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By recording a time series of tomographic images, dynamic fluorescencemolecular tomography (FMT) allows exploring perfusion,
biodistribution, and pharmacokinetics of labeled substances in vivo. Usually, dynamic tomographic images are first reconstructed
frame by frame, and then unmixing based on principle component analysis (PCA) or independent component analysis (ICA)
is performed to detect and visualize functional structures with different kinetic patterns. PCA and ICA assume sources are
statistically uncorrelated or independent and don’t perform well when correlated sources are present. In this paper, we deduce
the relationship between the measured imaging data and the kinetic patterns and present a temporal unmixing approach, which
is based on nonnegative blind source separation (BSS) method with a convex analysis framework to separate the measured data.
The presented method requires no assumption on source independence or zero correlations. Several numerical simulations and
phantom experiments are conducted to investigate the performance of the proposed temporal unmixing method. The results
indicate that it is feasible to unmix the measured data before the tomographic reconstruction and the BSS based method provides
better unmixing quality compared with PCA and ICA.

1. Introduction

Allowing noninvasive, quantitative, and three-dimensional
(3D) imaging of fluorescence probes associated with molec-
ular and cellular functions [1–3], fluorescence molecular
tomography (FMT)has been applied to drug development [4]
and preclinical oncological research [2, 5–8]. By recording a
sequence of tomographic images at intervals of a fewminutes,
dynamic FMT allows capturing the metabolic processes of
fluorescent biomarkers [9–13], which is helpful in better
understanding the complete dynamic course or pharmacoki-
netics including inflow, uptake, and washout of fluorescent
biomarkers (or drugs). Dynamic FMT can provide spatially
resolved kinetics of an optical contrast agent and offers
an attractive approach in studying drug delivery, tumor
detection, and treatment monitoring [14].

However, the widespread adoption of dynamic FMT
imaging has been inhibited by its inability to clearly resolve
and identify metabolic processes of optical contrast agent
throughout whole body of small animal in vivo [15, 16].
In recent years, several research groups have proposed

solutions to the problem. The solutions assume that the
fluorescent tomography images are a linear combination of
different fluorescent sources images and mainly use blind
source separation (BSS) based methods. In [17], Hillman
and Moore demonstrate that PCA is capable of extracting
anatomical information of various internal organs using 2D
dynamic fluorescence reflectance imaging. In [15], PCA is
used to detect and visualize changes in kinetic behaviors
between different regions from 3D dynamic FMT images.
In [16], Liu et al. propose an ICA-based method to unmix
dynamic FMT images and the detecting capability of ICA
is improved compared with PCA. In [18], pharmacokinetic-
rate images of optical fluorophores are directly reconstructed
from NIR measurements, which implies that it is possible
to reconstruct the tomographic images from the unmixed
measured images rather than unmixing the reconstructed
tomographic images. In [19], PCA is directly applied to the
fluorescence projection sequence, which leads to a reduced
computation cost while a similar resolving capability was
compared with the method depicted in [15]. However, PCA
and ICA utilize the statistical property that the sources are
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mutually uncorrelated or independent, supposing the sources
do satisfy that property. They may fail when the sources do
not satisfy the above property. In this paper, we present a
nonnegative BSS based method, named as convex analysis of
mixtures of nonnegative sources (CAMNS), to separate the
observed fluorescent image sequence. CAMNS requires no
assumption on source independence or zero correlations and
obtains positive or zero results [20].

This paper is organized as follows. First, the linear rela-
tionship between the measurements and the kinetic course
of fluorophore is established for dynamic FMT based on the
finite element method (FEM); second, the nonnegative blind
source separation method CAMNS is introduced to unmix
the observed images and extract the fluorescent sources
according to the linear relationship; and finally numerical
simulation and phantom experiments are performed to
evaluate the efficacy of the proposed method.

2. Materials and Methods

2.1. Linear Relationship Establishment for Dynamic FMT.
For continuous wave FMT, the photon propagation at the
excitation and emission wavelengths can be modeled by the
following coupled diffusion equations (DE) [21–23]:
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where subscripts 𝑥 and𝑚 denote the excitation and emission
wavelengths, respectively. Φ

𝑥,𝑚
(𝑟) represents the spatially

varying photon density in the medium. 𝐷
𝑥,𝑚

(𝑟) is the
diffusion coefficient and 𝜇

𝑎𝑥,𝑚
(𝑟) stands for the absorption

coefficient. 𝜂𝜇
𝑎𝑓
(𝑟) is the fluorescent yield and is denoted as x

in the following part of this paper. The absorption coefficient
𝜇
𝑎𝑓
(𝑟) is proportional to the fluorophore concentration by the

formula 𝜇
𝑎𝑓
(𝑟) = ln10𝜀𝐶(𝑟), where 𝜀 is the molar extinction

coefficient and 𝐶(𝑟) is the concentration of the fluorophore
[24]. Using the Robin-type boundary conditions [23, 25] and
the finite element method, we have the final weighted matrix:

𝜑 = Ax. (2)

Equation (2) shows that a linear relationship exists between
the measured photon flux density 𝜑 and the unknown
fluorescent yield x. Readers are referred to [21, 26, 27] for
more detailed descriptions.

