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Abstract: Neutrophils have been well-characterized for their role in the host anti-microbial response.
However, it is now appreciated that neutrophils have a critical role in tumorigenesis and tumor
progression in the majority of solid tumors. Recent studies have indicated a critical role for
hypoxia in regulating neutrophil function in tumors. Furthermore, neutrophil-specific expression of
hypoxia-inducible transcription factors may represent a novel therapeutic target for human cancer. In
this review, we highlight the function of neutrophils in cancer and the role of the neutrophil hypoxic
response in regulating the neoplastic progression of cancer.
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1. Introduction

The past several decades has determined the immune system plays an integral role in the
pathogenesis and progression of human cancers. This has led to the establishment of “tumor-associated
inflammation” as an emerging cancer hallmark, and facilitated the development of a new arsenal of
the most promising treatments for cancers developed in decades [1,2]. Hypoxia is a characteristic
feature of virtually all solid tumors and directly modulates the tumor immune microenvironment [3].
Tumor hypoxia develops as the result of increased oxygen metabolism via uncontrolled cellular
proliferation and growth beyond the confines of the existing vasculature. The major signaling pathway
downstream of decreased O2 concentration is mediated by hypoxia-inducible transcription factors
(HIFs). Three HIF isoforms have been described (HIF-1α, HIF-2α, and HIF-3α), which mediate
the hypoxic response with overlapping, and occasionally opposing, functions. HIFs consist of a
heterodimer of an alpha subunit and a beta subunit (ARNT). Under normal oxygen conditions, HIF α

subunits are hydroxylated by prolyl hydroxylase domain (PHD), containing enzymes on two proline
residues, which reside in a N-terminal O2-dependent degradation domain. This hydroxylation event
leads to von Hippel-Lindau-dependent ubiquitination, followed by proteasomal degradation. As
oxygen concentrations locally decline in inflammation or in tumors, HIF hydroxylation is inhibited,
and HIFs are stabilized. HIFs become transcriptionally active after nuclear translocation, interacting
with ARNT, and binding specific HIF target sequences (hypoxia response elements), that are found
extensively throughout the genome (Figure 1). HIF expression and stabilization is also directly
driven by inflammatory microenvironments and inflammatory factors, such as lipopolysaccharide and
cytokines, which we and others have previously reviewed [3,4].
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Figure 1. Under normal oxygen concentrations, hypoxia-inducible transcription factors (HIFs) are 
hydroxylated on two specific proline residues by prolyl hydroxylase domain (PHD) enzymes (HIF1α 
P402/P564; HIF2α P405/P531), leading to their association with von Hippel-Lindau (VHL), 
ubiquitination, and proteasomal degradation. In tumors, as oxygen concentrations become limiting, 
the lack of molecular oxygen leads to HIF stabilization, dimerization with alpha subunit and a beta 
subunit (ARNT), nuclear translocation, and target gene transcription. In neutrophils, HIFs can also be 
stabilized in normoxic conditions by inflammatory microenvironments and inflammatory factors, 
such as bacterial lipopolysaccharide. 

In tumors, HIFs have largely been shown to facilitate tumor growth and progression, through 
direct stimulation of proliferation, angiogenesis, evasion of apoptosis, and invasion [5]. HIFs also 
regulate metabolic reprogramming of cancer cells [5]. More recently it has been shown that HIFs are 
key mediators of anti-tumor immune evasion [6]. In addition to tumor-cell intrinsic effects, HIFs can 
also modulate recruitment and local zonation of immune cells in the tumor microenvironment [7]. 
Interestingly, local tumor hypoxia also drives immune cell HIF stabilization and transcriptional 
activation, which phenotypically alters immune cell function and polarization, in order to induce pro-
tumorigenic responses in macrophages, T-cells, and B-cells [3].  

