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ion diffusion method based on
network consistency for identifying disease related
microRNAs
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Bo Liao*b and Chengqiu Daia

The abnormal expression of miRNAs is directly related to the development of human diseases. Predicting

the potential candidate miRNAs associated with diseases can contribute to the detection, diagnosis,

treatment and prevention of human complex diseases. The effective inference of the calculation method

of the relationship between miRNAs and diseases is an effective supplement to biological experiments. It

is of great help in the prevention, treatment and prognosis of complex diseases. This paper proposes

a novel information diffusion method based on network consistency (IDNC) for identifying disease

related microRNAs. The model first synthesizes the miRNA family information and the miRNA function

similarity to reconstruct the miRNA network, and reconstruct the disease network by using the known

disease and miRNA-related information and the semantic score between diseases. Then the global

similarity of the two networks is obtained by using the Laplacian score of graphs. The global similarity

score is a measure of the similarity between diseases and miRNAs. The disease–miRNA relation network

was reconstructed by integrating the global similarity relation. The network consistency diffusion seed is

then obtained by combining the global similarity network with the reconstructed disease–miRNA

association network. Thereafter, the stable diffusion spectrum is generated as the prediction score by

using the restarted random walk algorithm. The AUC value obtained by performing the LOOCV in the

gold benchmark dataset is 0.8814. The AUC value obtained by performing the LOOCV in the predictive

dataset is 0.9512. Compared with other frontier methods, our method has higher accuracy, which is

further illustrated by case studies of breast neoplasms and colon neoplasms to prove that IDNC is valuable.
Introduction

RNA is the intermediate between DNA and encoded protein. It
has a variety of important functions and is ubiquitous in
organisms. The RNA that is not involved in the process of
encoding protein is called non-coding RNA. About 98% of the
human genome sequences are non-coding regions.1 miRNA
means the single-strand endogenous non-coding RNA with
a length of about 20–25 nucleotides and is evolutionarily
conserved. miRNAs are widely distributed in eukaryotes. In
human genes, the number of miRNAs can account for 1–4%2–5

of the total. The discovery of miRNA has been initially
considered and has not received much attention. However, in
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recent years, there has been increasing evidence that shows
the correlation between miRNAs and many life processes, such
as cell growth,6,7 tissue differentiation,8 cell proliferation,9

embryonic development,10 apoptosis,11 metabolism12,13 and so
on.

Recently, miRNAs have been found to be closely related to
human tumors, especially the changes in the expression of
miRNAs are involved in the occurrence, progression and
metastasis of various types of human cancer.14 For example,
hsa-mir-10b is unregulated in breast neoplasms compared with
benign breast lesions;15 hsa-mir-126 and hsa-mir-145 can
inhibit the growth of colonic tumor cells;16,17 hsa-mir-21 has
higher expression level in colon cancer cells;18 Gao et al.19 found
that the expression of hsa-mir-155 in serum of lung cancer
patients was much higher than that of normal samples by PCR
test; Johnson20 found that the down regulation of the let-7
family led to the development of lung cancer.

The identication of disease-related miRNAs is of great
importance to human health. Identifying the interaction
between miRNAs and diseases have become a key issue. Many
researchers have worked hard to identify the interaction. The
association between miRNAs and diseases can be accurately
RSC Adv., 2018, 8, 36675–36690 | 36675
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mined through sophisticated biological experiments but it is
subject to high cost, long experimental period, and high
requirements on equipment.21–24 In recent years, with the
discovery of a large number of miRNAs, researchers have
developed a variety of databases to store related information
about miRNAs. With these data as the background, more and
more bioinformatics calculation methods have been developed
to predict their relationship.25–30 This kind of calculation
method is the best supplement to biological experiments. The
advantages include reducing the blindness of biologists' bio-
logical experiments, reducing the cost of biological experi-
ments, and saving the human and material resources of
biological experiments. At present, this method can be roughly
divided into machine learning method and biological network
method.31–33 The methods of predicting disease-associated
miRNA are elaborated below from these two aspects.

In 2010, Jiang et al.34 extracted positive sample data from
negative sample data by using support vector machine. The
method extracted features from miRNA target data and
phenotypic similarity data, which achieved good prediction
results. In 2011, Xu et al.35 took prostate cancer as an example
and proposed an MTDN calculation method to predict prostate
cancer related miRNA by using miRNA target topology imbal-
ance network. In 2016, Zeng et al.36 adopted two multipath
methods to predict the association betweenmiRNA and disease.
All of these methods require the negative sample information of
known disease-related miRNA, while negative miRNA–disease
association is hard to obtain.

In 2014, Chen et al. proposed a regularized least squares
semi supervised algorithm (RLSMDA)to predict potential
miRNA–disease association.37 This method is built on semi
supervised learning framework to predict potential disease–
miRNA association and does not require related negative
miRNA–disease information. In 2017, Chen et al.38 proposed
LRSSLMDA model to predict miRNA–disease association with
Laplacian Regularized Sparse Subspace Learning. In 2017, Peng
et al.39 proposed a new information fusion strategy RLSSLP
based on the regularization framework and the idea of Kro-
necker's regularized least squares based on multi-core learning.
In 2017, Chen et al.40 established a MKRMDA model that can
automatically optimize the combination of disease and miRNA
multi-source data and efficiently use multi-core data to predict
the potential association of miRNA–diseases. In 2017, Luo
et al.41 used Kronecker regularized least squares to predict
miRNA related diseases based on heterogeneous omics data.

Matrix factorization is designed to predict the association
between disease and miRNA.42 In 2016, Lan et al.43 proposed
a computational model kbmf-md to predict the association
between miRNA and disease based on the improved microRNA
and disease similarities. In 2016, Lan et al.44 used nuclear
Bayesian matrix factorization to forecast potential miRNA–
disease association. In 2018, Xiao et al.45 integrated the
semantic information of diseases with the functional informa-
tion of the miRNA to obtain the isomeric data, and then used
the isomeric data to regularize the non-negative matrix factor-
ization of the graph to predict the potential association between
miRNA and the disease, which is called GRNMF. In 2018, Zhong
36676 | RSC Adv., 2018, 8, 36675–36690
et al.46 constructed a double layer network to express the
complex relationship between miRNA, disease and miRNA–
disease, and then sorted out the non-negative matrix factor-
ization method to predict the potential disease miRNA. In 2018,
Chen et al.47 developed a computational model of matrix
decomposition and heterogeneous graph inference for miRNA–
disease association prediction.

In addition, neural network and other algorithms are
designed to predict the association between disease and
miRNA. In 2017, Chen et al.48 proposed model EGBMMDA
based on the relationship between Extreme Gradient Boost-
ing Machine to predict association between miRNA and
disease. In 2017, Chen et al.49 developed a miRNA–disease
association prediction model DRMDA based on depth
representation. Aer data extraction and depth representa-
tion, the unsupervised hierarchical layer-by-layer greedy pre-
training and Support Vector Machine were used to predict the
miRNA–disease association. In 2017, Fu et al.50 proposed
a deep integration model, DeepMDA, which used an auto-
matic encoder to extract advanced features from similar
information, and then used a three layer neural network to
predict the association between miRNAs and diseases. In
2015, Chen et al.51 used a Restricted Boltzmann Machine
(RBM) to predict different types of miRNA–disease associa-
tions by applying RBMMMDA method. In 2017, Luo et al.52

developed a predictive method CPTL based on transduction
learning.

However, previous studies are not adequate and have some
disadvantages, such as the lack of miRNAs similarity data and
the facts that known relationship betweenmiRNAs and diseases
is scarce and that there are few negative samples. In 2016, Zeng
et al.53 proposed a method to predict miRNA–disease associa-
tion by matrix completion algorithm based on miRNA–miRNA
network and disease–disease network. In 2017, Li et al.54

propose MCMDAmethod to predict miRNA–disease association
by using matrix completion algorithm. In 2017, Peng et al.55

used the improved low rank matrix recovery (ILRMR) algorithm
to predict the correlation between miRNAs and diseases. In this
method, it is possible to predict diseases which are not asso-
ciated with any known miRNA. In 2018, Chen et al.56 presents
a novel model of inductive matrix completion for miRNA–
disease association prediction. Zhao et al.57 used symmetric
nonnegative matrix factorization to reveal the relation of
miRNA–disease pairs.

