main compounds in the oil were defined (Table 1).

Table 1. GC–MS data of the oregano oil.

Compounds Rt (min) Concentration in the Oil (%)

trans-β-ocimene/α-pinene 6.21 1.05
γ-terpinene 8.94 4.05

o-cymene/m-cymene 9.18 39.44
terpinolene 10.28 20.82
bergamol 11.58 n.d.

isothymol methyl ether/carvacrol methyl ether 15.54 n.d.
Thymol 16.88 3.23

Carvacrol 17.08 29.80
aromadendrene 20.10 1.08

2.2. Physicochemical Characterization of Oregano Oil-Loaded Chitosan—Alginate Nanoparticles

The XRD patterns of the oregano oil, the empty and the oil-loaded nanoparticles
are presented in Figure 1. It can be seen that the empty nanoparticles showed very low
crystallinity with only one broad diffraction peak centered at around 23◦ 2θ. The oregano
oil showed two diffraction peaks, the stronger one at 18◦ 2θ and the weaker and broader
one at 42◦ 2θ. The OrO-loaded nanoparticles (OrO-NP) presented two peaks at about
20◦ and 42◦ 2θ. The shift of the strongest peak toward higher 2θ is an indication of the
shortening of the interatomic distances in the OrO-loaded nanoparticles, pointing to the
formation of a denser amorphous network compared to the pure oil. This also implies that
incorporation of oil into the nanoparticles might result in a change in the chitosan–alginate
packing structure.
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Figure 1. XRD patterns of empty chitosan—alginate nanoparticles (a), oregano oil (b), and oregano
oil-loaded chitosan—alginate nanoparticles (c).

2.3. FTIR Spectra of Pure Oregano Oil, Empty and OrO-Loaded Chitosan—Alginate Nanoparticles

The FTIR spectra of the pure oregano oil, empty and OrO-loaded chitosan—alginate
nanoparticles are presented in Figure 2. The oregano oil showed a broad band at ~3380 cm−1

(Figure 2) which was assigned to the O–H stretching vibration [4,53,54]. The three bands be-
tween 2870 and 2960 cm−1 were attributed to the C–H stretching vibration of aliphatic CH2–
groups. Between 1600 cm−1 and 1300 cm−1, several bands attributed to the C–H bending
of the aliphatic CH2 groups and C–O–H bending are visible [55]. The other characteristic
peaks (confirming the presence of carvacrol and thymol) appeared in the fingerprint region
(900–1200 cm−1) in agreement with those found by Valderrama et al. in 2017 [56]. The
band around 812 cm−1 could be attributed to out-of-plane C–H wagging vibrations, the
most significant signal used in distinguishing between different types of aromatic ring sub-
stitution [53]. The spectrum of the empty chitosan—alginate nanoparticles is presented in
Figure 2b. As the quantity of the chitosan is much lower than that of the alginate, the FTIR
spectrum of the nanoparticles is much closer to those of pure alginate than to chitosan [57].
One can observe a broad band at 3415 cm−1 corresponding to the stretching vibrations of
the O–H and N–H bonds originating from amine and hydroxyl groups. Peaks at 2927 cm−1

and 2850 cm−1 are due to C–H stretching. The peak at 1739 cm−1 corresponds to C=O
stretching modes of COOH [57]. Characteristic absorption bands of chitosan are usually
seen between 1649 and 1652 cm−1 and 1558–1598 cm−1, corresponding to C–O stretching
(amide I) and N–H bending (amide II), respectively [58–60]. When reacting with alginate,
these bands shift and overlap each other, creating a strong peak at 1611 cm−1 [61]. The
bands at 1616 cm−1 and 1421 cm−1 were assigned to asymmetric and symmetric stretching
vibration of carboxylate groups. Due to the presence of polysaccharide structure, bands
around 1300 cm−1 (C–O stretching), 1128 cm−1 (C–C stretching), 1084 cm−1 (C–O stretch-
ing), 1034 cm−1 (C–O–C stretching), and 946 cm−1 (C–O stretching) are visible, too [60].
In the spectrum of oregano oil-loaded nanoparticles (Figure 2c), the characteristic peaks
between 2870 and 2960 cm−1 appear at the same wave number indicating the successful
encapsulation of the oil into the polymer matrix [62]. However, an interaction between
the oregano oil and the chitosan—alginate nanoparticles is not excluded because of the
changed intensity and the appearance of new peaks. Similar interaction is observed for
microencapsulated oregano oil using acacia, starch, and maltodextrin [63].
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Figure 2. FTIR spectra of pure oregano oil (a), empty (b) and OrO-loaded chitosan-alginate nanoparticles (c).