Neutrophils are granulocytic myeloid cells, that are the most abundant circulating immune cell 
type. Neutrophils serve as first responders to sites of infection and eradicate bacterial infections 
through local oxygen metabolism, release of cytotoxic granule proteins, and bacterial phagocytosis. 
Recent attention has been given to the role of neutrophils in the pathogenesis and progression of 
cancer. Neutrophils, infiltrating into the tumor microenvironment, are termed tumor-associated 
neutrophils (TANs), and an appreciation for the pathogenic role of TANs in tumorigenesis and tumor 
progression has now been established [8]. Interestingly, neutrophils express both HIF-1α and HIF-2α 
and the impact of hypoxia and HIFs on TANs is drawing significant interest. In this review, we will 
specifically focus on the role of hypoxia and HIFs on TAN function in the progression of cancer, as 
well as implications for therapy. 
  

Figure 1. Under normal oxygen concentrations, hypoxia-inducible transcription factors (HIFs)
are hydroxylated on two specific proline residues by prolyl hydroxylase domain (PHD) enzymes
(HIF1α P402/P564; HIF2α P405/P531), leading to their association with von Hippel-Lindau (VHL),
ubiquitination, and proteasomal degradation. In tumors, as oxygen concentrations become limiting,
the lack of molecular oxygen leads to HIF stabilization, dimerization with alpha subunit and a beta
subunit (ARNT), nuclear translocation, and target gene transcription. In neutrophils, HIFs can also be
stabilized in normoxic conditions by inflammatory microenvironments and inflammatory factors, such
as bacterial lipopolysaccharide.

In tumors, HIFs have largely been shown to facilitate tumor growth and progression, through
direct stimulation of proliferation, angiogenesis, evasion of apoptosis, and invasion [5]. HIFs also
regulate metabolic reprogramming of cancer cells [5]. More recently it has been shown that HIFs are
key mediators of anti-tumor immune evasion [6]. In addition to tumor-cell intrinsic effects, HIFs can
also modulate recruitment and local zonation of immune cells in the tumor microenvironment [7].
Interestingly, local tumor hypoxia also drives immune cell HIF stabilization and transcriptional
activation, which phenotypically alters immune cell function and polarization, in order to induce
pro-tumorigenic responses in macrophages, T-cells, and B-cells [3].

Neutrophils are granulocytic myeloid cells, that are the most abundant circulating immune cell
type. Neutrophils serve as first responders to sites of infection and eradicate bacterial infections
through local oxygen metabolism, release of cytotoxic granule proteins, and bacterial phagocytosis.
Recent attention has been given to the role of neutrophils in the pathogenesis and progression of cancer.
Neutrophils, infiltrating into the tumor microenvironment, are termed tumor-associated neutrophils
(TANs), and an appreciation for the pathogenic role of TANs in tumorigenesis and tumor progression
has now been established [8]. Interestingly, neutrophils express both HIF-1α and HIF-2α and the impact
of hypoxia and HIFs on TANs is drawing significant interest. In this review, we will specifically focus
on the role of hypoxia and HIFs on TAN function in the progression of cancer, as well as implications
for therapy.
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2. Tumor-Associated Neutrophils (TANs)

Neutrophils are highly prevalent in the vast majority of solid tumors. Recent studies have
found that cancer drives neutrophil heterogeneity, and several populations of circulating neutrophils
can be detected in cancer. Of these subtypes, neutrophils with pro-tumor and immunosuppressive
phenotypes can be isolated, as well as those which maintain mature neutrophil functions [9]. This
suggests that cancer-derived factors drive neutrophil plasticity, which can potentiate tumor progression.
A meta-analysis of human cancers correlated expression signatures of more than twenty different
immune cell types with adverse or favorable outcomes across twenty-five different tumor types. This
analysis found that neutrophils had the highest correlation with adverse outcomes [10]. This is in
accordance with other studies suggesting, that a high presence of TANs is an independent negative risk
prognosticator. Furthermore, studies examining the proportion or neutrophils relative to lymphocytes
have established that an increased neutrophil to lymphocyte ratio (NLR) is also predictive of adverse
cancer outcomes, and can be used to stratify risk [11]. It is notable that some studies have suggested
neutrophils are a positive prognostic indicator in certain cancers at certain stages [12]. The discrepancies
in the prognostic ability of neutrophils can, in part, be explained by discrepancies in neutrophil surface
makers used for identification.

