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Abstract

Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic Parkinson’s disease (IPD) can
be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology.
Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the
single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we
employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available
structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with
PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs). An
advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-
defined anatomical patterns for discriminating the disorders, including: (i) a subcortical motor network; (ii) each of its
component regions and (iii) the whole brain. All disease groups could be discriminated simultaneously with high
accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the
midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network
also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately
predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/
brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated
analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and
identifies distinct patterns of regional atrophy particularly useful for this process.
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Introduction

The akinetic-rigid syndromes of progressive supranuclear
palsy (PSP), multiple system atrophy (MSA) and idiopathic
Parkinson’s disease (IPD), can be clinically indistinguishable in
the early stages [1] despite having distinct characteristic
patterns of molecular pathology [2–4]. Finding sensitive and
specific objective biomarkers for predicting disease state in
these disorders is an important aim for several reasons: first,
the disorders have different prognoses, where MSA and PSP
are characterised by relentless disease progression and carry
a life expectancy of only a few years after diagnosis, IPD does
not convey a substantial reduction in life expectancy. Second,

the disorders have differential responses to treatment; IPD
responds moderately well to dopaminergic therapy and deep-
brain stimulation [5], but PSP and MSA are both associated
with a poor response [6]. Third, objective biomarkers predictive
of early disease state may be useful to reduce the
misdiagnosis rate in clinical trials of potential disease-modifying
compounds. However, for any objective measure to facilitate
clinical decision making in the long term, it must accurately and
simultaneously discriminate between all the disorders.

Magnetic resonance imaging (MRI) holds the potential to
provide objective diagnostic markers for the disorders.
However, no published studies have demonstrated an
automated approach to predict diagnosis in individual subjects
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with accuracy that could be considered clinically useful.
Existing studies have employed either manual measurements
derived from radiological examination of MRI scans (rMRI)
[7–10] or automated approaches based on voxel-based
morphometry (VBM) [11–14]. Both approaches have
disadvantages: rMRI markers are operator-dependent and
time-consuming to construct and are not sufficiently specific for
discriminating between MSA and PSP despite good sensitivity
for discriminating both from IPD [15]. Whilst VBM has been
successful in identifying neuroanatomical changes associated
with these disorders at the group level, it has limited ability to
predict disease state at the level of individual subjects.

Pattern recognition (PR) is an analytic approach increasingly
being applied in clinical neuroimaging studies [16,17]. In
contrast to rMRI and VBM, PR aims to predict disease state at
the single-subject level based on distributed patterns of
anatomical abnormality. PR has been highly successful for
discriminating other neurological disorders [16–19], but only
two studies have applied PR to Parkinsonian disorders and
were unable to accurately discriminate all diagnostic groups
[20,21].

The primary objective of this work was to assess the
capability of anatomical patterns (networks) of brain regions for
automated discrimination of Parkinsonian disorders, aiming to
discriminate between all disorders simultaneously and identify
which networks would provide the best discrimination of each
disorder. To achieve this, networks of subcortical regions were
defined prior to the automated analyses, based on the known
distribution of tau (PSP) or α-synuclein (MSA/IPD) pathology
[2–4]. An advanced multi-class PR approach was then
employed to assess the diagnostic capability of the full
network, each component region and the whole brain. A
secondary aim was to determine whether MSA subtypes MSA-
P and MSA-C (predominantly Parkinsonian or cerebellar
symptoms) could be discriminated and further, whether
regarding them as single or distinct entities yields more
accurate discrimination, since they have different burdens of
brainstem and basal ganglia pathology [22].