2.4. Thermogravimetric Analysis of Pure Oregano Oil, Empty and OrO-Loaded Chitosan—Alginate
Nanoparticles

The oregano oil, empty and loaded chitosan—alginate nanoparticles were examined
by thermogravimetric analysis. The temperatures corresponding to the maximum weight
loss step could be seen from the first derivative of the TGA curve (DTG) on the temperature.
The results in the temperature range of 50–600 ◦C are presented in Figure 3. The pure
oregano oil had one sharp step of weight loss, while the empty and the oregano oil-
loaded nanoparticles showed two steps of weight loss. The pure oregano oil decomposed
completely at 220 ◦C. The empty chitosan—alginate nanoparticles decomposed in two steps,
at 65 ◦C and at 245 ◦C. For the oil-loaded nanoparticles, the first slight peak was centered
at about 250 ◦C and the main degradation peak could be seen at a higher temperature,
395 ◦C. This observation was in accordance with previously reported results [62,64]. The
authors pointed out that the encapsulated carvacrol in chitosan particles decomposed at a
higher temperature than free carvacrol. Hence, the encapsulation of the oregano oil into the
nanoparticles led to an improved thermal stability. This effect could be due to the possible
interaction between the essential oil and the nanoparticles.

2.5. Minimal Inhibitory and Bactericidal Concentrations of Pure OrO and OrO-Loaded
Chitosan—Alginate Nanoparticles

The tested OrO-NP exhibited strong antimicrobial activity against all the tested
pathogenic microbial strains (Table 2). The MICs for the Gram-positive and Gram-negative
bacteria varied between 0.06% and 1% v/v, wherein the S. aureus, E. faecalis, E. coli, and
Y. enterocolitica strains showed equal susceptibility to OrO. S. pyogenes and P. aeruginosa
were less sensitive. The growth of the fungal strain Candida albicans was inhibited after
exposure to 0.125% v/v of OrO, which is in the same concentration range determined for
the bacterial strains. The MBC values were the same as the MIC values for S. pyogenes
and Y. enterocolitica. The other MBC values were twofold (MRSA, C. albicans), fourfold
(S. aureus), and eightfold (E. faecalis) greater than the respective MIC values. The OrO-NP
formulation was characterized by a significantly greater activity than pure oregano oil
regarding bacterial growth inhibition expressed in up to tenfold lower MIC values (Table 2,
Figure 4).
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Figure 3. DTG curves of oregano oil (a), chitosan–alginate (b), and oregano oil–loaded chitosan–
alginate (c).

Table 2. Antimicrobial activity of oregano oil: comparison between pure oil and a nanoformulation based on chitosan and
sodium alginate.

Test Microorgan-
isms/Probes

OrO OrO-NP Reference Control

MIC
(%)

DEHA
(%) ± SD

MBC
(%)

MIC
(%)

DEHA
(%) ± SD MBC (%) AB/CT MIC

(mg/L)

S. aureus
(ATCC 29213) 0.0625 2.20 ± 0.003 0.25 0.0078 2.12 ± 1.14 0.0625 gentamicin 0.25

MRSA
(NBIMCC 8327) 0.25 2.92 ± 0.03 0.5 0.0078 3.48 ± 0.81 0.125 gentamicin 0.125

E. faecalis
(ATCC 29212) 0.0625 16.94 ± 0.08 0.5 0.0078 62.61 ± 4.81 >0.25 * penicillin

gentamicin
2.5
8

S. pyogenes
(SAIMC 10535) 0.125 11.60 ± 2.90 0.125 0.0078 91.84 ± 3.32 >0.25 * penicillin 0.08

E. coli
(ATCC 35218) 0.0625 2.40 ± 0.01 0.125 0.0078 23.88 ± 0.70 0.125 gentamicin 2

P. aeruginosa
(ATCC 27853) 1 2.72 ± 0.02 >1 0.25 0.34 ± 0.06 >0.25 * gentamicin 0.5

Y. enterocolitica
(SAIMC 864 O:3) 0.06 7.05 ± 1.60 0.06 0.002 87.00 ± 5.50 0.25 tetracycline 3

C. albicans
(SAIMC 562) 0.125 2.09 ± 0.06 0.25 0.0156 2.83 ± 0.42 0.25 amphotericin b 0.125

Legend: OrO—oregano oil; OrO-NP—oregano oil included in a chitosan-alginate nanodelivery system; MIC—minimal inhibitory
concentration; DEHA—dehydrogenase activity; MBC—minimal bactericidal concentration; AB/CT—antibiotic/chemotherapeutic; * the
highest tested concentration.
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Figure 4. Minimal inhibitory concentrations and dehydrogenase activity at MIC of the oregano
oil—comparison between OrO and OrO-NP. Legend: OrO—oregano oil; OrO-NP—OrO-loaded
chitosan—alginate nanoparticles.