In dynamic FMT, a series of boundary measurements
are obtained to recover and analyse the time-varying fluo-
rophore concentration.Usually, the time-varying fluorophore
concentration in a special organ or tissue is complicated
and related to the pharmacokinetics of a certain dye or
drug in that organ or tissue [14, 17], and the pharmacoki-
netics parameters of fluorescent dye or drug in different
organs or tissues are different. This is the assumption for
detection and visualization of functional structures based on

the reconstruction results of dynamic measurements [18].
In this paper, we define the fluorescent dye or drug in one
organ or tissue as one light source. Assuming that there
only exists one light source in the medium and the dynamic
measurements are collected at time instances, 𝑡1, 𝑡2, . . . , 𝑡𝐾,
then the 𝐾 measurements can be depicted in the following
form:

[𝜑 (𝑡1) ,𝜑 (𝑡2) , . . . ,𝜑 (𝑡𝐾)]

= A [x (𝑡1) , x (𝑡2) , . . . , x (𝑡𝐾)] = AX,
(3)

where x(𝑡
𝑘
) is the fluorescent yield at 𝑡

𝑘
,𝜑(𝑡
𝑘
) is a𝑁×1 vector,

and𝑁 is the number of pixels in each acquired image.
When we have to study the fluorophore distribution in

more than one tissue, say 𝑃 tissues, then there exist 𝑃 light
sources. Transposing the measured 𝑁 × 𝐾 data matrix to 𝐾

rows and𝑁 columns matrix and taking the background and
noise into consideration, we can get the relationship between
the dynamic measurements and the fluorophore distribution
as

Ψ =

𝑃

∑

𝑝=1
A
𝑝
X
𝑝
+B+ 𝜀, (4)

whereΨ is the boundarymeasurementsmatrix of𝐾 rows and
𝑁 columns and the 𝑘th row represents the measurement at
time instance 𝑡

𝑘
. A
𝑝
and X

𝑝
are the system matrix and the

fluorescent yield series corresponding to the 𝑝th light source,
respectively. B indicates the background signal and 𝜀 the
noise. The background signal can be easily removed through
subtracting the measured images by a preinjection image. So
in the subsequent sections, we suppose that the measured
data are free of background signal unless otherwise specified.
The noise 𝜀 can also be ignored considering that the EMCCD
camera is cooled to −80 degrees during data measurement,
and the dark current and read noise is about several electrons
[28]. From (4) it is obvious that the unmixing can be operated
directly on the observed images.

2.2. Temporal Unmixing of Dynamic Images by CAMNS.
In dynamic fluorescence molecular tomography study, a
sequence of photon density images is acquired at intervals
of minutes over time. Blind source separation methods, such
as PCA and ICA, provide capability of recovering hidden
sources (fluorescent biomarkers or functional structures)
from these acquired images. However, PCA and ICA perform
well only when the sources are mutually uncorrelated or
independent. Considering that the recovered sources are
nonnegative by nature, we adopt a nonnegative blind source
separation framework, known as CAMNS to study dynamic
images. CAMNS adopts a special deterministic assumption
called local dominance which means that the true source
signals serve as the extreme points of some observation-
constructed polyhedral set [20].

According to the framework proposed in [20], the mea-
surements Ψ can be considered as a polyhedral set whose
extreme points are A1X1,A2X2, . . ., and A

𝑃
X
𝑃
. And A

𝑝
X
𝑝

is the surface photon flux density from the 𝑝th inner light
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source. By finding all the extreme points of the polyhedral set
Ψ, the true sources can be perfectly identified. The extreme
points can be determined by solving the following linear
programs:

𝑝
∗

= min
𝛽

rT (H𝛽+ d) subject to H𝛽 + d ≥ 0

𝑞
∗

= max
𝛽

rT (H𝛽+ d) subject to H𝛽 + d ≥ 0,
(5)

where r is a random uniform vector and matrixH and vector
d are both obtained from the observations and are defined as

d =
1
𝑁
Ψ1
𝑁×1

H = [u1, u2, . . . , u𝑃−1] ,
(6)

where 1
𝑁×1 is an 𝑁 × 1 all one vector. u1, u2, . . . , u𝑃−1 are

the 𝑃 − 1 eigenvectors associated with the 𝑃 − 1 principle
eigenvalues of the following correlation matrix:

CΨ =
1
𝑁

(Ψ−D) (Ψ−D)
T
, (7)

whereD = [d, d, . . . , d] is a 𝐾 ×𝑁matrix.
To get 𝑃 source vectors, (5) should be solved for 𝑃 times

and 𝑃 extreme points will be obtained. The theoretical proof
and solving procedure of the linear programming problems
are depicted in detail in [20].