Bioinformatics researchers also utilized recommendation
system.58 In 2014, Li et al.59 developed a computational system
toxicology framework which used the recommendation system
to predict the new association of environmental factors,
miRNA and diseases by integrating the structural similarity of
environmental factors and the phenotype similarity of
diseases. In 2017, Gu et al.60 applies collaborative ltering
recommendation algorithms to the miRNA–disease associa-
tion prediction. In 2017, Peng et al.61 combined rating-based
recommendation algorithm with negative-aware algorithm to
predict miRNA–disease association. In 2017, Chen et al.62

proposed a new computational model HAMDA for miRNA–
disease association by using hybrid graph-based
This journal is © The Royal Society of Chemistry 2018
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recommendation algorithm. HAMDA not only considered the
network structure and information dissemination, but also
discussed the problem of node assignment. A satisfactory
prediction result was achieved.

In 2015, inspired by social network analysis, Zou et al.63

proposed to using the methods based on social network anal-
ysis for the prediction of miRNA–disease association. They used
two social network analysis methods, KATZ and CATAPULT, to
analyze heterogeneous networks. CATAPULT is a deformation
of supervised learning algorithm and can overcome the short-
coming that there are only positive samples and unmarked
samples in miRNA–disease association. In 2018, Chen et al.64

proposed a computational model of Ensemble Learning and
Link Prediction for miRNA–disease association prediction.

Based on the hypothesis, that functionally related miRNA
tends to associate with phenotypically similar diseases, many
calculation methods have been proposed to predict the poten-
tial association between miRNA and disease.25–27

In 2009, Jiang et al.65 rst proposed a hypergeometric
distribution model to predict miRNA–disease correlation. In
2010, Jiang et al.66 proposed a new method based on genomic
data integration, integrating a variety of data resources with
naive Bayes model and establishing a functional prediction
model among genes. In 2011, Li et al. put forward a method
of genes' functional consistency to predict carcinogenic
miRNA.67 In 2013, Shi et al. further proposed a computational
model that exploits the functional association between
miRNAs and diseases.68 They integrated the disease–target
association, the known disease–gene association, the protein
inter-association to create a complex network. Then they
made use of the random walk algorithm on the network and
achieved a good prediction effect. In 2014, Xu et al.69

proposed a disease-associated miRNA prediction method
which integrated the phenotypically similar miRNAs with
mRNAs expression proles. However, these methods depend
on the prediction of miRNA–target association, and the false
positive of the target gene is high. So they cannot obtain high
predictive performance.

In 2011, Rossi et al.70 proposed a method called OMiR to
predict the association of diseases in miRNA and OMIM. They
calculated the degree of overlap between miRNA loci and
disease loci in OMIM as the correlation between miRNA and
disease. Xuan et al. proposed a prediction method based on
weighted k most similar neighbors, which is called HDMP.71

However, HDMP cannot be applied to the prediction of isolated
diseases. In 2017, Chen et al.72 designed a novel KNN-based
disease-related sorting algorithm (RKNNMDA). In 2015, Le
et al.73 used PageRank and k-step Markov algorithm, a classic
algorithm for web page ranking in link analysis to predict the
association between disease and miRNAs.

In 2012, Chen et al.74 proposed a RWRMDA computing
model based on the similarity of global networks to predict the
miRNA–disease association. They utilized the restarted
random walk method to predict the pathogenetic miRNA. The
results demonstrated that the global similarity network can
improve the prediction accuracy more than the local similarity
network. However, this method cannot predict new diseases
This journal is © The Royal Society of Chemistry 2018
without any known association. In 2013 and 2016, Shi68,75

integrated data such as protein–protein and gene ontology
data to build heterogeneous networks where the random walk
algorithm can also be employed to predict. In 2015, Xuan
et al.76 designed a computing model named MIDP based on
random walk algorithm. In 2015, Liao et al.77 designed a global
similarity prediction model based on information diffusion,
which is known as NDBM. In 2017, Luo et al.78 implemented
the unbalanced bi-random walk algorithm (BRWH) on
heterogeneous networks to search two-part graph sub-graphs
to discover potential miRNA–disease associations. In 2017,
Mugunga et al.79 combined the path-based features and the
random walk algorithm to predict the association between
miRNA and disease.

In 2013, Chen et al. proposed Net-CBI method to predict the
relationship between miRNA and disease by using the consis-
tency of disease network.80 In 2016, Gu et al.81 designed
a network consistency method to predict miRNA–disease asso-
ciation (NCPMDA). In 2017, Li et al.82 proposed an integrated
network similarity method (NSIM).

In 2015, Nalluri et al.83 designed two scientic methods
from the perspective of graph theory: one is to choose the
maximum weighted matching inference model of the domi-
nant disease by solving an equation; the other is based on the
model of motivation analysis. In 2016, Chen et al.84 con-
structed a heterogeneous graph method to predict miRNA–
disease association method, which is called HGIMDA. In
2017, You et al.85 proposed A novel and effective path-based
miRNA–disease association prediction method, PBMDA,
which uses a unique depth-rst search algorithm to search in
the isomeric graph. In 2016, Sun et al.86 proposed a method to
predict the association between them by using network
topological similarity of miRNA–disease correlation network,
which is called NTSMDA. In 2018, Chen et al.87 proposed
a novel computational model of triple layer heterogeneous
network based inference for miRNA–disease association
prediction. Chen et al.88 proposed a method of graph
regression to predict the miRNA–disease association.

In 2016, Chen et al.89 developed the model of within and
between score to predict potential miRNAs associated with
various complex diseases. In 2017, Chen et al.90 used the
graphlet interaction of miRNAs (diseases) to represent the
complex relationship between any two miRNAs (diseases), and
established a GIMDA model for predicting the potential
miRNA–diseases association by calculating the number of
interactions of different types. In 2017, Chen et al.91 intro-
duced the concepts of “super miRNA” and “super disease” to
strengthen the similarity measurement of disease and miRNA.
In 2018, Li et al.92 present a label propagation model with
linear neighborhood similarity to predict unobserved miRNA–
disease associations.

To sum up, due to the complexity of biological systems and
the limitations of existing research methods, some problems
and challenges exist in the eld of disease–miRNA association
prediction: rstly, the prediction accuracy is not high;
secondly, many algorithms isolate disease and new miRNA
prediction without known association; thirdly, the method of
RSC Adv., 2018, 8, 36675–36690 | 36677



RSC Advances Paper
similarity construction is not reasonable in most of the current
models; the fourth is the problem of model defects. At present,
many machine-learning methods either need negative
samples or have difficulties in model training. Some methods
based on biological networks use local information instead of
global information, which results in poor prediction accuracy.
Many methods have data dependence problem. The general-
ization ability of some methods is not strong. Some methods
have good prediction ability for a data set but not satisfactory
for other data sets. It is urgent to develop simple, effective and
universal models for disease-related miRNA prediction.

In view of the shortcomings of the algorithm described
above, we designed an information diffusion disease asso-
ciation prediction method based on network consistency to
reveal the potential relationship between miRNA and
disease. On the basis of building disease and miRNA global
similarity network, this method reconstructs two disease–
miRNA association networks. By using the consistency of the
network to capture the comprehensive information of the
vector, the information diffusion method is used to forecast
the correlation. The experimental results show that the
proposed method has some advantages: no need for negative
samples; the ability to predict isolated disease and new
miRNA, the simple design of the algorithm and so on. In the
comparison of methods, our method is superior to other
methods on different data sets, and case studies show better
prediction ability of the algorithm.
Materials and methods
Data preparation

We rst downloaded 270 miRNA–disease pairs from the litera-
ture,27 removed 19 miRNAs that could not be found in the
literature,27 and kept 99 miRNAs and 51 diseases including 242
disease–miRNA pairs, which we refer to as the gold standard
dataset.

To verify that our method has better universality, we down-
loaded another disease–miRNA association data set from the
literature,27 which contains 1616 experimentally veried human
miRNA–disease associations. Aer merging different miRNA
records and unifying the names of miRNA and disease, the data
set eventually retained 1395 disease–miRNA associations,
including 271 miRNA and 137 diseases. We refer to the data set
as predictive dataset.

miRNA–miRNA functional similarity score is downloaded
from the literature.27 The data set is successfully applied to
multiple methods.80,93–95 We use matrix SM to represent the
adjacency matrix of miRNA, and SM(i, j) is the score of func-
tional similarity score between miRNA i and miRNA j.