2.6. Dehydrogenase Activity of Pathogenic Bacteria Treated with Pure OrO and OrO-Loaded
Chitosan—Alginate Nanoparticles

OrO diminished the dehydrogenase activity (DEHA) of all the treated bacterial species
and the C. albicans strain by more than 97%. Only three strains—E. faecalis, S. pyogenes, and
Y. enterocolitica retained 16.94%, 11.60%, and 7.05% of their metabolic activity, respectively.
A graphical comparison between the DEHA activities of OrO and OrO-NP is presented in
Figure 4.

The DEHA activity of the microbial strains is presented in Figure 5 as the relationship
between the applied concentrations and the respective inhibitory effects. The coefficients of
inhibition varied between 0.0002% (P. aeruginosa) and 0.1997% (S. pyogenes). An inversely
proportional relationship was observed between the estimated MICs and the corresponding
DEHA activity. OrO-NP inhibited the DEHA activity of all the strains at concentrations
higher than 0.01% excluding E. faecalis and S. pyogenes which turned out to be less suscepti-
ble even to the highest concentrations applied.
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Figure 5. Metabolic activity of the bacterial strains treated with oregano oil—comparison between pure oil and the
nanoformulation based on chitosan and alginate. Legend: OrO = Origanum vulgare oil, OrO-NP = Origanum vulgare oil
encapsulated in a chitosan nanodelivery system, P1 = coefficient of inhibition in the Lambert–Pearson model; P2 = hill
slope (by realization of the model); R = correlation coefficient showing the descriptive power of the model for the specific
experimental data; NMA = normalized metabolic activity.

2.7. In Vitro Cytotoxicity of OrO and OrO-Loaded Nanoparticles

The median inhibitory (IC50) and maximum nontoxic concentrations (MNT) for OrO,
OrO-NP, and chitosan–alginate are presented in Figure 6. Concerning the IC50 values,
OrO-NP are significantly less cytotoxic than OrO. Chitosan–alginate is not toxic to the
HaCaT cells in concentrations of the nanodelivery system achieving antimicrobial activity.
The MNT concentrations of OrO and OrO-NP are equal.
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of oregano oil, chitosan–alginate, and the nanodelivery system of chitosan–alginate loaded with
oregano oil. Legend: OrO—Origanum vulgare oil, OrO-NP—Origanum vulgare oil encapsulated in a
chitosan-alginate nanodelivery system.

2.8. Effects of Pure OrO and OrO-Loaded Chitosan—Alginate Nanoparticles on Skin Irritation
in Rabbits

OrO and OrO-NP were applied for 4 h onto rabbits and their dermal safety was
assessed at 24, 48, and 72 h after the exposition period (Figure 7). The Primary irritation
score (PIS) and the primary irritation index (PII) for OrO and OrO-NP were equal to zero.
In comparison, PIS and PII of the positive control (10% SDS) were equal to 3. As long as a
single exposure to OrO or OrO-NP did not lead to skin irritation, the cumulative irritation
index (CII) was not calculated.
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Figure 7. Skin irritation test for pure and encapsulated oregano oil. Legend: 1—administered
concentration: 0.1% for pure oregano oil and 0.01% for encapsulated oregano oil; 2—positive control
(10% sodium dodecyl sulphate); 3—negative control (sunflower oil); 4—administered concentration:
1% pure oregano oil, 0.1% encapsulated oregano oil.

