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Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal 
cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, 
the term polycystic kidney disease (PKD) commonly refers to two specific hereditary 
diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal 
dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in 
understanding the complex molecular and cellular mechanisms of renal cyst formation 
in ARPKD and ADPKD. One of the most important discoveries is that both the genes 
and proteins products of ARPKD and ADPKD interact in a complex network of genetic 
and functional interactions. These interactions and the shared phenotypic abnormalities 
of ARPKD and ADPKD, the “cystic phenotypes” suggest that many of the therapies 
developed and tested for ADPKD may be effective in ARPKD as well. Successful thera-
peutic interventions for childhood PKD will, therefore, be guided by knowledge of these 
molecular interactions, as well as a number of clinical parameters, such as the stage of 
the disease and the rate of disease progression.
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AUTOSOMAL ReCeSSive POLYCYSTiC KiDneY DiSeASe 
(ARPKD)

Autosomal recessive polycystic kidney disease (OMIM #263200) is characterized by renal cysts and 
hepatobiliary dysgenesis and is a substantial cause of morbidity and mortality in children (1, 2). 
ARPKD is caused by mutations in the PKHD1 gene which encodes a protein known as fibrocystin 
or polyductin (FPC), and both the gene and protein interact with the autosomal dominant polycystic 
kidney disease (ADPKD) genes and proteins.

AUTOSOMAL DOMinAnT POLYCYSTiC KiDneY DiSeASe

Autosomal dominant polycystic kidney disease is one of the most common genetic disease affecting 
1/400 to 1/1,000 individuals worldwide. ADPKD is generally a late-onset, systemic disease character-
ized by bilateral, progressive enlargement of focal cysts occurring in all nephron segments with 
variable extrarenal manifestations (3).

Autosomal dominant polycystic kidney disease was originally thought to be caused by mutations 
in two genes; PKD1 (on chromosome 16p13.3) (OMIM #173900) and PKD2 (on chromosome 4q21) 
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FiGURe 1 | The cystic cellular phenotype. This cartoon is an abridged composite of the abnormal signal transduction pathways reported to be active in 
polycystic kidney disease (PKD). Two main conduits that lead to unchecked proliferation are (1) the EGFR axis (orange path) and (2) a G-protein axis (aqua blue path) 
that leads to increased cyclic adenosine monophosphate (cAMP) and a switch in phenotypic response of renal epithelia to cAMP. The pathways suggest the 
following: in autosomal recessive polycystic kidney disease (ARPKD), an apical EGFR results in the axis becoming active resulting in reciprocal phosphorylation of 
the non-receptor tyrosine kinase cSrc (purple); in autosomal dominant polycystic kidney disease (ADPKD) a mutated polycystin 1 (PC1) leads to increase 
amphiregulin, activating EGFR, resulting in increased cSrc phosphorylation; in both ARPKD and ADPKD, cSrc activity (purple) alters the cellular response of cAMP 
resulting in proliferation; in addition, in ADPKD the cytoplasmic tail, PC1-p30 is overexpressed leading to acSrc-dependent activation of STAT3 by tyrosine 
phosphorylation. EGFR and cAMP signaling amplify the activation of cSrc/STAT3 by PC1-p30. Targeting proliferation will always be a requirement to effectively slow 
the progression of PKD and prevent the need for renal replacement therapy. Targeting single molecules that bridge both pathways (such as cSrc) is a logical 
approach to get maximum effectiveness with minimal dosing, thereby limiting toxicity. Pharmacological inhibition with a single compound that targets multiple 
pathways (such as a multi-kinase inhibitor—tesevatinib) should provide a similar benefit. However, no single compound will provide lifetime effectiveness. Effective 
therapy will require multiple compounds administered in a disease stage-specific manner that will need to be individualized, accounting for variations in disease 
severity and rate of progression.
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(OMIM #173910). These genes encode the protein polycystin 1 
(PC1) and polycystin 2 (PC2), respectively.

There has always been a nagging suspicion that at least one 
additional disease causing gene was as yet undiscovered because 
there has always been a small number of genetically unresolved 
families (GUR) that did not link to either locus (4–6). Recent 
reexamination of these GUR families demonstrated that muta-
tions in GANAB (OMIM 104160) encoding the glucosidase II 
subunit α on chromosome 11q12.3 cause a mild form of ADPKD 
and autosomal dominant polycystic liver disease of varying 
severity, most likely due to defects in PC1 maturation (7).