Disease similarity data are downloaded from the literature.96

We use matrix SD to represent the adjacency matrix of disease,
SD(i, j) representing the similarity score between di and disease
dj. The family information of miRNA is obtained from miRBase
database.97 The family information of miRNA is represented by
matrix SMfam. If two miRNAs are in the same family, the cor-
responding set SMfam(i, j) is 1, otherwise it will set 0.
36678 | RSC Adv., 2018, 8, 36675–36690
Algorithm ow

The basic work ow of disease-related miRNA prediction
method based on network consistency has four steps (Fig. 1).
Namely:

(1) Building a global similarity network. The global simi-
larity network of disease is constructed by using the known
disease andmiRNA association information, the semantic score
between the diseases and the Laplacian score of graphs. The
global similarity network of the miRNA is constructed by
utilizing the miRNA family information, the miRNA function
similarity and the Laplacian score of graphs.

(2) Reconstruction of disease–miRNA association network.
The disease and the miRNA association information and the
global similarity between the miRNA nodes are utilized to
construct the disease–miRNA association network ASm based
on the global similarity information of the miRNA. The disease
and miRNA association information and the global similarity
between the disease nodes are used to construct the disease–
miRNA association network ASd based on the global similarity
information of the disease.

(3) Information diffusion based on network consistency.
The miRNA consistency network diffusion seed is obtained by
using the disease global similarity network and the disease–
miRNA association network ASm based on the miRNA global
similarity information. Then the stable diffusion spectrum is
obtained by random walk in the global similarity network of the
disease, which is used as the score of miRNA–disease associa-
tion prediction based on miRNA network consistency infor-
mation diffusion; the disease consistency network diffusion
seed is obtained by using the miRNA global similarity network
and the disease–miRNA association network ASd based on the
disease global similarity information, then the stable diffusion
spectrum is obtained by random walk in the global similarity
network of miRNA as the disease–miRNA association prediction
algorithm based on the disease network consistency informa-
tion diffusion.

(4) Information fusion. The nal score of miRNA–disease
association prediction is calculated by the weighted calculation
of the two predicted scores in the previous paragraph. The
higher the score, the greater the probability that there is
a correlation between the miRNA nodes mi and the disease
nodes dj.
Step 1: similarity network construction

We integrate the known information of disease–miRNA asso-
ciation and the similarity of the disease semantic to obtain the
similarity network of the disease. Then we use the Laplacian
score of graphs to nd the similarity of the disease to express
the similarity between the diseases. We use the miRNA family
information and the miRNA function similarity data to
construct the miRNA similarity network. Laplacian score of
graphs is used to nd the global similarity of miRNA to repre-
sent the similarity between miRNA.

(1) The construction of disease global similarity network.
The disease global similarity network is constructed in three
steps. First, the disease similarity score in the known associated
This journal is © The Royal Society of Chemistry 2018



Fig. 1 The flow chart of information diffusion method based on network consistency is divided into four steps: (1) building a global similarity
network. (2) Reconstruction of disease–miRNA association network. (3) Information diffusion based on network consistency. (4) Information
fusion.
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network structure is obtained through the association between
the known disease and miRNA. Then this score and the
semantic score between diseases are weighted. Thereaer, the
global similarity network of disease is obtained by the Laplasse
score of the weighted network.

Based on the hypothesis that the phenotype resemblance of
disease tendency is associated with function related miRNA,27

we believe that the more common miRNA of two diseases are,
the more similar the two diseases are. When the two diseases
share the same amount of miRNA, if the miRNA of these two
diseases is less, the two diseases are more similar. When there
is no common miRNA between disease di and disease dj, the
score of known association network structure is set to 0 directly.
The formula is as follows:
This journal is © The Royal Society of Chemistry 2018
SDASði; jÞ ¼

8><
>:

comm
�
di; dj

�
degðdiÞ þ deg

�
dj
� comm

�
di; dj

�
s0

0 comm
�
di; dj

� ¼ 0

(1)

SDAS(i, j) indicates the similarity score between disease di and
disease dj. comm(di, dj) indicates the number of miRNA shared
by disease di and disease dj. deg(di) and deg(dj) were respectively
the degrees of disease di and disease dj in disease–miRNA
bipartite network (that is, the number of miRNA associated with
disease di and disease dj).

Then we integrate the semantic correlation information of
the disease and the score of the known association network
structure to get the weighted score.

SDDði; jÞ ¼ SDASði; jÞ þ SDði; jÞ
2

(2)
RSC Adv., 2018, 8, 36675–36690 | 36679
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SDAS(i, j) indicates the score of the known correlation network
structure between disease di and disease dj. SD(i, j) is the
semantic similarity score between disease di and disease dj.

Then we seek global similarity. Binary vector d ¼ {d1, d2, .,
dn} is used to represent the initial vector of disease di. The
corresponding di values were set to 1 and the rest were 0. The
global similarity between diseases is obtained by Laplacian
score of graphs ~d. It can be solved by the optimization problem
of formula (3).98

mina

X
i;j

SDDi;j

�
~di � ~dj

�2 þ 1� a

a

X
i

�
~di � ~dj

�2
(3)

In formula (3), the previous one is a smooth penalty item,
SDD is the normalized matrix of the matrix SDD, which guar-
antees similar score for similar diseases. The second penalty
items obtained the consistency between the disease and other
diseases. a is a balance factor with a range of a ˛ (0,1). This
factor is used to balance two penalty items' weight in formula
(3). The approximate solution of formula (3) is as follows98:

~d ¼ ð1� aÞðI � aSDDÞ�1d (4)

With the above method, we can get the global similarity
score of all diseases in the disease network, which is repre-
sented by matrix SDLAPLACIAN.

(2) Construction of miRNA global similarity network.
Construction of miRNA global similarity network is divided into
two steps. First, miRNA similarity network is constructed by
using miRNA similarity score and miRNA family information
calculated by Wang et al.27 Then we use the Laplacian score of
miRNA similarity network to get the global similarity score of
miRNA.

Bandyopadhyay et al.26 found that the more the shared
mRNA target targets were in the same family miRNA, the more
similar their functions were. In order to make full use of family
information of miRNA, we give higher weight to miRNA
belonging to the same family when constructing miRNA
network.

We use the following formula to calculate the similarity score
of miRNA:

SIMði; jÞ ¼ SMði; jÞ þ SMfamði; jÞ
2

(5)

Among them, SIM(i, j) represents the similarity score
between miRNA node mi and miRNA node mj aer merging two
kinds of information. SIM(i, j) is a functional similarity score
between miRNA mi and miRNA mj calculated by Wang et al.27

SMfam is the miRNA family information matrix. When miRNA
mi and miRNA mj are in the same family, SMfam(i, j) equals 1,
which gives a higher score between two miRNA.

Then the global similarity weight matrix of miRNA is ob-
tained by nding Laplacian score of graphs:

SMLAPLACIAN ¼ ð1� bÞðI � bSIMÞ�1 (6)
36680 | RSC Adv., 2018, 8, 36675–36690
SMLAPLACIAN represents miRNA global similarity network
score matrix. I is a nm dimensional unit matrix, and nm is the
total number of miRNA. SIM is the normalization matrix of
miRNA similarity score SIM. b is a balance factor and b ˛ (0, 1).
Step2: the reconstruction of disease–miRNA association
network

From the previous analysis, we know that the known experi-
mentally validated disease–miRNA association network is
a Boolean bipartite network, which cannot fully characterize the
tightness of the disease–miRNA association. We restructured
the disease–miRNA association network by using the global
similarity of the disease and the global similarity of the miRNA.
Respectively, they are accounted as the disease–miRNA corre-
lation network ASm based on the global similarity information
of miRNA and the disease–miRNA correlation network ASd
based on the global similarity information of the disease.

(1) Construction of disease–miRNA correlation network
ASm based on miRNA global similarity information. Here we
reconstruct the weight of the disease node dj and the miRNA
node mi by introducing all the association information of the
miRNA nodes mk and the disease nodes dj and the global
similarity between the miRNA nodes. The calculation formula is
as follows:

ASmðj; iÞ ¼ AS0ðj; iÞ þ l
Xnm
k¼1

SMLAPLACIANðmi;mkÞ

�ASðk; jÞ (7)

Among them, ASm(j, i) is the weight of disease node dj to
miRNA node mi in disease–miRNA bipartite network aer
reconstruction. AS(i, j) is the weight of miRNA nodes mi and
disease nodes dj in the bipartite network before reconstruction.
(In the experimentally veried disease–miRNA Boolean bipar-
tite network, if the miRNA node mi is known to be associated
with the disease node dj, the value is 1. Otherwise the value is 0.)
AS0 is the transposed matrix of AS. SMLAPLACIAN(mi, mk) is the
weight between the miRNA node mi and the miRNA node mk in
the miRNA global similarity network. nm is the total number of
miRNA, and l is a balance parameter.