3. Discussion

The GC–MS analysis showed that the distilled oregano oil contained previously
reported compounds like carvacrol, thymol, γ-terpinene, and α-pinene [15,65]. The inter-
esting fact is that instead of p-cymene, which is a frequently reported compound, in our oil
sample, o-cymene and m-cymene were detected. In addition, the percentage of terpinolene
in the oil was higher compared with the percentages reported in other studies [66]. Further-
more, the other compounds present in the oil were bergamol and aromadendrene. Taking
into account all the mentioned compounds, especially the high concentration of carvacrol
in the oil, a strong antibacterial activity could be expected. Aiming to enable its application
in therapy and food processing, the oregano oil was encapsulated in chitosan—alginate
nanoparticles. The loading of the oil into chitosan—alginate nanoparticles was carried out
by emulsification of the oil into an aqueous solution of sodium alginate and consequent
electrostatic gelation with chitosan. The method resulted in 50% encapsulation efficiency.
Both the X-ray diffraction and IR spectroscopy proved successful encapsulation of the oil
into the nanoparticles. On the other hand, thermogravimetric analysis revealed that the
encapsulation of the oregano oil into the nanoparticles resulted in higher thermal stability,
which indicated that the nanoparticles could stabilize the oil. The oil-loaded nanoparticles
were characterized with a mean diameter of approximately 320 nm, polydispersity index
of 0.631, and a negative zeta-potential (−25 mV). Thus, the small size and the magnitude
of the negative zeta-potential provide good colloidal stability of the dispersion. This is in
agreement with reports that values of zeta-potential ± 30 mV indicate high stability due to
electrostatic repulsion [67].

The comparison between the antimicrobial potential of the pure and encapsulated
oregano oil revealed that the nanoformulation inhibited bacterial growth more efficiently
at lower concentrations than the pure oil. The MICs of OrO-NP were from four- up to
32-fold lower than the MICs of the OrO confirming higher effectiveness of the nanopar-
ticles (Table 2). Concerning the MBC values, the OrO-NP solution exhibited a stronger
bactericidal efficiency on both Staphylococcus strains, whereas for the other bacterial test
strains, both formulations were characterized with an approximately equal antibacterial
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potential. Our results for the antibacterial activity of the pure OrO are in line with numer-
ous experimental data of other authors. The effective concentrations of OrO estimated in
several published studies varied between 1.25–1600 µg/mL [7,10,16,30,68,69]. Presented in
percentage, the minimal inhibitory concentration (MIC) of OrO ranged depending on the
strain from 0.05% to 6.23% [8,18] in broth model systems (test microorganisms S. aureus, E.
faecalis, E. coli, K. pneumonia, and P. aeruginosa) and from 1% to 5% (a large set of food-borne
pathogens) when the disk diffusion method was preferred as the evaluation model [10].
A recent study by Sobczyk et al. [24] reported high antibacterial activity of oregano oil
and oregano leaves on chitosan–alginate-based dressings for the treatment of wounds.
The active concentrations of oregano oil on S. aureus and E. coli were 0.25% and 0.5% for
both strains whereas oregano leaves exerted an equivalent antimicrobial potential at the
concentrations of 10% and 20%. As published by Sim et al. [19], a total of 80 bacterial and
fungal isolates (including S. pseudintermedius, β-hemolytic Streptococcus spp., P. aeruginosa,
and P. mirabilis) from cases of canine otitis externa were investigated for susceptibility to
OrO and carvacrol, and the determined MICs of both ranged between 0.05% and 0.125%,
which corresponds to the effective concentrations in our study.

The data analysis of the inhibition of respiratory activity (Table 2) revealed the excellent
descriptive characteristics of the selected Lambert–Pearson mathematical model for the
evaluation of biochemical processes at the population level. It can be successfully adapted
and used for a wide range of substances in antimicrobial susceptibility testing of bacterial
pathogens. The respiratory activity of the tested bacteria was higher after exposure to
OrO-NP (ranging between 0.34% and 91.84% at the MICs) than to OrO (between 2.09%
and 16.94%), except for the Staphylococcus strains and P. aeruginosa whose metabolism was
significantly inhibited by OrO-NP. This can explain why the MBC values for OrO-NP were
the same as for OrO. From the data obtained it can be assumed that the lower effective
concentrations of OrO-NP have a bacteriostatic effect, while to achieve a bactericidal effect,
it is necessary to apply higher concentrations of oil regardless of the application form. It
is noteworthy to discuss that Yersinia enterocolitica was one of the most sensitive bacterial
species tested. According to the reports of EFSA on zoonoses, yersiniosis was the fourth
mostly reported zoonosis in humans in 2019, with a stable trend in 2015–2019 [70]. Yersinia
enterocolitica is found predominantly in meat and meat products. As long as oregano is
a commonly used spice for meat due to its favorable taste properties, the use of oregano
oil as an antimicrobial preservative in meat products or incorporated into biocomposite
packaging films would be particularly appropriate for food preservation purposes. Our
results for the active concentrations of oregano oil confirm the results of other authors
as the minimum inhibitory concentrations determined in our study fall into the same
range of effectiveness (0.05% to 6.23%) for S. aureus, E. faecalis, E. coli, and P. aeruginosa in
broth model systems [8,18]. The effective concentrations determined in our study are all
below 0.5%. This concentration was shown by Pesavento et al. [12] to be suitable for food
preservation as far as it does not substantially alter the flavor of the meat and still exerts an
antibacterial effect against the quantity of pathogens usually found in raw meat (10 CFU/g
or lower).