Childhood ADPKD may be indistinguishable from ARPKD, and 
histological or genetic analysis may be necessary to differentiate the 
two (2, 8). The prevalence of pediatric patients with ADPKD in our 
polycystic kidney disease (PKD) clinic is approximately equivalent 
to the number of ARPKD patients, and both are significant sources 
of morbidity and mortality in children. The interaction between the 
genes, proteins, and overlapping cystic phenotypes suggests that 
therapeutic interventions and lessons learned from clinical trials in 
ADPKD can be applied to patients with ARPKD.

PATHOPHYSiOLOGY AnD 
TRAnSLATiOnAL iMPLiCATiOnS

Cellular Pathophysiology
Cyst formation and progressive growth is a complex dynamic 
process with multiple interacting signaling components that 
all contribute to disease, but never act autonomously. The early 
investigations of PKD focused on fundamental phenotypic 
changes that would be necessary for a normal renal tubular 
epithelial cell to become a cystic epithelial cell. Normal renal 
epithelial cells changed from a mature, differentiated, non-pro-
liferative, absorptive cell to a partially de-differentiated secretory 
cell characterized by specific polarity defects and increased rates 
of proliferation (9).

These led to the identification of a myriad of signaling mol-
ecules and signaling pathways that were found to be abnormal 
in cystic epithelium. Collectively, these changes define what is 
referred to as the “cystic phenotype.” Figure 1 is a cartoon that 
includes some but not all of the aberrant signaling pathways that 
constitute this cystic phenotype. The precise mechanisms by 
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which mutated PKD proteins disrupt normal signaling and cause 
renal cyst are not entirely understood but significant progress in 
understanding the cellular events have been made.

In vitro and in vivo experimental models have been used to 
identify fundamental pathogenic features in human PKD and are 
thought to be pathogenic in both ARPKD and ADPKD. These 
include the following:

• aberrant intracellular levels of the second messenger, cyclic 
adenosine monophosphate (cAMP), coupled with decreased 
intracellular calcium increasing both proliferation and 
secretion;

• abnormalities in expression and localization of the ErbB or 
epidermal growth factor (EGFR)—family of receptors and 
ligands (EGFR axis), leading to increased proliferation;

• abnormal activity of cSrc (p60Src), a non-receptor tyrosine 
kinase that serves as a critical mediator of cross talk between 
the EGFR axis and G-protein-cAMP pathways. In addition, 
cSrc interactions with the cleaved C-terminal PC1 tail (PC1-
p30) activate the transcription factor STAT3;

• activation of mammalian target of rapamycin (mTOR) 
signaling;

• alterations in cell–cell and cell–matrix interactions;
• changes in interstitial macrophages that leads to progressive 

interstitial fibrosis.

Clinical trials have to date been largely based on targeting 
these complex cellular signaling features of a cystic cell. There-
fore, a brief discussion of each and the evidence supporting the 
pathogenic features listed above are included below. A brief 
discussion of the results of clinical trials to date will follow. A list 
of current and completed clinical trials can be found at http://
clinicaltrials.gov/.

cAMP-Mediated Proliferation and 
Secretion
The cAMP-dependent pathway is a G-protein-coupled recep-
tor signaling pathway. Increased intracellular cAMP levels in a 
normal renal epithelial cell elicit a response that reduces MAPK 
activity resulting in a decreased rate of cellular proliferation. 
However, under conditions of low levels of intracellular calcium, 
a cSrc-dependent phosphorylation of β-Raf, allows the cell to 
bypass Raf-1and increase ERK phosphorylation and subsequent 
cell proliferation (see Figure 1) (10, 11). This also changes the 
normally absorptive renal epithelia cell to a secretory renal 
epithelial cell which contributes significantly to the progressive 
enlargement of cysts in ADPKD (12).

Therapeutically, increased cAMP is reduced by vasopressin 
R2 receptor antagonists, such as tolvaptan or somatostatin (and 
its long-acting analogs such as lanreotide), that inhibit adenylate 
cyclase resulting in reduced cAMP levels (13, 14).