(2) Construction of disease–miRNA correlation network
ASd based on disease global similarity information. We recon-
struct the miRNA node mi and the weight of the disease node dj
by introducing the association information of all the disease
nodes dk and the miRNA node mi and the global similarity
between the disease nodes. The calculation formula is as
follows:

ASdði; jÞ ¼ ASði; jÞ þ h
Xnd
k¼1

ASði; kÞ � SDLAPLACIAN
�
dk; dj

�

(8)

Among them, ASd(i, j) is the weight of miRNA node mi and
disease node dj in the reconstructed miRNA–disease bipartite
network. AS(i, j) is used to reconstruct the weight of miRNA
This journal is © The Royal Society of Chemistry 2018
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nodes mi and disease nodes dj in the miRNA–disease bipartite
network before reconstruction. SDLAPLACIAN(dk, dj) is the
weight of disease nodes dk and disease nodes dj in the global
similarity network of diseases. nd is the total number of
diseases. h is a balance parameter.
Step3: information diffusion based on network consistency

Based on the hypothesis that functionally similar miRNA is
usually associated with phenotypically similar diseases, we
designed an information diffusion method based on network
consistency to reveal the potential association between miRNA
and disease. We use network consistency to describe the rela-
tionship between two vectors in the same order and the same
object. By using the similarity in the change rule of these two
vectors, we can get comprehensive information of two hetero-
geneous networks. The projection of vectors can be used to
express the degree of association between two vectors.

(1) Information diffusion based on miRNA network con-
sistency(IDMNC). First, we used the adjacency matrix of the
disease global similarity network and the disease–miRNA
association network ASm based on the miRNA global similarity
information to do matrix multiplication, and got the miRNA
consistency network diffusion seed. In the global similarity
network, SDLAPLACIAN(j, :) represents the global similarity
between disease dj and other disease nodes. ASm(:, i) represents
the correlation between miRNA nodes mi and all other disease
nodes. At this point, we use network consistency to describe
SDLAPLACIAN(j, :) and ASm(:, i) as related disease nodes in the
same order with the data relation of two different objects, the
disease dj and the miRNA node mi, which are similar to the two
vectors. The projection of SDLAPLACIAN(j, :) on ASm(:, i)
represents the degree of association of the miRNA node mi with
the disease node dj aer integrating the information of the two
heterogeneous networks, the miRNA–disease information
association network and the disease global similarity network.
Correlation degree of all miRNA nodes and disease nodes is
calculated as follows:

SEEDM ¼ SDLAPLACIAN � ASm (9)

Next, in order to accurately describe the degree of associa-
tion between miRNA nodes and disease nodes, we used random
walk algorithm to walk in the global similarity network of
disease, and captured the stable distribution of information
called stable spread spectrum. Then the data of stable diffusion
spectrum are utilized to represent the correlation between
miRNA nodes and disease nodes. Aer the matrix normaliza-
tion, each column is the seed sequence of associations between
the miRNA node mi and all the disease nodes. The stable
diffusion spectrum is obtained by SDLAPLACIAN random
diffusion of these seed sequences in the adjacency matrix of the
disease consistency network.

MTDtþ1ðiÞ ¼ ð1� gÞ � SDLAPLACIAN�MTDtðiÞ þ g

� SEEDMð :; iÞ (10)
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SEEDMð:; iÞ is the information of column I aer the normali-
zation of SEEDM matrix. The column vector is the seed
sequence of the associations between miRNA node mi and all
disease nodes. SDLAPLACIAN is the normalized matrix of the
adjacency matrix SDLAPLACIAN of the disease consistency
network. g is the restart probability. MTDt(i) vector represents
the information distribution aer t iterations. Aer several
iterations, the probability space can reach the steady state
MTDN(i) (|MTDt+1(i) � MTDt(i)| < 10�6) and stop the iteration.
When the state is stable, the value of the vector is the correlation
score between miRNA node mi and each disease. The correla-
tion scores of all miRNA nodes and disease nodes are expressed
by matrix MTD.

(2) Information diffusion based on disease network con-
sistency(IDDNC). Similar to the above, in the miRNA global
similarity network, SMLAPLACIAN(i, :) represents the global
similarity between the miRNA node mi and the remaining
miRNA nodes. ASd(:, j) represents the correlation between
disease nodes dj and all other miRNA nodes. At this point, we
use network consistency to describe SMLAPLACIAN(i, :) and
ASd(:, j) as related miRNA nodes in the same order with the data
relation between two objects, the miRNA node mi and the
disease node dj, which are similar to the two vectors. The
projection of SMLAPLACIAN(i, :) on ASd(:, j) represents the
degree of association of the miRNA node mi with the disease
node dj aer integrating the information of the two heteroge-
neous networks. We used the miRNA global similarity network
adjacency matrix and the disease–miRNA association network
ASd based on the disease global similarity information to do
matrix multiplication, and got the disease consistency network
diffusion seed. The formula is as follows:

SEEDD ¼ SMLAPLACIAN � ASd (11)

The seed matrix of the disease node dj is obtained through
the above formula. Aer normalization of the matrix, each
column is used as the seed sequence of the disease node dj and
all miRNA. These seed sequences are SMLAPLACIAN randomly
spread in the adjacency matrix of the miRNA consistency
network in order to obtain stable diffusion spectra:

DTMtþ1ðjÞ ¼ ð1� qÞ � SMLAPLACIAN�DTMtðjÞ þ q

� SEEDDð :; iÞ (12)

SMLAPLACIAN is the normalized matrix of the adjacency matrix
SMLAPLACIAN of the miRNA consistency network. q is the
restart probability. DTMt(j) vector represents information
distribution aer t iterations. Aer several iterations, the
probability space can reach a stable state DTMN(j) (|DTMt+1(j)�
DTMt(j)| < 10�6), and then the iteration can be stopped. Each
value of the vector represents the correlation score of disease j
and each miRNA. The correlation score of all diseases and each
miRNA is expressed by matrix DTM.
Step4: information fusion

Finally, we integrated the two prediction scores obtained in the
third step to form the nal prediction score.
RSC Adv., 2018, 8, 36675–36690 | 36681
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MD(i, j) ¼ w � MTD0(i, j) + (1 � w) � DTM(i, j) (13)

MD(i, j) is the nal prediction score of miRNA node mi and
disease node dj. The greater the score, the greater the proba-
bility that miRNA node mi is associated with disease node dj.

Results
Parameter selection

The proposed method has four kinds of parameters: the infor-
mation diffusion restart parameters g and q; the equilibrium
factor a constructing the disease global similarity network, the
equilibrium factor b constructing the miRNA global similarity
network; equilibrium parameter l based on global similarity
network information for reconstructing the disease–miRNA
association network ASm of miRNA, equilibrium parameter h

based on disease global similarity network information for
reconstructing themiRNA–disease association network ASd; the
weight parameter w of information diffusion disease-related
miRNA prediction score based on network consistency.

The selection and inuence of these four kinds of parame-
ters are discussed respectively. In the process of information
diffusion, g and q indicate the probability of repetitive random
walks that represent random callbacks to the source node. The
greater g and q are, the greater the probability of returning the
node for each step is. For the sake of simplicity, we set g and q to
the same size. To verify the impact of g and q on the perfor-
mance of the prediction algorithm, the other parameters are
xed (a ¼ b ¼ l ¼ h ¼ w ¼ 0.5) while the values of g and q are
changed (0.1 for step length, from 0.1 to 0.9) to do cross-
validation on the gold benchmark dataset and to calculate the
AUC value. The experimental results are shown in Fig. 2. In the
experiment, we found that when g and q increased from 0.1 to
0.9, the AUC value increased gradually from 0.7656 to 0.8460.
The best prediction performance was obtained when the
maximum value was obtained at 0.9.

Then we set the balance factor a of the disease global simi-
larity network and the balance factor b of the miRNA consis-
tency network as the same. To verify the impact of such
parameters on the predictive performance of the algorithm,
other parameters are xed on the basis of the previously
Fig. 2 Influence of parameter variation onmodel prediction accuracy.
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obtained parameters (g¼ q¼ 0.9, l¼ h¼ w¼ 0.5), and then the
a and b values are changed (with 0.1 for step length, from 0.1 to
0.9). As you can see from Fig. 2 with the increase of a and b, the
AUC value gradually decreases. When a¼ b¼ 0.1, the AUC value
is the largest and the prediction performance is the best.