The role of TANs in cancer has been controversial, however, the vast majority of studies suggest
neutrophils can affect all stages of tumorigenesis; including initiation, propagation, invasion, and
metastasis (Figure 2). For example, studies using mice with deletion of CXCR2, which prevents
neutrophil and immune suppressive myeloid cell infiltration into tumors, have shown decreased
colon tumorigenesis [13]. A landmark study showed that neutrophils can promote the metastatic
spread of breast cancer through the inhibition of CD8+ T-cells [14]. Neutrophil extracellular traps
(NETs), normally known for trapping invading bacteria, can facilitate the metastasis of circulating
tumor cells [15]. Several other intricate mechanisms for pro-tumorigenic neutrophil functions have
been identified comprising direct stimulation of tumor cell growth, antitumor immune suppression,
and stimulation of neo-vasculature [8]. Additionally, it was shown in hepatocellular cancer models
that neutrophils can regulate tumor stem cell dynamics through secretion of BMP2 and TGF-β2 [16].
Furthermore, neutrophils also have the capacity to alter the tumor immune microenvironment, and
can increase tumor growth, through the recruitment of regulatory T-cells [17].
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Figure 2. Neutrophils have diverse function in the progression of tumors. Neutrophils directly
stimulate tumor angiogenesis. Neutrophils can directly inhibit anti-tumor immunity through the
expression of checkpoint molecule PD-L1, stimulate tumor growth through the secretion of neutrophil
elastase, facilitate tumor invasion and metastasis through ECM remodeling and generation of neutrophil
extracellular traps, and directly contribute to tumorigenesis through the generation of genotoxic reactive
oxygen species.
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It is now appreciated that neutrophils may have anti-tumorigenic function as well. Neutrophils,
expressing the hepatocyte growth factor receptor c-MET, inhibit growth of several cancer types, through
the release of tumor necrosis factor α (TNFα) and nitric oxide (NO) [18]. We have recently shown that
genetic neutrophil depletion enhanced the growth and invasion of inflammation-driven and sporadic
colon tumors in mice, through the restriction of tumor associated bacteria [19]. Neutrophil ablation led
to a high IL-17-dependent B-cell influx [19]. Neutrophils were shown to directly stimulate anti-tumor
immunity in early stage human lung cancer [20]. Interestingly, rare sub-populations of TANs antigen
presenting cells and stimulate anti-tumor T-cells, through the presentation of tumor-associated antigens
in human lung cancer [21].

Many of the observed discrepancies among the role of TANs in cancer are likely reflective
of temporal dynamics and neutrophil heterogeneity. Temporally, it has been suggested that the
earliest neutrophils in cancer are anti-tumorigenic. As tumors rapidly evolve, secreted factors drive
neutrophil plasticity towards pro-tumorigenic subsets and decrease their cytotoxic capacity [22]. The
tumor-derived factors regulating neutrophil evolution have not been explored but may be related to
tumor hypoxia. Several subsets of neutrophils with varying functions have been identified in mice and
humans with cancer. A landmark study showed that, neutrophils are highly plastic and can transition
between phenotypically divergent anti-tumorigenic and pro-tumorigenic subsets, termed N1 and
N2 [23]. This is analogous to the polarization of macrophages to M1 or M2 and T-cell polarization.
In neutrophils, this transition is thought to be regulated by a transforming growth factor β (TGFβ)
and interferon γ (IFNγ). In macrophages, tumor hypoxia promotes a phenotypic shift towards the
pro-tumorigenic M2 macrophage through tumor-derived lactic acid generation [24]. The role for
hypoxia and HIFs in the plasticity of TANs has yet to be addressed.