We hypothesized that discrimination of PSP and MSA would
be achieved with high accuracy while discrimination of IPD
would be more challenging since most MRI studies report only
subtle abnormalities in early- or mid-stage IPD [13,23].
Additionally, we hypothesized that: (i) the midbrain and
cerebellum would be predictive of PSP, because atrophy of the
midbrain and superior cerebellar peduncles (SCP) are rMRI
markers for PSP [7,9,10]; (ii) the cerebellum would be
predictive of MSA because middle cerebellar peduncle (MCP)
width is an rMRI marker of MSA [8–10] and (iii) the midbrain/
brainstem would be the most predictive region for IPD based
on its distribution of pathology [4] and a recent report of ponto-
medullary degeneration in early IPD [23]. Finally, we sought to
test whether the network or any of its components
outperformed a whole-brain approach, which is important
because cortical atrophy has been reported in all disorders
[11,13,24].

Methods

Case selection
Seventeen patients with PSP, 19 with MSA and 14 with IPD

participated (all diagnosed according to established criteria
[25–27]) and were recruited according to procedures described
elsewhere [28,29]. Five PSP patients met diagnostic criteria for
definite, 11 for probable (clinically definite [1]) and one for
possible PSP. All PSP patients could be considered to have
the classical PSP-Richardson phenotype [30]. Twelve MSA
patients were categorized as having MSA-P (one patient could
be considered to have possible-, nine to have probable and two
to have definite MSA according to recent updates to the
diagnostic criteria [31]). Seven MSA patients were categorized
as having MSA-C (six probable and one definite MSA). All IPD
patients fulfilled criteria for clinically definite IPD [25]. All 13 IPD
patients taking dopaminergic medication reported a good or
excellent response and the six PSP and 13 MSA patients
taking dopaminergic medication all described their response as
poor. Nineteen healthy controls (HCs; spouses and friends of
patients) with no known neurological disorder also participated.
Disease severity was recorded using the Unified Parkinson’s
Disease Rating Scale (UPDRS), plus Hoehn and Yahr (HY)
[32] and Schwab and England Activities of Daily Living (ADL)
scales [33]. Cerebellar ataxia was assessed using the
Parkinson’s plus scale [34] and postural instability using the
Postural Instability and Gait Disorder (PIGD) scale [35] (Table
1). All participants provided informed written consent and the
study was approved by the Research Ethics Committees of
King’s Healthcare NHS Trusts and the Institute of Psychiatry.

Neuroimaging data acquisition/preprocessing
For each subject, a whole-brain T1-weighted 3-dimensional

inversion recovery prepared spoiled gradient echo (SPGR)
structural image was acquired using a 1.5T General Electric,
Signa LX NV/i scanner (General Electric, WI, USA) with
parameters: repetition time = 18ms, echo time = 5.1ms,
inversion time = 450 ms, acquisition matrix = 256×152 over a
240×240 field of view, reconstructed as a 256x256 matrix,
yielding in-plane voxel size of 0.94×0.94mm and 124 1.5 mm
thick slices. In addition, a 2D T2-weighted structural image
(used to screen participants for incidental structural lesions)
and a diffusion-tensor imaging (DTI) sequence were acquired
as described elsewhere [28]. Since SPGR images are more
widely available and faster to acquire than DTI, we focus on
these for the present work. The data from a subset of the
subjects used in the present work were used in a companion
paper where we validated the analytic methodology [36] and
the DTI images from a different subset have been reported
separately [28].

The SPGR images were used to derive a set of “scalar
momentum” features [37] to describe anatomical variability
amongst subjects (see materials S1 for details). The
components of these images corresponding to grey- and white-
matter were masked anatomically to constrain them to either:
(i) the whole brain, (ii) a subcortical motor network comprising
bilateral cerebellum, brainstem (including midbrain and
decussations of SCP but excluding the MCP), caudate,
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putamen, pallidum and accumbens or (iii) each of the these
component regions, separately. Both components were
concatenated and used as classifier inputs.