In order to measure the degree of disease–miRNA associa-
tion more accurately, we used the global similarity of the
disease and the global similarity of miRNA to reconstruct the
disease–miRNA association network respectively. The balance
parameters l and h determine the contribution rate of other
diseases and other miRNA to the disease–miRNA association
network. To verify the impact of the two parameters on the
predictive performance of the algorithm, other parameters are
xed on the basis of the previously obtained parameters (g ¼ q

¼ 0.9, a ¼ b ¼ 0.1, w ¼ 0.5), and then the l and h values are
changed (from 0 to 0.9) for cross-validation. In the experiment,
it was found that the AUC value was 0.8670 when the set value is
0.1 (0.8748 when the set value is 0.2; 0.8745 when the set value is
0.3; 0.8743 when the set value is 0.4). At this time, the AUC value
was not very different. When the set value changes from 0.4,
AUC decreased slowly. With the increase of l and h, the AUC
value became smaller and decreased to 0.8618 when the set
value is 0.9.

In order to obtain the best prediction performance, we got the
nal correlation prediction score of the miRNA–disease associa-
tion by weighting the miRNA–disease association prediction
algorithm score (based on miRNA network consistency infor-
mation diffusion) and the disease–miRNA association prediction
algorithm score (based on disease network consistency infor-
mation diffusion). The score weight parameter ofmiRNA–disease
correlation prediction based on miRNA network consistency
information diffusion is set as w (0 # w # 1), then 1 � w is the
weight of disease–miRNA association prediction score based on
disease network consistency information diffusion. When the w
is larger, the weight of the miRNA–disease correlation prediction
score based on miRNA network consistency information diffu-
sion is greater, whichmeans that the prediction results takemore
consideration of the miRNA–disease correlation prediction score
based on miRNA network consistency information diffusion.
When the w is smaller, the prediction results take more consid-
eration of the disease–miRNA association prediction score based
on disease network consistency information diffusion. Based on
the previous discussion, we xed the values of other parameters
(g¼ q¼ 0.9, a¼ b¼ 0,1, l¼ h¼ 0.3), and then changed the value
of w (from 0 to 0.9). When w increases from 0.1 to 0.7, the AUC
value increases gradually. When the w increases from 0.7 to 0.9,
the AUC value gradually decreases. When w is 0.7, the prediction
effect is the best, and AUC achieves the maximum value of
0.8814. When l and h are set as 0.2 and 0.4, the experiment result
is similar, that is, when w is 0.7, the prediction effect is the best.

Finally, we determine that the parameters are: g ¼ q ¼ 0.9,
a ¼ b ¼ 0,1, l ¼ h ¼ 0.3, w ¼ 0.7.
Performance evaluation

In this paper, a disease-related miRNA prediction model based
on network consistency information diffusion is proposed,
This journal is © The Royal Society of Chemistry 2018



Fig. 3 The ROC curve and AUC value for LOOCV in three classes of
nine cases.
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which is the integration of the miRNA–disease correlation
prediction score (based on miRNA network consistency infor-
mation diffusion) and the disease–miRNA correlation predic-
tion score (based on disease network consistency information
diffusion). In the construction of the similarity network, we
restructured the disease and miRNA in different ways, and used
the global similarity score as the similarity score to measure the
relationship between the nodes. When we tested the model, we
considered the following nine cases falling into three cate-
gories: (1) information diffusion method based on miRNA
network consistency without considering the miRNA network
reconstruction (IDMNC without MNR); (2) information diffu-
sion method based on disease network consistency without
considering the disease network reconstruction (IDDNC
without DNR); (3) information diffusion method based on
network consistency without considering the network recon-
struction (IDNC without NR); (4) information diffusion method
based on miRNA network consistency by considering the
miRNA network reconstruction with family information
(IDMNC with FR); (5) information diffusion method based on
disease network consistency by considering the miRNA network
reconstruction with family information (IDDNC with FR); (6)
information diffusion method based on network consistency by
considering the miRNA network reconstruction with family
information (IDNC with FR); (7) information diffusion method
based on miRNA network consistency by considering the
network reconstruction (IDMNC); (8) information diffusion
method based on disease network consistency by considering
the network reconstruction (IDDNC); (9) information diffusion
method based on network consistency by considering the
network reconstruction (IDNC). Based on the above conditions,
parameters are selected on the gold standard dataset: g ¼ q ¼
0.9, a ¼ b ¼ 0,1, l ¼ h ¼ 0.3, w ¼ 0.7. The calculated ROC curve
and the AUC value are shown in Fig. 3.

From Fig. 3, Information diffusion based on miRNA network
consistency method, information diffusion based on disease
network consistency method and information diffusionmethod
based on network consistency method are gradually improved
in the prediction accuracy.

The prediction accuracies of non network reconstruction,
reconstruction of miRNA network with family information,
reconstruction of both disease and miRNA network are gradu-
ally improved. When using all the information, the AUC value is
0.8814. When the method is information diffusion based on
miRNA network consistency without network reconstruction,
AUC value is only 0.7171. This fully demonstrated the effec-
tiveness of our method of restructuring network and the feasi-
bility of integrating the two scoring methods with the weighted
method.
Fig. 4 The ROC curve and AUC value of our method compared with
other methods on the gold benchmark dataset.
Comparison with other methods

We compared the algorithm proposed in this paper with three
classical methods RLSMDA,37 NetCBI,99 GSTRW. In the LOOCV
assessment, each known miRNA–disease association is
considered as a test sample, while other known associations
are considered as training samples. The miRNA–disease
This journal is © The Royal Society of Chemistry 2018
association without known evidence is considered to be
a candidate sample. In the gold datum data set, the AUC value
of NetCBI is 0.8001; the AUC value of RLSMDA is 0.8059; the
AUC value of GSTRW is 0.8479; and the AUC value of the
algorithm proposed in this paper is 0.8841, which is far
superior to the other three methods. The ROC curves and AUC
values of the four methods on the gold datum data set are
shown in Fig. 4.

In order to avoid data dependence, we further veried the
four methods on the forecast data set, and the AUC values of the
four methods in the forecast dataset have been greatly
improved. As shown in Fig. 5, the AUC value of NetCBI is 0.9053;
the AUC value of RLSMDA is 0.9232; the AUC value of GSTRW is
0.9434; and the AUC value of the algorithm proposed in this
paper is 0.9512. This is mainly due to the increase in the
number of available disease–miRNA associations, and the
higher accuracy of the constructed similarity network, which
makes the prediction accuracy increase. Both in the gold datum
data set, or in the forecast data set, the methods presented in
this paper have shown strong predictive ability, especially in the
case of less number of disease–miRNA associations. Because
the method proposed in this paper takes advantage of global
similarity and network consistency, the algorithm proposed in
this paper has more advantages.
RSC Adv., 2018, 8, 36675–36690 | 36683



Fig. 5 The ROC curve and AUC value of our method compared with
other methods in the predictive dataset.
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The prediction of new miRNA and isolated disease

The new miRNA refers to the unknown miRNA associated with
the disease. With the discovery of a large number of unknown
miRNA, the new miRNA prediction becomes more important in
the prediction of disease–miRNA association. This paper also
used the LOOCV to predict the new miRNA. One by one, we
removed the association information of veried miRNA with all
other diseases and simulated them as new miRNA. In the gold
benchmark dataset, the AUC value of our method is 0.8087. Its
ROC curve and the AUC value are shown in Fig. 6, which is
higher than the AUC value predicted by RLSMDA and NetCBI for
the common disease. This shows that our method has a better
prediction ability for the new miRNA.