3. HIF Regulation of the Tumor Immune Microenvironment

The tumor microenvironment is a complex assortment of tumor cells, endothelial cells, stromal
cells, and immune cells. Many of the infiltrating immune cells, such as macrophages, neutrophils,
myeloid-derived suppressor cells, and T-cells facilitate tumor growth, progression, and evasion of the
immune system. Several of these sub-populations of pro-tumor immune cells are recruited through
hypoxia-dependent factors. For example, immune suppressing regulatory T-cells (Tregs) are recruited
to ovarian tumors by hypoxia-dependent expression of CCL28 [25]. In breast cancer, the hypoxic
secretion of oncostatin M promotes recruitment of macrophages [26]. Once these cells are recruited
into hypoxic tumor microenvironments, immune cell HIF activation can regulate downstream effector
functions, such as pro-tumorigenic polarization. For example, macrophage deletion of HIF-2α was
shown to reduce macrophage-dependent cytokine production and tumor burden in murine models of
liver and colon cancer [27]. The role for hypoxia and HIFs on the function of neutrophils has been less
well characterized than that of other immune cell types, but current literature suggests a key role in the
pathogenesis and progression of cancer.

3.1. Hypoxic Regulation of Neutrophil Inflammatory Responses

Tumor hypoxia extends to infiltrating immune cells, and it is evident that many immune cells,
TAMs in particular, selectively localize to hypoxic regions of tumors, which drives spatial variation in
function [28]. Moreover, the infiltration of immune cells, neutrophils in particular, contributes to local
hypoxia, through respiratory burst-dependent oxygen metabolism [29]. The role for neutrophil-specific
HIF expression in cancer has not been well characterized. However, several studies have examined
neutrophil-specific HIF functions in inflammation and infection. Neutrophils express both HIF-1α
and HIF-2α. The activation of these transcription factors in neutrophils is induced by hypoxia, but
is also directly induced by incubation with heat-killed bacteria and bacterial lipopolysaccharides,
showing that inflammation- and hypoxia-signaling are closely interconnected. Furthermore, circulating
neutrophils, isolated from patients with chronic inflammatory disorder, show robust HIF activation.
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Hypoxia augments neutrophil inflammation and enhances degranulation [30]. The deletion
of VHL, which stabilizes HIFs in physiologic oxygen concentrations, robustly increased neutrophil
inflammatory responses. Moreover, the deletion of HIF-1α impaired neutrophil ATP generation,
bactericidal activity, and motility [31]. This was further corroborated in a study showing reduced
bactericidal activity in neutrophils lacking HIF-1α [32]. Neutrophil HIF-1α is also essential for
anti-fungal activity [33]. Pharmacologic HIF-1α stabilization can augment the anti-microbial effects of
neutrophils. Less is known about neutrophil-specific HIF-2α. In zebrafish, it was shown that HIF-2α
gain of function mutation prolonged the inflammatory response [34]. This same study showed the
myeloid-specific deletion of HIF-2α resulted in neutrophilic inflammation in a murine lung injury
model [34]. Interestingly, studies from human patients with heterozygous VHL mutations have shown
increased neutrophil resistance to apoptosis and augmented phagocytic capacity [35]. Collectively,
these studies suggest a bi-directional crosstalk, whereby inflammation directly promotes HIF expression
in neutrophils, and this leads to an increase in neutrophil inflammation. Chronic inflammation is a
cancer risk factor and neutrophils have been described as a critical link between chronic inflammation
and cancer [36].

Major isoforms of PHDs that regulate HIF hydroxylation and degradation have been described
and are all expressed in neutrophils (PHD1, PHD2, and PHD3). The deletion of PHD2 or small
molecule PHD inhibition dramatically augmented the neutrophil inflammatory response, motility, and
survival in Streptococcus pneumonia infection [37]. This effect was dependent on increased glycolytic flux
and glycogen storage suggesting that HIF integrates metabolism with inflammation and survival [37].
Interestingly, the deletion of PHD3 dramatically reversed hypoxia-induced neutrophil survival [38]. In
this model it was proposed that PHD3 mRNA was upregulated by hypoxia downstream of HIF-1α
and regulated expression of pro-survival molecules [38].