Pattern Recognition Analysis
Nearly all applications of PR to neuroimaging have employed

pair-wise categorical classification, but here we employed a
multi-class probabilistic approach. This is preferable for
Parkinsonian disorders because: (i) it aims to separate all
disease classes simultaneously, thus more closely resembling
the clinical decision-making process and (ii) provides
quantitative measures of diagnostic confidence. The PR
approach employed here is described in detail in a companion
methodological report [36] and is outlined in materials S1. Four
contrasts were applied to discriminate different combinations of
disease groups: classifier I aimed to separate disease groups,
replicating the decision process employed clinically (i.e. PSP
vs. IPD vs. MSA; chance level=33%); classifier II aimed to
separate disease groups and HCs (PSP vs. IPD vs. HCs vs.
MSA; chance=25%); classifiers III and IV were similar to
classifiers I and II respectively, except the MSA class was
separated into distinct MSA-P and MSA-C groups (classifier III:
PSP vs. IPD vs. MSA-P vs. MSA-C; chance=25%. Classifier
IV:PSP vs. IPD vs. HCs vs. MSA-P vs. MSA-C; chance=20%).
All four classifiers were applied to the whole-brain and
subcortical motor network and Classifier II was applied to
assess the diagnostic value of regional features because it can
be used to examine the relationship of each disease group to

Table 1. Demographic and clinical information.

 
HCs
(n=19) PSP (n=17) IPD (n=14)

MSA (n=19) [MSA-P,
n=12; MSA-C, n=7]

Age, mean ± SD
63.9 ±
7.8

68.6 ± 6.5 64.6 ± 6.9
64.0 ± 7.7 [64.0 ± 6.7;

60.6 ± 8.3]
Sex, M:F 10:9 7:10 7:7 10:9 [4:8 ; 6:1]
Disease
duration, mean ±
SD

– 5.3 ± 2.4 6.6 ± 2.0
4.9 ± 2.3 [4.4 ± 2.2; 5.5

± 2.5]

HY, mean
(range)

– 4.0 (3.0-4.0) 2.5 (2.0-3.0)
3.0 (2.5-5.0) [3.0

(2.5-5.0); 4.0 (3.0-4.0)]
ADL, median
(range)

– 50% (20-80)
90%
(80-100)

70% (40-80) [70%

(40-80); 70% (60-80)]
UPDRS-III,
mean ± SD

– 34.8 ± 7 21.7 ± 9.6
35.7 ± 13.8 [42.6 ±

12.3; 25.0 ± 8.0]

PIGD score,
mean (range)

–
11.0
(7.0-18.0)

3.0 (1.0-6.0)
9.0 (5.0-14.0) [8.0

(5.0-14.0); 9.0

(8.0-11.0)]

Cerebellar,
median (range)

– 2.0 (0.0-6.0) 0.0 (0.0-2.0)
8.5 (0.0-13.0) [4.0

(0.0-10.0); 10.0

(0.0-13.0)]

For patients taking levodopa, scores are given in the “on” state. Scales: HY: Hoehn
and Yahr; ADL: Schwab and England Activities of Daily Living; UPDRS-III: Unified
Parkinson’s Disease Rating Scale-part 3, PIGD: Postural instability and gait
disorder. Cerebellar scores are taken from the Parkinson’s Plus Scale (maximum =
24).

HCs. The discriminative value of different brain regions was
also assessed at a finer scale than was afforded by the
anatomical network by examining the pattern of predictive
voxel weights for classifier II. This represents a multi-class
generalisation of an approach employed elsewhere for binary
classification [38–42] (see materials S1 for details).