Isolated diseases refer to diseases whose associations with
miRNA are unknown. Prediction of isolated diseases is also
a difficult problem to be solved in the prediction of disease–
miRNA associations. Similarly, in order to test the predictive
performance of this article on isolated diseases, we removed the
associations between disease and miRNA. The ROC curve and
AUC value obtained with LOOCV are listed in Fig. 6,It can be
seen from the gure that the AUC predicted by this algorithm
for isolated diseases is 0.7562. This shows that our method has
certain predictive ability for isolated diseases, but the accuracy
of prediction needs to be further improved.
Fig. 6 Results of our prediction method of new miRNA and isolated
diseases in gold datum dataset.
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Case studies

In 2017, 135 430 new cases of colon neoplasms were reported in
the United States. Among them, 50 260 cases of colon
neoplasms led to death.100 Colon neoplasms is associated with
many miRNA, such as miR-126, which inhibits the growth of
colon tumor cells;16 miR-21 has a high expression level in colon
neoplasms cells.18 Using the calculation method to predict the
association between colon neoplasms and miRNA can help us
to diagnose the cancer patients in the early stage. This is of great
importance to increase the survival rate of colon neoplasms
patients. Therefore, it is urgent to develop a scientic method to
forecast the miRNA which is related to colon neoplasms
disease. In the forecast dataset, 37 miRNA related to colon
tumors were experimentally veried. We used the method
proposed in this article to experiment with colon tumors by
using these 37 known associations and considering both
disease similarity and miRNA similarity. Among the rst 50
unknown disease–miRNA associations got in the experiment,
45 miRNA got supporting evidence in the updated HMDD,
miR2Disease, and dbDEMC data sets (shown in Table 1). Only 5
miRNA have not been veried, which are hsa-mir-199a, hsa-mir-
92b, hsa-mir-200a, hsa-mir-373 and hsa-mir-216b. However, in
previous literatures, we have found supporting evidence, for
example: Nonaka et al.101 found that miR-199a could be used as
a biomarker for colorectal cancer; Mussnich et al.102 found that
miR-199a and miR-375 affect the sensitivity of colon neoplasms
cells to cetuximab by targeting PHLPP1. Niu et al.103 stated that
hsa-miR-92b can be used as a reference gene for circulating
microRNA in colorectal cancer. Pichler et al.104 found that miR-
200a regulates the prognosis of patients with rectal cancer by
regulating the expression of epithelial mesenchymal metastasis
related genes. Tanaka et al.105 found that the apparent silencing
of microRNA-373 played an important regulatory role in the
proliferation of colon neoplasms cells. Previous studies also
suggested that these miRNA are closely related to colon
neoplasms, such as hsa-mir-199a and hsa-mir-200a, which are
predicted to be associated with colon tumors in PBMDA,85

MCMDA,54 EGBMMDA.48 The two miRNA, hsa-mir-92b and hsa-
mir-200a, were predicted to be associated with colon neoplasms
in the case analysis of RLSMDA. These documents are pub-
lished aer the latest update date of the three databases, which
fully demonstrates the strong predictive power of our method.

Breast neoplasms is one of the most important causes of
cancer death in women every year. So many scientists have been
studying the pathology of breast neoplasms. The study of the
relationship between microRNA and breast neoplasms can help
us understand the development of the disease at a molecular
point of view. Of the rst 50 unknown associations for breast
neoplasms, only 3 were not veried: hsa-mir-518b, hsa-mir-612
and hsa-mir-657, which are shown in Table 2. hsa-miR-21 is
signicantly associated with many diseases, which can be
proved by breast neoplasms related evidences in HMDD,
miR2Disease and dbDEMC. Persson et al.106 stated that hsa-
miR-4656 is associated with breast neoplasms. hsa-miR-21,
hsa-miR-612 and hsa-miR-4656 share many common target
genes.107 This indicates that these miRNA may have similar
This journal is © The Royal Society of Chemistry 2018



Table 1 Prediction of the top 50 predicted miRNAs associated with colon neoplasms based on known associations in HMDD database

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-196a dbDEMC, miR2Disease 26 hsa-mir-421 dbDEMC
2 hsa-mir-199a Unconrmed 27 hsa-mir-15b dbDEMC, miR2Disease
3 hsa-mir-448 dbDEMC 28 hsa-mir-30d dbDEMC
4 hsa-mir-25 dbDEMC 29 hsa-mir-29a HMDD, dbDEMC, miR2Disease
5 hsa-mir-122 dbDEMC 30 hsa-mir-451 dbDEMC, miR2Disease
6 hsa-mir-181b dbDEMC, miR2Disease 31 hsa-mir-203 dbDEMC
7 hsa-mir-18b dbDEMC 32 hsa-mir-212 dbDEMC
8 hsa-mir-224 dbDEMC 33 hsa-mir-30b dbDEMC
9 hsa-mir-15a HMDD, dbDEMC 34 hsa-mir-106b HMDD, miR2Disease, dbDEMC
10 hsa-mir-92b Unconrmed 35 hsa-mir-214 dbDEMC
11 hsa-mir-372 dbDEMC, miR2Disease 36 hsa-mir-98 dbDEMC
12 hsa-mir-34c dbDEMC 37 hsa-mir-220 dbDEMC
13 hsa-mir-200a Unconrmed 38 hsa-mir-137 HMDD, dbDEMC, miR2Disease
14 hsa-mir-190 dbDEMC 39 hsa-mir-33a dbDEMC
15 hsa-mir-217 dbDEMC 40 hsa-mir-216b Unconrmed
16 hsa-mir-222 dbDEMC 41 hsa-mir-33b dbDEMC
17 hsa-mir-205 HMDD, dbDEMC 42 hsa-mir-216a dbDEMC
18 hsa-mir-93 dbDEMC 43 hsa-mir-199b dbDEMC
19 hsa-mir-20b dbDEMC 44 hsa-mir-429 dbDEMC
20 hsa-mir-135b HMDD, miR2Disease, dbDEMC 45 hsa-mir-376c dbDEMC
21 hsa-mir-34b dbDEMC 46 hsa-mir-16 HMDD, dbDEMC
22 hsa-mir-29c dbDEMC 47 hsa-mir-146b dbDEMC
23 hsa-mir-373 Unconrmed 48 hsa-mir-302b HMDD, dbDEMC
24 hsa-mir-125b dbDEMC 49 hsa-mir-125a dbDEMC, miR2Disease
25 hsa-mir-9 dbDEMC 50 hsa-mir-95 dbDEMC
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biological processes. So we highly believe that hsa-miR-612 is
associated with breast neoplasms. In addition, we found that
the three miRNA appeared in the breast neoplasms related
miRNA collection in SDMMDA.91 Among them, hsa-mir-518b is
located in the h position while hsa-mir-612 and hsa-mir-657
are located in the 22nd and 23rd positions respectively.
Table 2 Prediction of the top 50 predicted miRNAs associated with bre

Rank miRNA name Evidences Ra

1 hsa-mir-518b Unconrmed 26
2 hsa-mir-518c dbDEMC 27
3 hsa-mir-612 Unconrmed 28
4 hsa-mir-600 dbDEMC 29
5 hsa-mir-629 HMDD, dbDEMC 30
6 hsa-mir-622 dbDEMC 31
7 hsa-mir-638 HMDD, dbDEMC 32
8 hsa-mir-486 HMDD, dbDEMC 33
9 hsa-mir-596 dbDEMC 34
10 hsa-mir-557 dbDEMC 35
11 hsa-mir-642 dbDEMC 36
12 hsa-mir-769 dbDEMC 37
13 hsa-mir-602 dbDEMC 38
14 hsa-mir-611 dbDEMC 39
15 hsa-mir-185 dbDEMC 40
16 hsa-mir-583 dbDEMC 41
17 hsa-mir-615 dbDEMC 42
18 hsa-mir-654 dbDEMC 43
19 hsa-mir-662 dbDEMC 44
20 hsa-mir-601 dbDEMC 45
21 hsa-mir-324 HMDD, dbDEMC 46
22 hsa-mir-608 HMDD 47
23 hsa-mir-637 dbDEMC 48
24 hsa-mir-657 Unconrmed 49
25 hsa-mir-197 HMDD, dbDEMC 50

This journal is © The Royal Society of Chemistry 2018
The prediction of isolated disease and new miRNA