3.2. Hypoxic Regulation of TAN Mobilization

Studies of human and mice have shown a relative increase in the number of circulating blood
neutrophils in cancer. Tumor hypoxia is a critical mediator of pro-tumor immune cell recruitment
through the secretion of cytokines and chemokines. HIF-dependent mechanisms of TAM and T-reg
recruitment are well-characterized. TAN recruitment and influx is critical for cancer initiation and
progression and tumor hypoxia, through HIF-dependent secretion of cytokines is a major regulator
of this process [39]. Indeed, one of the earliest studies linking hypoxia and neutrophil recruitment,
showed that hypoxic human intestinal epithelial cells promote neutrophil migration, through the
induction of IL-8 [40]. Hypoxia-induced IL-8 is also a key signaling axis in neutrophil recruitment in
cancer [41]. The infiltration of neutrophils in tumors or the sites of inflammation requires endothelial
cell binding and extravasation, and it has been shown that culturing endothelial cells in hypoxia
increases neutrophil binding, through the upregulation of platelet-activating factor [42]. HIF-1α also
stimulates the expression of the cell surface adhesion molecule, β2 integrin, on neutrophils [43].

Similar results have been derived from spontaneous murine tumor models. A study in a mouse
model of uterine cancer found that neutrophils largely resided within hypoxic foci, and the culture
of uterine cancer cell lines in hypoxia led to the expression of potent neutrophil chemo-attractants;
CXCL1, CXCL2, and CXCL5 [44]. Interestingly, neutrophils restricted tumor growth in this model, by
promoting tumor cell shedding from the underlying basement membrane. Recently, we showed that
hypoxia, through HIF-2α, mediates the recruitment of neutrophils into inflammation-induced colon
tumors, by the direct transcriptional regulation of the neutrophil chemoattractant CXCL1 [39]. CXCL1
functions by binding its cognate receptor, CXCR2, expressed on neutrophils leading to cytoskeletal
rearrangement to promote influx into tumors or sites of inflammation. We showed that the inhibition
of this pathway with peptide inhibitors was sufficient to reduce inflammation-induced colon tumors in
mice. This is in line with other studies showing that the ablation or inhibition of CXCR2 is sufficient to
decrease colon tumorigenesis in mice [45].
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It has been postulated that cancer metastasis to distant sites requires the formation of a
premetastatic niche, mediated by immune cells, to generate ideal environmental conditions for
cancer seeding [46]. Tumor hypoxia is a critical regulator of myeloid cell and neutrophil infiltration
to the premetastatic niche. The role for neutrophils in this process is controversial. In breast cancer
models, hypoxia induced lysyl oxidase, or Kit ligands promoted myeloid cell infiltration and lung
cancer metastases [47,48]. Furthermore, tumor hypoxia-derived factors were shown to facilitate the
mobilization of immunosuppressive myeloid cells and Natural Killer cells to the lung premetastatic
niche [49]. However, others have shown an opposing role for neutrophils in the premetastatic niche,
and anti-metastatic, hydrogen peroxide (H2O2)-producing neutrophils were recruited to premetastatic
sites, through the expression of the HIF target gene CCL2 [50].