To estimate the generalisability of each model for new cases,
it is crucial to evaluate it using data that has not been used in
any way to build the model (e.g. to infer parameters). Leave-
one-out cross-validation, which provides approximately
unbiased estimates of the true generalizability, was used to
achieve this (see materials S1 for details). Note that all data
preprocessing steps were embedded within this cross-
validation loop, including the creation of a study-specific
template for volumetric normalisation. Thus, the training and
test sets were entirely independent during all stages of model
construction and assessment,

Classifier assessment
Each classifier’s errors can be summarised using confusion

matrices, which indicate the ease, or difficulty with which
classes could be separated. In the binary case, these give rise
to the sensitivity, specificity and positive/negative predictive
value (PV). Here, straightforward multi-class generalisations
were derived for the sensitivity and PV, which describe the
performance for each class (Figure 1). The (balanced)
accuracy and overall predictive value (OPV) were then
computed by averaging these over all classes. Note that the
class specificity as typically employed in the binary context
does not straightforwardly generalise to multi-class cases,
since more than one type of misclassification can occur.
However, the PV indirectly measures specificity for each class.
Significance of each metric was assessed using Monte Carlo
testing (see materials S1).

Results

Demographic variables
Diagnostic groups did not differ significantly with respect to

age (F3,65=1.8, p=0.17), sex (Χ2=0.62; p=0.89) or disease
duration (F2,47=1.9; p=0.15) (Table 1).

Classification performance: subcortical motor network
All subcortical network classifiers (Table 2) exceeded chance

accuracy and OPV (p < 0.001, Monte Carlo test). Classifier I
discriminated all classes with high sensitivity and PV, (Figure
2), making only four errors: one IPD case was predicted as
PSP and three PSP cases were predicted as IPD. The MSA
class was predicted perfectly (Figure 3).

Classifier II exceeded chance sensitivity and PV for all
classes except IPD which was significant for sensitivity only at
trend level (Figure 2). This was due to several IPD cases being
mistaken for HCs; MSA and PSP remained well classified, one
MSA case was mistakenly predicted as a control and two PSP
cases were predicted as IPD (Figure 3). For MSA, the
incorrectly labelled subject was an MSA-P patient (thus, MSA-
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P = 91.7% sensitivity). All MSA-C cases were correctly
classified (MSA-C = 100% sensitivity).

Classifier III exceeded chance sensitivity and PV for all
classes (Figure 2). Notably, MSA-P and MSA-C were
accurately discriminated, although there was some overlap
between them (Figure 3). The MSA-P class was relatively
poorly discernable, being frequently mistaken for PSP or MSA-
C (Figure 3). For all three classifiers described above, all
pathologically confirmed cases were correctly classified.

Classifier IV displayed similar characteristics to the other
classifiers: all disease groups except IPD were discriminated
above chance (Figure 2) and misclassifications were mainly
between either IPD and HCs or MSA-P and MSA-C/PSP
(Figure 3). For this classifier, all pathologically confirmed cases

were correctly classified except one PSP case (predicted as
MSA-C).

Classification performance: regional classifiers
Classifier II exceeded chance accuracy and OPV in all

regions except the nuclei accumbens (Table 3). The region
producing the most accurate predictions overall was the
midbrain/brainstem, achieving only slightly lower accuracy
(-1.7%) and OPV (-2.0%) than the subcortical motor network
(Table 3). For PSP, all regions were predictive (Figure 4). For
MSA, the cerebellum and midbrain/brainstem were highly
predictive and the putamina were moderately predictive. The
cerebellum and midbrain/brainstem were predictive of both
variants of MSA (cerebellum: MSA-P = 83.3% sensitivity, MSA-

Figure 1.  Example confusion matrix for an m-class classification problem.  Ci,j denotes the number of predictions in row i,
column j. The sensitivity and predictive value measure the performance of each class. The accuracy and overall predictive value are
constructed by averaging the sensitivity and predictive value over all classes. Note that the accuracy and overall predictive value are
balanced in that they avoid potential bias arising from variable numbers of samples in each class.
doi: 10.1371/journal.pone.0069237.g001
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C = 100%; midbrain/brainstem: MSA-P = 66.7%, MSA-C =
100%), but the putamina were only predictive of MSA-P (MSA-
P: 50.0%, MSA-C: 0.0%). The only region that discriminated

Table 2. Balanced accuracy and overall predictive value
(OPV) for all classifiers trained using voxels derived from
the subcortical motor network. * p < 0.01, # = p < 0.05.
Values in brackets are 95% confidence intervals for the
accuracies, derived by an obvious multiclass generalization
of the method presented in [47].