Oregano oil is widely used in oral and topical pharmaceutical formulations. In human
and veterinary medicine, OrO could be applied for the treatment of numerous disorders
caused by bacterial and fungal pathogens such as food-borne infections, drug-resistant E.
coli-associated infections, canine otitis externa, as an antimicrobial in the poultry industry,
etc. [5,8,9,17,19,71,72]. In addition, it was successfully implemented in the food industry
in package nanolayers to replace preservatives [1,20]. According to the scientific opinion
of EFSA about the safety of Origanum vulgare ssp. hirtum on different animal species, the
safe oral doses vary depending on the species between 22 and 150 mg/kg, and no concerns
for consumer safety were identified for oral use up to the maximum safe concentrations in
feed [5]. However, a possibility of skin irritation after application of products containing
oregano oil was indicated in the report. Therefore, we assessed the contact hazard potential
of the formulations with oregano oil investigated in our study following 1) the in vitro
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cytotoxicity test for medical devices (ISO 10993-5 (Annex V)) applied on the HaCaT cell
line derived from normal human keratinocytes and 2) the skin irritation test on albino
rabbits (ISO 10993-10). OrO-NP were significantly less cytotoxic (up to fourfold) than
OrO when the median inhibitory concentrations were compared. Chitosan–alginate was
not cytotoxic in the concentrations achieving the antimicrobial effect. Both formulations
showed equal maximum nontoxic concentration in vitro. Nevertheless, neither formulation
caused erythema or edema on the skin of the experimental animals. Thus, regarding the
skin irritation potential of both formulations, we did not observe dermal irritation even at
concentrations tenfold higher than the MICs.

4. Materials and Methods
4.1. Distillation and Chemical Composition of Oregano Oil

Origanum vulgare was cultivated at the area of Panagyurishte, a mountainous region
northwest of Pazardzhik, Bulgaria. The essential oil was obtained by distillation using
a Clevenger apparatus. A quantity of 30 g of dried Origanum vulgare leaves and stems
was cut and crushed into pieces less than 1 × 1 cm that were subsequently immersed in
approximately 500 mL of distilled water in a Clevenger apparatus. Distillation was run
for about 3 h at medium-low heat until exhaustion. After completion of distillation, the
oil was collected and stored in 10 mL dark glass bottles. The essential oil was left open
under a filter cap for 24 h in order to evaporate any remaining solvent and after closing
was stored in the fridge (5–7 ◦C).

Gas chromatography–mass spectroscopy (GC–MS) analysis was conducted according
to Ph. Eur. 9th Edition [73]. The GC–MS analysis of diluted (1:1000) oregano oil was
performed on an Exactive Orbitrap GC–MS system (ThermoFisher Scientific, Waltham,
MA, USA) operating at 70 eV, ion source temperature of 230 ◦C, interface temperature
of 280 ◦C, with split injection (1 µL, ratio 20:1) at the injector temperature of 270 ◦C. A
fused silica capillary column, 5% phenyl / 95% methyl polysiloxane (TG-5SILMS 30 m ×
0.25 mm × 0.25 µm, ThermoFisher Scientific, Waltham, MA, USA) was used. The carrier
gas was helium 5.0 at the flow rate of 1.0 mL/min. Data acquisition was performed with
Xcalibur 4 (40–600 u).

For the GC–MS analysis, raw data were imported and opened in the NIST Mass
Spectral Search Program (Version 2.0 g) and the mass spectra were compared with those
in the NIST/EPA/NIH Mass Spectral Database library (NIST 11). Finally, the Genesis
algorithm included in the NIST Mass Spectral Search Program was used in order to detect
the main peaks in the GC–MS chromatogram and quantify the percentage of the main
chemical constituents.