In order to verify our algorithm's ability to predict isolated
diseases, we removed the known associations of miRNAs with
the proven diseases, which ensures that we only use the simi-
larity information of the conrmed disease and other diseases
ast neoplasms based on known associations in HMDD database

nk miRNA name Evidences

hsa-mir-658 dbDEMC
hsa-mir-575 dbDEMC
hsa-mir-423 HMDD, dbDEMC
hsa-mir-500 dbDEMC
hsa-mir-346 HMDD, dbDEMC
hsa-mir-99a dbDEMC
hsa-mir-130b dbDEMC
hsa-mir-208b dbDEMC
hsa-mir-134 dbDEMC
hsa-mir-433 dbDEMC
hsa-mir-484 dbDEMC
hsa-mir-663 dbDEMC
hsa-mir-365 HMDD, dbDEMC
hsa-let-7e HMDD, dbDEMC
hsa-mir-494 dbDEMC
hsa-let-7i HMDD, miR2Disease, dbDEMC
hsa-let-7b HMDD, dbDEMC
hsa-mir-198 dbDEMC
hsa-mir-373 HMDD, miR2Disease, dbDEMC
hsa-mir-203 HMDD, miR2Disease, dbDEMC
hsa-mir-223 HMDD, dbDEMC
hsa-let-7g HMDD, dbDEMC
hsa-mir-101 HMDD, dbDEMC
hsa-mir-92b dbDEMC
hsa-let-7c HMDD, dbDEMC
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Table 3 The top 50 colon neoplasms-related miRNAs candidates predicted by IDNC with removed all known colon neoplasms–miRNAs
associations and the confirmation of these associations

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, miR2Disease, dbDEMC 26 hsa-mir-19b HMDD, miR2Disease, dbDEMC
2 hsa-mir-15a HMDD, dbDEMC 27 hsa-mir-92a HMDD, dbDEMC
3 hsa-mir-451 dbDEMC, miR2Disease 28 hsa-let-7a HMDD, miR2Disease, dbDEMC
4 hsa-mir-373 Unconrmed 29 hsa-mir-10a dbDEMC, miR2Disease
5 hsa-mir-16 HMDD, dbDEMC 30 hsa-mir-205 HMDD, dbDEMC
6 hsa-mir-155 HMDD, miR2Disease, dbDEMC 31 hsa-mir-211 Unconrmed
7 hsa-mir-29c dbDEMC 32 hsa-mir-200b HMDD, dbDEMC
8 hsa-mir-34a HMDD, miR2Disease, dbDEMC 33 hsa-mir-196a dbDEMC, miR2Disease
9 hsa-mir-19a HMDD, miR2Disease, dbDEMC 34 hsa-mir-181a dbDEMC, miR2Disease
10 hsa-mir-17 HMDD, dbDEMC 35 hsa-mir-141 HMDD, miR2Disease, dbDEMC
11 hsa-mir-221 HMDD, miR2Disease, dbDEMC 36 hsa-let-7e HMDD, dbDEMC
12 hsa-mir-125b dbDEMC 37 hsa-mir-145 HMDD, miR2Disease, dbDEMC
13 hsa-mir-302b HMDD, dbDEMC 38 hsa-mir-223 HMDD, miR2Disease, dbDEMC
14 hsa-mir-372 dbDEMC, miR2Disease 39 hsa-let-7d HMDD, dbDEMC
15 hsa-mir-143 HMDD, miR2Disease, dbDEMC 40 hsa-let-7b HMDD, miR2Disease, dbDEMC
16 hsa-mir-20a HMDD, miR2Disease, dbDEMC 41 hsa-mir-9 dbDEMC
17 hsa-mir-184 dbDEMC 42 hsa-let-7c HMDD, dbDEMC
18 hsa-mir-181b dbDEMC, miR2Disease 43 hsa-let-7i HMDD, dbDEMC
19 hsa-mir-29a HMDD, dbDEMC, miR2Disease 44 hsa-let-7f HMDD, dbDEMC
20 hsa-mir-122 dbDEMC 45 hsa-let-7g HMDD, miR2Disease, dbDEMC
21 hsa-mir-18a HMDD, miR2Disease, dbDEMC 46 hsa-mir-15b dbDEMC, miR2Disease
22 hsa-mir-146a HMDD, dbDEMC 47 hsa-mir-92b Unconrmed
23 hsa-mir-222 dbDEMC 48 hsa-mir-30a HMDD, dbDEMC
24 hsa-mir-212 dbDEMC 49 hsa-mir-126 HMDD, dbDEMC
25 hsa-mir-137 HMDD, dbDEMC, miR2Disease 50 hsa-mir-19b HMDD, miR2Disease, dbDEMC
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and the miRNAs information associated with other diseases.
We used colon neoplasms and breast neoplasms as case
studies. The results are shown in Tables 3 and 4 respectively.

For colon neoplasms, 37 known associations of miRNAs with
colon neoplasms were removed. Among the rst 50 miRNAs
predicted, 47 miRNAs were identied in the three databases
while three miRNAs, hsa-mir-373, hsa-mir-211 and hsa-mir-92b,
failed to nd support in the three databases, which is shown in
Table 3. However, Cai et al.108 found that hsa-miR-211 promoted
the growth of colorectal cancer cells through targeting CHD5.
The other two miRNAs were predicted in previous cases about
colon tumor. Asmentioned above, a number of references to the
association of these miRNAs and colonic tumors are also
introduced. Therefore, we think our algorithm performs well for
the prediction of isolated diseases.

For breast neoplasms, we deleted 78 known associations of
breast neoplasms with miRNAs. We used this method to predict
a potential association between miRNAs and breast neoplasms.
In the rst 50 miRNAs projections, 49 were found in the HMDD,
miR2Disease, and dbDEMC databases, and only hsa-mir-184
had not been found in the three databases. However, when
Yang et al.109 studied the classication of breast tumor subtypes
by immunohistochemical markers, it was found that there were
differences in expression of hsa-miR-365, hsa-miR-1238 and
hsa-miR-184.

Next, we studied the newmiRNA association prediction. hsa-
mir-21 plays a crucial role in carcinogenesis and can be used as
a biomarker for detecting various cancers. In this section, we
removed all the associations of hsa-mir-21 with diseases in the
36686 | RSC Adv., 2018, 8, 36675–36690
forecast data set. Among the rst 50 projected diseases related
to hsa-mir-21, 40 diseases are veried in the above three data-
bases while 10 kinds of diseases that are not veried, which is
shown in Table 5. But previous literature show that these
diseases are associated with hsa-mir-21. For example, Han
et al.110 discovered that hsa-mir-21 can slow down the apoptosis
of cortical neurons by promoting PTEN-Akt signaling pathway
in vitro aer traumatic brain injury. Montalban et al.111 found
that hsa-mir-21 could regulate the growth factor signal and
regulate the degeneration of neurons in PC12 cells. Smigielska
et al.112 found that hsa-mir-21 plays a role in supporting the
survival of T cells in CD4+T cells. Zhang et al.113 found that hsa-
mir-21 is associated with the development of liver brosis. Ding
et al.114 found that hsa-miR-21 could be used as a new
biomarker for diagnosing HBV related acute liver failure
through real-time quantitative PCR technology. Liao et al.115

found that 80% of the patients with hepatocellular carcinoma
have the background of chronic hepatitis B or type C hepatitis
and cirrhosis, and hsa-miR-21 can be used for subdivision of
hepatocellular carcinoma and chronic hepatitis. Yao et al.116

found that compared with patients with obstructive sperma-
tozoa, miRNA in spermatocytes, such as hsa-miR-21, was
decreased in patients with non obstructive spermatozoa. Gut-
saeva et al.117 found that hsa-mir-21 is closely related to new
vascularization in ischemic retina. Andrade et al.118 found
differential expression of 11 kinds of miRNA (such as hsa-miR-
424 and hsa-miR-21) in the muscles of the patients with
amyotrophic lateral sclerosis (rapidly progressive neurodegen-
erative disease) by microarray. miR-21 plays a crucial role in
This journal is © The Royal Society of Chemistry 2018



Table 4 The top 50 breast neoplasms-related miRNAs candidates predicted by IDNC with removed all known breast neoplasms-miRNAs
associations and the confirmation of these associations