ClassifierClasses Region Accuracy [95% C.I.] OPV

I PSP, IPD, MSA
Subcortical
network

91.7%* [77.8–94.5] 91.5%*

II PSP, IPD, HCs, MSA
Subcortical
network

73,6%* [61.9–80.2] 73,9%*

III
PSP, IPD, MSA-P,
MSA-C

Subcortical
network

84.5%* [68.7–88.2] 85.0%*

IV
PSP, IPD, HCs, MSA-
P, MSA-C

Subcortical
network

66.2%* [53.7–72.8] 63.3%*

IPD from HCs with high sensitivity and PV was the midbrain/
brainstem and was thus the only region that simultaneously
discriminated all disease classes from one another and HCs
(Figure 4). Overall, the patterns of predictive weights are
congruent with the effects described above (materials S1).

Classification performance: whole-brain
While all whole-brain classifiers exceeded chance accuracy

and OPV (p < 0.001), they were consistently poorer predictors
than the subcortical motor network (mean difference of 12.1%
accuracy and 14.3% OPV) and were also consistently poorer
across classes (materials S1). Thus, they will not be
considered further.

Comparison of MSA subtypes
As described, the sensitivity and PV for MSA-P were

consistently higher when MSA-P and MSA-C were considered
to be the same class (Table 2 Figure 2). Although the
sensitivity for MSA-C was 100% for all classifiers, the PV for
MSA-C was also consistently improved by considering MSA-P
and MSA-C together.

Figure 2.  Sensitivity (Sens) and predictive value (PV) for each class within each diagnostic classifier based on the
subcortical motor network features (classifiers I–IV in panels A-D respectively).  Bars denote the chance levels determined by
the proportion of samples in the training set. * = p < 0.01, # = p < 0.05 + = p < 0.1.
doi: 10.1371/journal.pone.0069237.g002
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Discussion

In this study, we employed multi-class PR for single-subject
classification of Parkinsonian disorders using structural MRI. In
contrast to voxel-wise approaches that describe focal group-
level effects across brain regions, PR predicts disease state at
the single subject level using distributed patterns of atrophy.
This provides the advantages that it is objective, fully
automated and free from operator bias. We demonstrated
nearly perfect diagnostic classification of PSP, MSA and IPD
using a subcortical motor network. Our approach produced
only four misclassifications from 50 predictions (91.7%
accuracy, 91.5% OPV) and accurately discriminated all disease

classes. To our knowledge, this provides the first
demonstration of accurate simultaneous discrimination
between these disorders at an individual patient level using
MRI measures.

All disease classes were accurately discriminated from one
another with predictive performance that can be considered
excellent relative to: (i) rMRI and semi-automated VBM studies
[7,9,12], (ii) measures derived from DTI [15] and (iii) studies
applying PR to structural MRI, to which they are most directly
comparable [20,21,36]. Amongst these latter studies, one study
reported accurate discrimination between typical and atypical
Parkinsonian syndromes after pooling MSA and PSP but did
not attempt to discriminate between PSP and MSA [20].

Figure 3.  Confusion matrices for each diagnostic decision (classifiers I–IV in panels A-D respectively).  Numbers in each
cell describe the total number of predictions.
doi: 10.1371/journal.pone.0069237.g003
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Another study aimed to discriminate MSA-P, PSP, IPD and
HCs in a pair-wise manner, reporting: (i) high accuracy
(66-97%) discrimination of PSP from HCs and IPD; (ii) marginal
discrimination of MSA-P from HCs and IPD and (iii) no
discrimination of other classes [21]. In future studies, it will also
be important to validate performance of the classifier in the
presence of other disorders that have similar symptoms (e.g.
corticobasal degeneration), although MSA and PSP are more
common than CBD, accounting for 80% of cases misdiagnosed
with IPD [43,44].