4.2. Encapsulation of Oregano Oil

Sodium alginate (very low viscosity) was supplied by Alfa Aesar GmBH & CoKG
(Karlsruhe, Germany). Chitosan (Mv 110 000–150 000) was provided by Sigma Aldrich.
Encapsulation of oregano oil into chitosan—alginate nanoparticles was performed by
emulsification and consequent electrostatic gelation of both biopolymers by adaptation
of a reported procedure (Lertsutthiwong et al., 2009). First, oregano oil was dissolved in
methylene chloride and emulsified in an aqueous solution of sodium alginate (3 mg/mL)
containing Tween 80. Emulsification was performed under sonication for 2 min at 20 kHz
(Bandelin Sonopuls, Berlin, Germany). Then, a calcium chloride solution (3.35 mg/mL)
was added to the resultant o/w emulsion under sonication for 1 min. The emulsion was
stirred for 30 min (300 rpm), and after that, a chitosan solution (0.75 mg/mL) was slowly
dropped. The dispersion was stirred for 24 h and centrifuged (15 min, 20 000 rpm) and the
pellets were rinsed with purified water.

Determination of oregano oil loading was made by means of UV–VIS spectrophotom-
etry [63]. The standard curve of the oil was prepared by diluting its stock solution with
methanol (5.31–63.8 µg/mL, r > 0.998) and spectrophotometric measurement of absorbance
at λ = 275 nm (ThermoFisher Scientific, Waltham, MA, USA).
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4.3. Characterization of Nanoparticles

Nanoparticle diameter, polydispersity, and zeta-potential were determined by photon
correlation spectroscopy and electrophoretic laser Doppler velocimetry using a Zetasizer
Nano Series (Malvern Instruments, Worcestershire, UK). The aqueous dispersions of the
nanoparticles were measured at 25 ◦C with the scattering angle of 90◦.

Thermogravimetric analyses of the oregano oil, empty and oregano oil-loaded nanopar-
ticles were evaluated in dynamic conditions using LABSYSEvo, SETARAM (Caluire, France)
in an argon atmosphere, with heating rates of 10 ◦C min−1, temperature interval, 30–650 ◦C.

IR spectra were recorded with a Nicolet iS5 FTIR spectrometer accumulating 64 scans
at the spectral resolution of 2 cm−1.

Powder X-ray diffraction patterns of the oregano oil, empty and oregano oil-loaded
nanoparticles were collected in the 2θ range of 5.3◦ to 80◦ with a step of 0.02◦ 2θ on a
Bruker D8 Advance diffractometer with CuKα radiation equipped with a LynxEye detector.
The diffraction pattern of doxorubicin was indexed using the Topas 4.2 program.

4.4. Bacterial and Fungal Strains and Culture Conditions

The bacterial strains used for determination of the antimicrobial activity of OrO
and OrO-NP were Staphylococcus aureus (ATCC® 29213TM, American Type Cell Culture
Collection, Manassas, VA, USA), Staphylococcus aureus—MRSA (NBIMCC 8327—resistant
to methicillin and oxacillin, National Bulgarian Collection for Industrial Microorganisms
and Cell Cultures), Streptococcus pyogenes (SAIMC 10535, Collection of the Stephan Angeloff
Institute of Microbiology, Sofia, Bulgaria), Enterococcus faecalis (ATCC® 29212TM, Manassas,
VA, USA), Escherichia coli (ATCC® 35218TM, Manassas, VA, USA), Pseudomonas aeruginosa
(ATCC® 27853TM, Manassas, VA, USA) and Yersinia enterocolitica (IP864 O:3, Collection
of Institut Pasteur, Paris, France). The antimycotic activity was tested on Candida albicans
(CBS 562, Utrecht, The Netherlands). S. aureus, MRSA, E. coli, and E. faecalis were grown
in Mueller Hinton broth (MHB, #M0405B, Thermo Scientific-Oxoid, Hampshire, UK) and
agar (MHA, #CM0337, Thermo Scientific-Oxoid, Hampshire, UK); S. pyogenes, P. aeruginosa,
Y. enterocolitica, and C. albicans were grown in brain heart infusion broth (#M210, Himedia,
Mumbai, India) and agar (BHIA). MHA and BHIA were prepared by adding the respective
concentration of agar (#RM10848, Himedia, Mumbai, India).