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, miR2Disease, dbDEMC 26 hsa-mir-10a HMDD, miR2Disease, dbDEMC
2 hsa-mir-146a HMDD, miR2Disease, dbDEMC 27 hsa-mir-211 dbDEMC
3 hsa-mir-125b HMDD, miR2Disease, dbDEMC 28 hsa-mir-137 HMDD, dbDEMC
4 hsa-mir-373 HMDD, miR2Disease, dbDEMC 29 hsa-mir-141 HMDD, miR2Disease, dbDEMC
5 hsa-mir-155 HMDD, miR2Disease, dbDEMC 30 hsa-mir-223 HMDD, dbDEMC
6 hsa-mir-16 HMDD, dbDEMC 31 hsa-let-7e HMDD, dbDEMC
7 hsa-mir-451 HMDD, miR2Disease 32 hsa-mir-200b HMDD, miR2Disease, dbDEMC
8 hsa-mir-29c HMDD, dbDEMC 33 hsa-mir-146b HMDD, miR2Disease
9 hsa-mir-34a HMDD, dbDEMC 34 hsa-let-7b HMDD, dbDEMC
10 hsa-mir-19a HMDD, dbDEMC 35 hsa-mir-181a HMDD, miR2Disease, dbDEMC
11 hsa-mir-17 HMDD, dbDEMC 36 hsa-let-7d HMDD, miR2isease, dbDEMC
12 hsa-mir-184 Unconrmed 37 hsa-let-7c HMDD, dbDEMC
13 hsa-mir-221 HMDD, miR2Disease 38 hsa-let-7i HMDD, miR2Disease, dbDEMC
14 hsa-mir-15a HMDD, dbDEMC 39 hsa-mir-9 HMDD, dbDEMC
15 hsa-mir-302b HMDD, miR2Disease 40 hsa-let-7f HMDD, miR2Disease, dbDEMC
16 hsa-mir-20a HMDD, dbDEMC 41 hsa-let-7g HMDD, dbDEMC
17 hsa-mir-29a HMDD, dbDEMC 42 hsa-mir-143 HMDD, miR2Disease, dbDEMC
18 hsa-mir-372 HMDD, dbDEMC 43 hsa-mir-145 HMDD, miR2Disease, dbDEMC
19 hsa-mir-18a HMDD, dbDEMC 44 hsa-mir-92b dbDEMC
20 hsa-mir-222 HMDD, dbDEMC 45 hsa-mir-30a HMDD, dbDEMC
21 hsa-mir-181b HMDD, miR2Disease, dbDEMC 46 hsa-mir-150 HMDD, dbDEMC
22 hsa-mir-19b HMDD, dbDEMC 47 hsa-mir-15b dbDEMC
23 hsa-mir-92a HMDD, dbDEMC 48 hsa-mir-127 HMDD, miR2Disease, dbDEMC
24 hsa-let-7a HMDD, miR2Disease, dbDEMC 49 hsa-mir-203 HMDD, miR2Disease, dbDEMC
25 hsa-mir-205 HMDD, miR2Disease, dbDEMC 50 hsa-mir-126 HMDD, miR2Disease, dbDEMC
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carcinogenesis,119 which can be used as a diagnostic and prog-
nostic marker for digestive cancers for Asians. These docu-
ments were published aer the last update date of these three
databases, which fully demonstrates the effectiveness of our
method.
Discussion and conclusions

miRNA has been found associated with the development of
many complex diseases. miRNA imbalance can be regarded as
a biomarker for complex disease diagnosis. Although biological
experiments can be used to predict disease–related miRNA, it
takes much time and lots of efforts to use biological experi-
ments. The calculation method for predicting potential associ-
ations between miRNAs and diseases is an effective
complement to biological experiments. A reasonable similarity
relationship of diseases and miRNAs can improve the predic-
tion accuracy of the calculation method. In order to build
a reasonable similarity relationship, we rst reconstructed the
miRNA network by combining the miRNA family information
and the miRNA function similarity, and reconstructed the
disease network by using the semantic scores between the
known disease and the association information of the miRNA
and the disease. Then the global similarity of the two networks
is obtained by Laplasse operator. The similarity between
diseases and miRNA is measured by global similarity score.
Thereaer, the disease–miRNA association network ASm based
on the global similarity information of miRNA was constructed
by using the global similarity of the miRNA nodes and the
This journal is © The Royal Society of Chemistry 2018
known diseases–miRNA relationship. The disease–miRNA
correlation network ASd based on disease global similarity
information was constructed by using the global similarity of
disease nodes and the known disease–miRNA relationship.
Then the consistency information between vectors is obtained
by projection of vectors. By using this information to diffuse the
disease and miRNA global network respectively, a stable diffu-
sion spectrum was obtained as a corresponding prediction
score. Finally, the weighted average of two prediction scores was
used as the nal score of disease–miRNA association miRNA
prediction. This method does not need negative samples and
can predict isolated disease and new miRNA. The design of the
algorithm is simple. The AUC value of the LOOCV experiment in
the gold datum dataset is up to 0.8814, and the AUC value in the
forecast data set is up to 0.9512, which is superior to the
methods of others. In the case study, we also chose breast tumor
and colon tumor for experimental research. Among the top 50
and the corresponding disease related miRNAs predictions, the
accuracy rate in the updated HDMM, miR2Disease and
dbDEMC databases were 94% and 90% respectively. In the
prediction of isolated disease cases, 98% and 94% of the top 50
were conrmed by the three databases mentioned above.
Finally, we simulated hsa-mir-21 as a new miRNA for predic-
tion. Of the top 50 diseases predicted, 40 were veried by the
database. The rests have found supporting evidence in the latest
literature, showing predictive capability of our method.

The algorithm presented in this paper shows strong predic-
tive capability, mainly due to the following reasons. Firstly, we
added family information to reconstruct the miRNA similarity
RSC Adv., 2018, 8, 36675–36690 | 36687



Table 5 The top 50 hsa-mir-21-related diseases candidates predicted by IDNC and the confirmation of these associations

Rank miRNA name Evidences Rank miRNA name Evidences

1 Heart failure HDMM 26 Lymphoma, B-cell HMDD, miR2Disease
2 Breast neoplasms HMDD, miR2Disease,

dbDEMC
27 Colorectal eoplasms HMDD, miR2Disease,

dbDEMC
3 Lung neoplasms HMDD, miR2Disease,

dbDEMC
28 Hodgkin disease HMDD, miR2Disease

4 Ovarian neoplasms HDMM 29 Carcinoma, renal cell HMDD, miR2Disease,
dbDEMC

5 Neoplasms HDMM 30 Hepatitis, chronic Unconrmed
6 Melanoma HMDD, dbDEMC 31 Lymphoma HDMM
7 Adrenocortical carcinoma dbDEMC 32 Azoospermia Unconrmed
8 Muscular disorders, atrophic HDMM 33 Hepatitis C Unconrmed
9 Stomach neoplasms HDMM 34 Lymphoma, primary effusion dbDEMC
10 Pancreatic neoplasms HMDD, dbDEMC 35 Sarcoma, kaposi dbDEMC
11 Lupus vulgaris HDMM 36 Cardiomyopathy, hypertrophic HMDD, miR2Disease
12 Colonic neoplasms HMDD, dbDEMC 37 Pituitary neoplasms Unconrmed
13 Autistic disorder HDMM 38 Uterine cervical neoplasms HMDD, dbDEMC
14 Prostatic neoplasms HDMM 39 Waldenstrom macroglobulinemia Unconrmed
15 Head and neck neoplasms HDMM 40 Polycythemia vera HDMM
16 Carcinoma, hepatocellular HMDD, miR2Disease,

dbDEMC
41 Digestive system neoplasms Unconrmed

17 Salivary gland neoplasms HDMM 42 Urinary bladder neoplasms HDMM
18 Adenocarcinoma HDMM 43 Leukemia, B-cell dbDEMC
19 Schizophrenia Unconrmed 44 Leukemia, promyelocytic, acute dbDEMC
20 Endometriosis HDMM 45 Precursor B-cell lymphoblastic

leukemia-lymphoma
miR2Disease

21 Leukemia, lymphocytic, chronic, B-
cell

HMDD, miR2Disease,
dbDEMC

46 Retinal neovascularization Unconrmed

22 Medulloblastoma HDMM 47 ACTH-secreting pituitary adenoma HDMM
23 Leukemia, myeloid, acute miR2Disease, dbDEMC 48 Neurodegenerative diseases Unconrmed
24 Leukemia HDMM 49 Multiple myeloma HMDD, dbDEMC
25 Thyroid neoplasms HMDD, dbDEMC 50 Hepatitis B Unconrmed

RSC Advances Paper
network, and integrate the known miRNA related disease
information and the disease phenotype similarity information
to reconstruct the disease network; secondly, we used the Lap-
lasse operator to obtain the global similarity of both miRNA
network and disease network; thirdly, we reconstructed the
disease–miRNA correlation network by adding the global simi-
larity information of the network; the fourth is the use of
network consistency to get data association between miRNA
and disease. Although the disease-related miRNA prediction
model based on IDNC has achieved a satisfactory prediction
performance, there are still some defects. Firstly, there are too
many parameters. It takes a lot of time to nd the best
parameter for different data sets; secondly, the construction of
disease and miRNA similarity network needs more data to be
integrated for accuracy; thirdly, the accuracy of prediction for
isolated diseases and new miRNA needs to be improved.
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