An important feature of our approach is that it provides
estimates of how accurately each model will make predictions
for new cases, which is of direct diagnostic relevance. This was
achieved through the cross-validation approach that we
employed, which is well known to provide approximately
unbiased estimates of the true generalizability. This provides a
more appropriate assessment of diagnostic value than simply
postulating a discriminatory cut-off using the same data that
was used to construct the model (which yields overly optimistic
estimates of generalisability).

We acknowledge that a limiting factor in our study is the
modest number of patients for whom pathological confirmation
of diagnosis could be obtained (eight out of 50 cases). This
proportion of patients where diagnosis could be confirmed
pathologically is comparable to or greater than in most previous
neuroimaging studies (e.g. [7–14,20,21] and references in
[15]). In all eight patients where diagnosis was pathologically
confirmed, the model accurately predicted the diagnosis. In our
study, lack of pathological diagnosis occurred as some patients
did not consent to autopsy and some are still living. This is a
problem frequently encountered in neuroimaging studies.
Although the modest rate of pathological confirmation must be
taken into consideration when interpreting our results, we do
not believe that this invalidates our findings. Each patient had
the typical clinical syndrome for their particular diagnosis,
fulfilling stringent clinical diagnostic criteria. Another potential
limitation is the moderate overall sample size, which motivates
future replication of these findings in a larger sample. This

Table 3. Balanced accuracy and overall predictive value
(OPV) for the four-class classifiers trained to discriminate
PSP, IPD, HCs and MSA (Classifier II) using voxels derived
from each constituent region. All regions were defined
bilaterally using anatomical masks (see supplementary
material). * = p < 0.01, # = p < 0.05. Values in brackets are
95% confidence intervals for the accuracies, derived by an
obvious multiclass generalization of the method presented
in [47].

ClassifierClasses Region Accuracy [95% C.I.] OPV
II PSP, IPD, HCs, MSA Cerebellum 60.0%* [49.3–69.1] 60.7%*

II PSP, IPD, HCs, MSA
Midbrain/
Brainstem

71.7%* [59.2–79.1] 71.9%*

II PSP, IPD, HCs, MSA Caudate 38.6%* [30.8–49.6] 37.3%#
II PSP, IPD, HCs, MSA Putamen 46.7%* [37.0–57.6] 45.8%*
II PSP, IPD, HCs, MSA Pallidum 40.1%* [32.6–50.3] 36.8%*
II PSP, IPD, HCs, MSA Accumbens 37.1% [27.3–45.6] 32.3%

sample is smaller than many pattern recognition studies in
other disorders (e.g. dementia), but is nevertheless
substantially larger than nearly all published studies
investigating Parkinsonian disorders with MRI (reviewed in
[15]).

For PSP accurate predictions were derived from all
subcortical regions, reflecting the known distribution of
pathology in cerebellum, midbrain and basal ganglia [2]. Of
these regions, predictions with the highest sensitivity and PV
were derived from the midbrain/brainstem, caudate nuclei and
pallidum. Midbrain atrophy is the most consistent finding in
VBM studies of PSP [12,13], and atrophy of the caudate nuclei
has been reported in some [13,24] but not all studies [12].
Indeed, the magnitude of focal effects in the basal ganglia were
modest in relation to those in the midbrain (materials S1), but
the overall pattern in each region was nevertheless highly
predictive of PSP. The cerebellum was a poorer predictor of
PSP than the other regions, which is surprising considering the
use of SCP atrophy for identifying PSP in rMRI [7,9]. This is
probably attributable to the small size of the SCP relative to the
voxel size of MRI, making it less suited to detection by
automated approaches, although atrophy of the decussations
of the SCP (which are larger and contained within the
brainstem mask) are probably more useful and were assigned
high predictive weight (materials S1). However, when these
single structures were considered together within the
subcortical motor network, this yielded superior sensitivity and
PV to every component region, (and to the whole-brain
classifier), indicating that a network approach is better suited
than single regions for detecting PSP.