4.5. Determination of MIC and MBC

The MICs of OrO and OrO-NP were determined according to ISO 20776-1:2006 [74]
based on the broth microdilution method (BMD). Twofold serial dilutions of both sub-
stances ranging from 0.0005% up to 1% volume fraction were prepared for each microbial
strain in 96-well plates (50 µL/well) in threefold repetitions. An equivalent volume of the
bacterial suspension with the density of 1 × 105 CFU/mL (prepared using the McFarland
standard) was added to each well. The plates were incubated at 37 ◦C for 24 h. The
lowest drug concentration, which inhibited the visible bacterial growth was accepted as
MIC. Gentamicin (0.008–4 mg/L) and penicillin (0.008–4 mg/L) were used as the reference
antibiotics (positive control). The recommendations of EUCAST (European Committee
on Antimicrobial Susceptibility Testing) were followed for the analysis of the results [75].
PBS served as the negative control, whereas MHB and MHB with OrO or OrO-NP—as the
blank solutions. The MBCs were determined after seeding of the samples treated from
1/2× MIC up to the highest concentration on Petri dishes with MHA and the diameter of
9 cm. These samples were incubated at 37 ◦C for 24 h. MBC was defined as the lowest drug
concentration reducing colony growth of the initial bacterial inoculum by ≥99.9%.

4.6. Determination of the Dehydrogenase Activity

The dehydrogenase (respiratory, metabolic) activity of the bacterial strains after
treatment with OrO and OrO-NP was measured using the MTT dye, the reduction of
which to formazan crystals was catalyzed by the membrane-located bacterial enzyme
NADH:ubiquinone reductase (H+-translocation). The protocol of Wang et al. [76] was
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applied after minor modifications. Briefly, the inoculums of the test strains and the serial
dilutions of the test substances were prepared as described for the BMD assay and the
treated samples were incubated for 24 h at 37 ◦C. Thereafter, 10 µL of the MTT solution
(5 mg/mL) were added to each well and the plates were left at 37 ◦C for 120 min. The
resulting non-soluble violet formazan crystals were dissolved with an equivalent volume
of 2-propranol containing 5% formic acid. The absorbance was measured at 550 nm (Ab-
sorbance Microplate Reader Lx800, Bio-Tek Instruments Inc., Winooski, VT, USA) against a
blank solution containing the respective volumes of MHB and MTT. The self-absorbance of
OrO and OrO-NP was also subtracted from the measured values.

4.7. Cell Viability Assay

The MTT test was performed according to Annex C to ISO 10993-5 [77,78] in or-
der to determine the median inhibitory (IC50) and MTC concentrations of the solvents
and PAC. The nontumorigenic HaCaT cell line (immortalized human keratinocytes, CLS
Cell Lines Service GmbH, Eppelheim, Germany) was used as an in vitro model for skin
cytotoxicity. The cells were maintained under sterile conditions in a CO2 incubator (Pana-
sonic MCO-18AC, Kadoma, Osaka, Japan) supplying 5% CO2 at 37 ◦C and humidified
atmosphere. For the cultivation of the cell line, the culture medium DMEM-HG (#DMEM-
HPA, Capricorn®, Munich, Germany) was used, supplemented with 4.5 g/L glucose, 10%
heat-inactivated fetal bovine serum (#FBS-HI-12A, Capricorn®, Munich, Germany), 4 mM
L-glutamine (#G7513, Sigma-Aldrich, Steinheim, Germany), and 105 U/L penicillin G
sodium and 100 mg/L streptomycin sulphate (Pen/Strep, #PS-B, Capricorn®, Munich,
Germany). For the cell viability assay, a volume of 100 µL cell suspension with the density
of 1 × 105 cells/mL was seeded per well in 96-well plates with the flat bottom. The plates
were incubated for 24 h until the cells entered the log phase of their growth. Thereafter,
they were treated with OrO, OrO-NP, or chitosan–alginate in the concentrations ranging
from 0.0002% to 0.1% v/v for OrO or from 0.0002% to 0.02% v/v for OrO-NP and chitosan–
alginate. The result was read at the 72nd hour of the exposure to the tested formulations
after dissolving the MTT product formazan in 100 µL/well organic solvent (% formic acid
in 2-propanol). The same solvent was used as the blank. Untreated cells served as the
negative control. The absorption was measured at λ = 540 nm/ref690 nm on a microplate
reader ELx800 (BioTek Instruments, Inc., Winooski, VT, USA).