Tolvaptan (Jinarc®) has been tested in human patients with 
ADPKD and the results have been encouraging. Tolvaptan 
slowed the increased in total kidney volume and slowed the 
decline in loss of renal function (15, 16). Tolvaptan has been 
approved in Europe, Canada, and Japan for treatment of 
ADPKD. However, it has not been approved in the USA due 
to persisting concerns regarding therapeutic effectiveness 

and concerns regarding potential hepatic injury.1 Tolvaptan 
is, therefore, not currently recommended for the treatment of 
childhood PKD.

eGFR (erbB) Axis
An abundance of evidence demonstrates that the epidermal 
growth factor receptor (EGFR) and other ErbB receptors and 
their ligands (the EGFR axis) are important mediators of renal 
cystic epithelial proliferation in PKD. In human ADPKD and 
ARPKD and rodent models of PKD, renal cystic epithelia display 
overexpression and mislocalization of one or more ErbB recep-
tors to the apical cell surface instead of the customary basolateral 
localization seen in the normal human kidneys (17–19). These 
apically expressed ErbB receptors are functional and capable of 
generating a proliferative signal in vitro (20). Preclinical studies 
have demonstrated that in vitro and in vivo inhibition of ErbB 
receptor tyrosine kinase activity with tyrosine kinase inhibitors 
(21, 22) or genetic manipulation (23) and/or reduced ErbB 
ligand availability (24) significantly reduced cyst formation and 
enlargement.

Recent studies have provided a direct link between PC1 
and the EGFR ligand amphiregulin. Studies revealed that the 
promoter activity increased and established that cells with a 
mutated PC1, a reduced level of PC1, and primary cystic cells 
isolated from ADPKD kidneys exhibit increased amphiregulin 
expression (25, 26). In addition, microarray profiling of human 
ADPKD cells and a conditional mouse model (Cre;Pkd1del2-11,lox) 
found that ErbB4 activation was a major driver of cellular pro-
liferation in ADPKD and may well be a biomarker of disease 
progression (27).

cSrc
cSrc is a critical intermediate that connects both the cyclic AMP 
and EGFR pathways and, therefore, plays a critical role in integrat-
ing signaling in normal and cystic epithelium. In ADPKD, PKD1 
mutations give rise to increased production of amphiregulin that 
in turns activates (phosphorylates) the EGF receptor resulting in 
a reciprocal phosphorylation (activation) of cSrc. Phosphorylated 
cSrc activates β-Raf, which alters the response of renal epithelia 
to cAMP from a normally antimitotic to a pro-proliferative 
phenotype. Additionally, activated cSrc interacts with PC1-p30, 
a proteolytic fragment of the PC1 cytoplasmic tail, resulting in 
STAT3 phosphorylation and further increased proliferation  
(28, 29). This cSrc-mediated activation of STAT 3 is augmented by 
increased activity of the EGFR axis and increased cAMP, thereby 
promoting even greater proliferation of tubular epithelium and 
cyst enlargement (29, 30).

These interactions forecast a pathologic proliferation pathway 
where mutated PC1 increases amphiregulin expression, resulting 
in activation of ErbB receptors and reciprocal phosphorylation 
of cSrc. Phosphorylated cSrc integrates and amplifies prolifera-
tive signals from EGFR and cAMP and together with the PC1 
cytoplasmic tail, PC1-p30, activates STAT3 which leads to even 
further intensification of the proliferative signals (29).

1 www.fda.gov/safety.
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Bosutinib, a cSrc inhibitor, has undergone clinical trials in 
ADPKD. Although very effective in reducing total kidney vol-
ume, it did not effect changes in renal function.2

Mammalian Target of Rapamycin
The mTOR pathway integrates signals from growth factors 
(including EGFR), G-protein coupled receptors (which generate 
cAMP), cellular energy levels, nutrient status, and stress condi-
tions to stimulate protein synthesis and cell growth through 
activation (phosphorylation) of S6K1 and eIF4E (31, 32). In 
human ADPKD and ARPKD and a variety of animal models, 
cyst-lining epithelium demonstrates increased activity of mTOR 
(32–35). The mTOR inhibitors rapamycin and everolimus have 
been tested in human clinical trials and were found to be inef-
fective in slowing total kidney volume or preventing loss of renal 
function (36, 37).

It is impossible to imagine how a single compound could 
provide lifetime effective therapy even if started early in the dis-
ease process. However, the identification of pathological cellular 
events provides a starting point for building future therapeutic 
interventional strategies for childhood PKD. Challenges includ-
ing the focal nature of cyst formation and the large variation in 
the phenotypic expression of ARPKD and ADPKD are not trivial. 
The substantial intra-familial phenotypic variability seen in both 
ARPKD and ADPKD suggests that complex factors which influ-
ence or direct the timing and severity of disease are operative.