The cerebellum and brainstem were highly predictive of
MSA, in accordance with: (i) their degree of pathological
involvement in MSA [3], (ii) their utility as markers in rMRI [8,9]
and (iii) VBM studies that report extensive pontocerebellar
damage in MSA-C and MSA-P [14]. Accordingly, the
pontocerebellar degeneration we observed was widespread
and severe in MSA (materials S1). Our results suggest that to
optimally discriminate MSA, a focussed subcortical network
containing the cerebellum, brainstem and putamen may be
better suited than the more extensive subcortical network that
optimally predicts PSP. The ability of the model to predict either
MSA-P or MSA-C was improved when they were considered
together. This suggests that the characteristics of MSA-P and
MSA-C may overlap sufficiently at the network level for it to be
advantageous for them to be considered together when
building an analysis model for automated discrimination using
MRI.

While IPD could be accurately discriminated from MSA and
PSP, it was only possible to discriminate IPD from HCs using
the midbrain/brainstem. This was expected, given that early-
and mid-stage IPD pathology is largely restricted to the
midbrain [4], and the brains of IPD patients usually appear
normal in rMRI [15]. VBM studies have only reported subtle
focal differences in early or mid-stage IPD relative to HCs
[13,23] although more extensive cortical damage may occur in
late-stage or demented IPD patients [45]. Our results accord
with these findings and indicate that although midbrain/
brainstem changes in IPD are subtle, they are sufficiently
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informative to accurately discriminate IPD from all other
classes. Accordingly, our results suggest that a region-of-
interest approach restricted to midbrain/brainstem may be
better suited to discriminate IPD than a network approach.

For all disorders, the whole-brain approach yielded lower
performance than using only the core network. This does not

exclude the possibility that cortical pathology is predictive of
any of the disorders if the component regions are more
carefully specified a priori, but indicates that if anatomical
hypotheses cannot be clearly formulated it is preferable to
focus classification on a smaller network of core regions where
degeneration is known to occur rather than employ an

Figure 4.  Sensitivity (Sens) and predictive value (PV) for each region in the subcortical motor network for the four-class
classifier contrasting PSP, IPD, HC and MSA (Classifier II).  A: cerebellum; B: brainstem; C: caudate; D: putamen; E: pallidum;
F: accumbens. Bars denote the chance levels determined by the proportion of samples in the training set. * = p < 0.01, # = p < 0.05
+ = p < 0.1.
doi: 10.1371/journal.pone.0069237.g004
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exploratory classification approach. Similar findings have been
reported for dementia, where PR approaches are also more
accurate using a set of core regions relative to the whole brain,
despite widespread cortical involvement [46]. An advantage of
the multi-class approach employed here is that an independent
predictive function is used to model each class, so the
framework accommodates distinct sets of features for
identifying each disease.

In summary, we demonstrated highly accurate, fully
automated single subject classification of MSA, PSP and IPD
from one another and from healthy controls using a
conventional MRI sequence that could easily be obtained as
part of a clinical protocol. We identified different sets of regional
features optimal for predicting each disorder, which are
important because (i) they define an objective set of
biomarkers predictive of disease state and (ii) can guide future
studies aiming to automatically classify these disorders using
MRI. The next step is to validate these findings in a larger
sample of patients at an earlier stage in the disease process
with histological confirmation of diagnosis.

Supporting Information

Materials S1.  Balanced accuracy and overall predictive value
(OPV) for the four-class classifiers trained to discriminate PSP,

IPD, HCs and MSA (Classifier II) using voxels derived from
each constituent region. All regions were defined bilaterally
using anatomical masks (see supplementary material). * = p <
0.01, # = p < 0.05. Values in brackets are 95% confidence
intervals for the accuracies, derived by an obvious multiclass
generalization of the method presented in [47].
(PDF)
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