3.3. Hypoxic Modulation of TAN Function

The half-life of circulating blood neutrophils is thought to be on the order of 7-h. Interestingly
circulating neutrophil lifespan is dramatically increased in cancer patients through an unknown
mechanism, but it is likely to be the downstream of tumor secreted factors [8]. It is also believed
that TAN have increased lifespan in cancer patients. Hypoxia is sufficient to decrease neutrophil
apoptosis. In murine lung injury models, the deletion of HIF-2α, using the myeloid-specific LysM-Cre,
increased neutrophil susceptibility to apoptosis. On the other hand, HIF-2α gain-of-function mutations
decreased neutrophil sensitivity to apoptosis in human neutrophils. There is also an important role for
HIF-1α in the regulation of the neutrophil lifespan. Human and murine neutrophils have decreased
apoptosis when cultured in hypoxia via a HIF-1α/NFkB signaling axis [51]. This data is consistent
with zebrafish models where HIF-1α was also critical in decreasing neutrophil apoptosis [52]. These
studies highlight an essential role of HIFs in the longevity of neutrophils, and suggest an analogous
mechanism exists in hypoxic tumors, although this has not yet been studied.

There is an emerging role for neutrophils as a critical suppressor of the anti-tumor immune
response. In gastric cancer, neutrophils suppress antitumor T-cells through the expression of the cell
surface protein programmed death ligand 1 (PD-L1) [53]. Recent studies show that PD-L1 is a direct
HIF transcriptional target in immune suppressive myeloid cells [54]. Neutrophil-derived arginase
represses anti-tumor immunity, through the local metabolism of arginine to L-ornithine, and is a
known target of HIF-2α [55]. Collectively, these studies suggest that hypoxia contributes to neutrophil
plasticity and differentiates neutrophils away from an anti-tumor phenotype to an immune suppressive
phenotype to foster tumor growth (Figure 3).

We previously identified the pro-inflammatory cytokine, TNFα, as a direct transcriptional target
of HIF-2α, which has been critical for heightened inflammation in experimental colitis [56]. TNFα has
been identified as a critical regulator of cancer cell growth in murine colitis-induced colon cancer and
can promote recruitment of immune suppressive immune cells [57,58]. Neutrophils are a major source
of TNFα, and it is likely that neutrophil-derived TNFα, downstream of HIF-2α activation plays an
important role in inflammation-induced colon tumor growth [59] (Figure 3).

Neutrophil secreted factors impact tumor growth. Neutrophil elastase (NE) directly stimulates
the proliferation of lung cancer growth, through the degradation of insulin receptor substrate-1 (IRS-1)
and can be directly induced by hypoxia [32,60]. Several studies suggest a key role for neutrophils
in the generation of neo-vasculature. Neutrophils are a major source of vascular endothelial growth
factor (VEGF) in tumors, and VEGF is a well-characterized direct HIF target gene [61,62]. Moreover,
the secretion of matrix metalloproteinase-9 (MMP-9), which promotes angiogenesis through the
interactions with VEGF, was shown to be highly upregulated by hypoxia, and was directly targeted by
HIF in neutrophils [63,64]. MMP-9 also directly promotes tumor invasion through extracellular matrix
degradation (Figure 3).
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Figure 3. HIF expression regulates diverse neutrophil functions. HIFs promote neutrophil longevity
and evasion of apoptosis. HIF regulates key neutrophil inflammatory responses, including NF-kB
activation and bactericidal capacity. HIF regulates neutrophil expression of pro-tumor factors TNFα,
VEGF, and MMP-9. Furthermore, HIF can directly induce expression of anti-tumor T-cell molecules,
such as PD-L1. Currently it is unclear the functional role for hypoxia and HIFs in regulating neutrophil
plasticity and their transition from anti-tumor N1 to pro-tumor N2.