Molecular Pathophysiology
Improved molecular techniques and increased specificity in 
producing targeted gene mutations has allowed development of 
orthologous rodent models with conditional and hypomorphic 
mutations in Pkd1, Pkd2, and Pkhd1. Studies in such models 
which more accurately reflect the human disease have yielded 
unexpected results regarding mechanisms of cyst development 
and enlargement in PKD. Advances in sequencing, in concert 
with improved methods to produce animal models with specific 
mutations including those found in PKD patients, allow suspected 
mechanistic processes to be directly tested. These new insights 
along with lessons learned from the original clinical trials will 
lead to novel therapeutic interventions for PKD.

For example, in an intricate study, the genetic combination 
of five cystic disease models, including orthologous Pkd1, Pkd2, 
Pkhd1, and the two polycystic liver disease genes, Prkcsh and 
Sec63, resulted in different combinations of mutant alleles which 
allowed the functional relationships between these genes to be 
defined (38). These combinations demonstrated that (1) Prkcsh 
and Sec63 mutations result in impaired biogenesis of PC1; (2) 
PC1 dosage modifies the severity of both ADPKD and ARPKD; 
(3) the threshold level of PC1 necessary for normal tubular 
morphology varies by nephron segment with collecting ducts 
being most sensitive; and (4) overexpression of Pkd1 is capable of 
rescuing a mutant Pkhd1 animal (38).

2 http://ClinicalTrials.gov identifier NCT01233869.

Most if not all of the numerous cystic kidney disease proteins, 
including PC1, PC2, and FPC, are found in primary cilia or basal 
body of cilia which led to the cilia theory and the term “ciliopathies” 
to cover any disease caused by a mutation in a protein that is localized 
to the cilia (25, 39). PC1 and PC2 are predicted to form a complex on 
the primary cilium creating a mechanosensor that transmit external 
signals such as flow, to the renal epithelial cell (40, 41).

In a similar experiment as that described above, mouse models 
with tissue-specific and inducible knockouts of Pkd1 and Pkd2 
alone or in combination with knockouts of cilia proteins Kif3a 
and Ift20 revealed that: disruption of cilia reduced cyst growth 
caused by loss of PC1 or PC2; simultaneous loss of PCs and either 
Kif3a or Ift20 resulted in milder disease severity than that seen 
when either PC protein was inactivated; and the length of time 
that intact cilia existed after the loss of PC’s increased disease 
severity (42). This suggests the existence of a cilia-dependent 
proliferative or cyst-promoting pathway that is inhibited by a 
normal PC1/PC2 complex (43).

The mechanosensing function of primary cilia was originally 
thought to result in increased calcium influx into the cell. In the 
absence of a normal PC1/PC2 channel, calcium levels in the cell 
fall and in the context of high cAMP levels, the cell phenotype 
becomes cystic. In a recent study, the primary cilia of multiple 
cell types including renal epithelial were shown not to transmit 
a calcium signal upon bending (44). The authors concluded that 
if cilia act as mechanosensor or a flow sensor, it does not occur 
through calcium signals.

The two-hit theory, proposed to explain the focal nature of cyst 
formation in PKD, stated that a somatic mutation or “second hit” 
in addition to the germ-line mutation was necessary for a cell to 
become cystic. Although this may explain some of the focal nature 
of cyst formation in ADPKD, other factors have been shown to 
influence disease progression and severity. On a cellular level, 
these include: the developmental timing of PKD1 inactivation  
(45, 46); reduction in functional PC1 dosage (38, 47, 48); differ-
ences in sensitivity to PC1 dosage (48); and the proximity effect, 
where a cystic cell or nephron creates a “snowball effect” trigger-
ing cyst development in neighboring cells or nephrons (49).

On a molecular level, a number of factors demonstrate that 
complex inheritance patterns influence disease severity in both 
ADPKD and ARPKD. These include hypomorphic or incom-
pletely penetrant alleles (50); PKD1 or PKD2 homozygosity (47); 
compound heterozygosity (51); trans-heterozygosity (52); somatic 
and germ-line mosaicism (53); epigenetic regulators (54–57); 
genetic modifiers (58); co-inheritance of a PKD1 or PKD2 muta-
tion and an additional cyst-causing gene such as HNF1β (59, 60) 
or the tuberous sclerosis 2 gene (61); and alternative splicing of 
Pkhd1 that produces transcripts with distinct expression patterns 
and function (62).