4.8. Mathematical Modeling Calculation of Respiratory (Metabolic) Activity

The quantitative evaluation of the inhibition effects of OrO and OrO-NP on the test
microbial strains was performed using the Lambert–Pearson (LP) model considering the
inhibitory effect of the applied concentration and fitting the experimental data on the base
of the weighted least squares statistical method [79,80]. The program was coded in the
MAPLE symbolic mathematics software. The model can be represented as follows:

Fa = exp

[
−
(

Dose
P1

)P2
]

(1)

where Fa stands for the normalized maximum enzyme activity, %; Dose stands for the
concentration of the drug, µmol/L; P1 is the inhibitory constant, which may be interpreted
as IC50 in medical studies, µmol/L; and P2 stands for the slope.

4.9. Calculation of the Median Inhibitory Concentrations and RSA Analysis

The calculation of the median inhibitory concentrations (IC50) was performed as
published before [81]. Briefly, a nonlinear regression procedure based on the weighted least
squares statistical criterion as an objective function of the search was coded in the MAPLE®

software of symbolic mathematics. The sum of weighted squares was minimized and the
estimation of the best-fitting parameter values was found by using a numerical optimization
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algorithm. The median inhibitory concentration model was applied to calculate IC50 and
m, as presented in Equation (1):

Fa/Fu =

(
Dose
Dm

)m
(2)

where Fa is the affected fraction; Fu—the unaffected fraction (1 – Fa) = Fu; Dose—the
applied concentration; Dm—the median inhibitory concentration (Dm = IC50); and m—the
hillslope (for m = 1, the curve is hyperbolic; for m > 1—sigmoidal; for m < 1—negative (flat)
sigmoidal). The response surface analysis (RSA) methodology was applied to reveal the
predictive power of the model as a function of the parameters IC50 and m. The range of the
value changes in the RSA 3D plot was determined based on the standard deviation of the
IC50 and m values obtained during the statistical evaluation of the experimental data with
the GraphPad Prism software.

4.10. Skin Irritation Test

The potential of the oregano oil used to produce dermal irritation was assessed
according to the standard protocol in ISO 10993-10 [82]. Permit to work with experimental
rabbits No. 232 for animal house No. 1113-0005 was issued by the Ministry of Agriculture,
Food, and Forestry, Bulgarian Food Safety Agency, and valid until 11.04.2024. Briefly, three
healthy young albino rabbits with intact skin were used as the test animals. The animals
were acclimatized and cared for as specified in ISO 10993-2 [83] and Ordinance No. 20
(State Gazette of Bulgaria, No. 87, 09.11.2012). The fur on the back of the animals was
clipped (10 × 15 cm) 4 h before the test. An amount of 0.5 mL of the test or control material
was applied directly to the skin and covered with an absorbent gauze patch. Sunflower
oil and 10% SDS solution were used as the negative and positive controls, respectively.
The application site was wrapped with a semi-occlusive bandage for 4 h. Thereafter, the
positions of the sites were marked with permanent ink. The residual test material was
removed with lukewarm water and the skin was carefully dried. The reaction of each
application site was recorded at the 1 (±0.1) h, 24 (±2) h, 48 (±2) h, and 72 (±2) h after
removing the nonocclusive dressings. The skin reaction was described and scored for
erythema and/or edema according to the scoring system given in ISO 10993-10. The
primary irritation index (PII) was calculated based on the primary irritation score (PIS) for
each sample and the results were read based on the scoring system for skin reaction.

5. Conclusions

Chitosan—alginate nanoparticles are considered an appropriate nanosized system for
oregano oil. The studies revealed improved antibacterial activity of encapsulated oregano
oil. Interestingly, the encapsulated oregano oil had a significantly higher antimetabolic
activity than the pure oil in six of the eight tested strains. Based on these results, the oregano
oil-loaded nanosystem is promising in terms of further development as a food additive
with antimicrobial activity. In particular, the proposed nanodelivery system should be
further screened for the antibacterial effect in vacuum-packed foods like meat, cheese,
etc., accounting for their compatibility with the oregano oil taste and other organoleptic
characteristics.

On the other hand, in vitro cytotoxicity on human keratinocytes and in vivo skin irri-
tation test on rabbits demonstrated the safety profile of the nanoparticle formulation. Thus,
the developed oregano oil-loaded chitosan—alginate nanoparticles could be considered an
appropriate topical delivery system for treatment of microbial infections of skin and other
soft tissues.
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