4. Future Perspectives

HIFs were discovered less than 30 years ago, and since that time, the importance of these molecules
in normal physiology and the disease state has been characterized. In cancer, the role for hypoxia
and HIFs in the neoplastic progression of solid tumors has been well-documented. HIFs regulate
diverse cell functions and impact all aspects of tumorigenesis, including the tumor inflammatory
response. Cancer cell expression of HIFs drives tumor cell proliferation and shapes the tumor immune
microenvironment to inhibit the anti-tumor immune response. Once thought to be undruggable,
structural studies have deciphered a ligand-binding pocket at the interface of HIF-2α and ARNT, that
has led to the development of potent small-molecule inhibitors that dissociate HIF-2α from ARNT. This
ligand binding domain is specific to HIF-2 α but not HIF-1α. Recently, two major studies showed the
therapeutic potential for targeting this ligand-binding domain of HIF-2α, with small molecule inhibitors
in clear cell renal cell cancer [65,66]. This work has been extended to human clinical trials with high
safety and promising early results [67]. The data reviewed herein suggest that the inhibition of HIF-2α
may provide anti-cancer activity through the direct inhibition of tumor cell intrinsic HIF-2α, as well as
through the inhibition of neutrophil HIF-2α. No specific inhibitors of HIF-1α are currently available.

The role for neutrophils in the pathogenesis of cancer is complex, and this intricacy is likely related
to diverse subpopulations of neutrophils, localized within tumors. In spite of these heterogenous
populations, the majority of studies suggest that the inhibition of neutrophils can robustly induce
tumor regression. Furthermore, studies of neutrophil expression signatures and NLR suggests that
neutrophils are an adverse prognostic indicator in human cancers. Most studies of neutrophil function
in cancer have relied upon the use of monoclonal neutrophil depleting antibodies, CXCR2 peptide
mimetics, and small molecular inhibitors. Robust anti-tumor responses with these neutrophil inhibitors
have been shown in pre-clinical models across several different tumor types [45,68,69]. In fact, clinical
trials, specifically targeting CXCR2, are underway in human cancers. Studies have also shown efficacy
in the targeting of neutrophil elastase in pre-clinical colon cancer models. It is likely that a further
understanding of neutrophil heterogeneity may drive the development of novel therapeutics, which
will allow fine-tuning and targeting of pro-tumor neutrophil subsets, while sparing those that are
anti-tumor. Advances in single-cell RNA sequencing may provide the opportunities to more precisely
define distinct neutrophil subsets in cancer and broaden the current therapeutic arsenal.
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Immune cell hypoxia and the expression of HIFs play a pivotal role in their function and
longevity in tumors. The role for neutrophil-specific HIFs in cancer has not been well-studied. It
has been well-documented that HIFs are essential regulators of neutrophil longevity, inflammation,
and bactericidal activity. It is clear that tumor hypoxia is a major contributing factor to neutrophil
recruitment to tumors, through the direct HIF transcriptional regulation of neutrophil chemo-attractants.
The gaps in our current knowledge of HIF function, in intra-tumoral neutrophils, has been in part
due to the lack of tools to study neutrophil-specific gene deletion. Recently, novel tools, such as the
Mrp8-promoter-driven Cre mouse, have provided the means for neutrophil selective gene deletion,
and will allow for the intricate investigation of the role of HIFs in neutrophil function in mice [70]. To
date, most studies have relied upon the LysM-promoter-driven Cre expressing mice, which target all
myeloid cells. This can make the interpretation of studies, deleting HIFs via LysM-Cre, challenging to
parse out the primary contribution of neutrophils or macrophages on cancer or inflammation.

Many unanswered questions and areas for interrogation remain. For example, the precise role for
HIFs in the polarization of neutrophils from anti-tumor N1 to pro-tumor N2 subtypes is not known.
Furthermore, neutrophil-specific HIF target genes have not been parsed out. A recent analysis in
tumor-bearing mice compared the gene expression signatures between normal neutrophils, TANs, and
immature myeloid cells. Interestingly, this analysis found that TANs had tremendous upregulation of
the expression of inflammatory cytokines and chemokines, several of which are known HIF target
genes [71]. It has been suggested the HIF-dependent metabolic reprogramming regulates key myeloid
cell functions and it would be interesting to determine the role of these metabolic changes in neutrophils
in cancer. The future should provide exciting new insights in the biology of HIFs in neutrophils and
the intersection of these factors in human cancers.
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