Clinical Trials and Lesson Learned
The diagnosis of childhood PKD is no longer the terminal diagno-
sis as was once considered. For children with ARPKD, advances in 
neonatal critical care and renal replacement therapy have allowed 
many to survive much longer than what was possible just a few 
decades ago. Insights into the development and treatment of con-
genital hepatic fibrosis and portal hypertension, a complication 
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of the periportal fibrosis in ARPKD, have led to a better quality 
of life. Renal transplantation and dual organ transplantation 
provide an opportunity for these children to live a near normal 
life. Preimplantation genetic diagnosis holds the possibility of 
eliminating ARPKD from families who can afford the procedure 
and who are not ethically opposed (63). Preimplantation genetic 
diagnosis is also being evaluated for ADPKD spouses in China 
(NCT02948179).

As clinical trials to date have shown, targeting a single mol-
ecule of an aberrant pathway has not resulted in the reduction 
of disease burden as originally hoped for. However, even as the 
targeted therapeutic strategies develop more specificity they will 
always need to target (a) cell proliferation; (b) cAMP levels; and 
(c) fluid secretion. Proliferation is an absolute necessity for cyst 
formation and as such, it must be targeted and controlled for 
any therapy to be effective; how much and for how long remains 
unknown.

In the near future, the most promising therapies will target 
key signaling intermediates that integrate multiple pathways, 
such as cSrc (see Figure  1) (29, 64) and/or use a combination 
therapy approach where multiple compounds are used to target 
multiple pathways simultaneously or a single compound that 
targets multiple pathways such as a multi-kinase inhibitors such 
as tesevatinib (TSV) (65, 66). TSV, formerly known as KD-019, is 
currently undergoing testing in a Phase 2 clinical trial for ADPKD 
(NCT02616055) and has recently received FDA approval for a 
Phase 1 trial in young patients with ARPKD.

Successful therapies will require knowledge of the extent of 
the disease (i.e., how far along is the disease) when therapy begins 
and the rate of progression, will require multiple agents or a single 
agent that hits multiple targets, and the choice of targets will be 
stage specific and change as disease progresses.

There are a number of additional important factors to con-
sider in developing therapies for childhood PKD. Therapies 
will increasingly focus on treating PKD in its earliest stages 
where they are likely to offer the maximum long-term benefit. 
Therapies that target abnormal proliferative pathways will need 
to be carefully monitored so that pathway activity is reduced to 
normal basal levels rather than completely shut off. Promising 
compounds may be modified to direct the molecule to the site  
of disease, making these therapies highly specific with low levels 
of toxicity (67). This specificity will accelerate the development of 
protocols for the ethical treatment of children with PKD where 
maximal quality-of-life benefit will come from early interven-
tion. Epigenetic and dietary factors that slow or accelerate 

the progression of PKD will be discovered and adherence or  
avoidance of such factors may slow the rate of progression and 
eliminate the need for pharmacological intervention or renal 
replacement therapy for some.

The importance of genetic dosage, modifier genes, and 
somatic mutations in the clinical course of PKD in an individual 
patient provide compelling rationale for a personalized medicine 
approach. Personalized medicine will mean tailored approaches 
that modulate functional gene dosage and consider not only indi-
vidual genotypes but also account for the response of the kidney 
to the disease and the unanticipated response of the kidney to 
therapy. This unanticipated response to therapy may be active 
in tolvaptan therapy, where patients treated with Jinarc® were 
reported to have increased urinary shedding of heparin-binding 
EGF-like growth factor (HB-EGF) (68). In ARPKD and ADPKD 
cysts, cystic epithelia express EGFR or ErbB receptors on the 
apical side (urinary side) of the cell. The presence of HB-EGF, 
a powerful mitogen, in the urine may stimulate these apical 
receptors prompting a proliferative signal that would counter 
at least some of the reduced proliferation gained by decreasing 
cAMP levels with tolvaptan therapy. This suggests that a tyrosine 
kinase inhibitor against EGFR or an enzyme inhibitor to prevent 
HB-EGF processing or both, added to tolvaptan therapy may 
lead to greater benefit especially in terms of reduced total kidney 
volume.

The progress made in understanding the pathophysiology of 
PKD has been remarkable and despite the work still remaining, 
patients and parents can take heart that two clinical trials for 
children with PKD are underway: one for children with ADPKD 
[Tolvaptan (NCT02964273) Belgium and Italy] and one recently 
approved for the use of multi-kinase inhibitor, TSV in children 
with ARPKD.
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