2.3. Determination of Source Number. To find the 𝑃 extreme
points of the polyhedral set Ψ, the number of sources
should be known as a prior. Eigenvalue decomposition is a
commonly used method to determine the target number in
phased-array radar signal processing [29]. To get the number
of sources, the correlationmatrix of the measured data is first
calculated according to (7) and then the eigendecomposition
is performed on the correlation matrix:

CΨU = UΣ, (8)

wherematrixU is composed of the eigenvectors and contains
dynamic information of fluorescence sources and diagonal
matrixΣ gives the ordered eigenvalues.We can determine the
number of sources hided in the measured data by looking at
the first nonnegligible eigenvalues.

2.4. Evaluation of the Unmixing Approaches. To quantify the
deviation of the unmixed image from the true image, the
rooted mean squared error (RMSE) is defined as follows:
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where y
𝑝𝑛

and s
𝑝𝑛

are the 𝑛th element of the normalized
separated image y

𝑝
and the normalized true image s

𝑝
,

respectively for the 𝑝th source, and the normalized images
are obtained by y
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𝑝
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= s
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Table 1: Optical parameters of the digital mouse.

Organ 780 nm 830 nm
𝜇
𝑎
(mm−1) 𝜇

󸀠

𝑠
(mm−1) 𝜇

𝑎
(mm−1) 𝜇

󸀠

𝑠
(mm−1)

Muscle 0.038 0.280 0.028 0.235
Heart 0.027 0.776 0.021 0.710
Lungs 0.083 2.006 0.060 1.941
Liver 0.160 0.578 0.124 0.542
Kidney 0.030 1.791 0.023 1.631
Stomach 0.0053 1.240 0.0043 1.167

Due to the intrinsic feature of the blind source separation
approach, the unmixed results are not unique, so the mean
squared error is calculated based on the normalized images.
In addition, all the unmixed results shown in the following
results and discussion section are in the normalized way.

As described above, the proposed temporal unmixing
method for dynamic images mainly includes the following
four steps.

(1) Organize the observed dynamic data in the form
presented by (4) based on the finite element method.

(2) Remove background signal from the measured data.
(3) Perform eigenvalue decomposition to the correlation

matrix of the measured data with no background
and determine the source number according to the
number of nonnegligible eigenvalues.

(4) Solve the two liner programs of (5) and the hidden
sources images can be extracted.

2.5. Experimental Setup and Materials. The performance of
the proposed approach was investigated by both numerical
simulation and phantom experiments.

Three numerical simulations were conducted to evaluate
the efficacy of the method under different conditions. In
Simulation 1, the biodistribution of ICG in the heart and the
lungs of a digital mouse was simulated according to [30].
The optical parameters are listed in Table 1. First, we set a
series of fluorescent yields (concentrations of ICG) to the
heart and the lungs at six time points (5min, 10min, 15min,
30min, 60min, and 120min), and the photon density on
the mouse surface was simulated using the FEM approach.
Second, the ICG distribution in the heart and the lungs
was reconstructed. Finally, the mixed tomographic images
were separated by PCA, ICA, and CAMNS, respectively.
The ICG concentrations versus time, called time courses,
are shown in Figure 1(a). The correlation coefficient between
the two sources defined as 𝑟 = ∑

𝑁

𝑛=1(s1𝑛 − s1)(s2𝑛 −

s2)/√∑
𝑁

𝑛=1(s1𝑛 − s1)2(s2𝑛 − s2)2 is 0.64, which means the
sources are correlated. In Simulation 2, the biodistribution of
ICG in the heart and the liver of a digital mouse were used as
the sources. The time courses of the two sources are shown
in Figure 1(b). The correlation coefficient between the two
sources is 0.01, which means that they are uncorrelated. The
optical parameters are the same as those in Simulation 2. In
Simulation 3, in order to test the robustness of CAMNS, we
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Figure 1: ICG concentration time courses used in (a) Simulation 1 and (b) Simulation 2. The markers depict actual concentration values at
corresponding time points according to [30].
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(4)(5)

Figure 2: The FMT/MicroCT dual modality imaging system: (1)
EMCCD; (2) diode laser; (3) rotational stage; (4) X-ray tube; and
(5) X-ray detector.

added Gaussian noise of zero mean and varying variance to
the observations used in Simulation 2. The varying variance
of the Gaussian noise is 1, 10−1, 10−2, 10−3, 10−4, 10−5, and
10−6, respectively, while the maximum amplitude of the clean
images is 1. For every variance, 100 Monte Carlo (MC) tests
were run and the RMSEs defined by (9) were calculated.

In the phantom experiments, the prototype FMT/
MicroCT dual modality imaging system, as shown in
Figure 2, was used to collect the fluorescent data. The
imaging system contains mainly three parts. One is the
FMT subsystem which consists of a diode laser (CL-671-
050, CrystaLaser, Nevada, USA) and a Nikkor 40mm f2.8
lens (Nikon, Melville, New York, USA) coupled EMCCD
camera (Andor iXon3, Belfast, UK). Another is the rotational
stage where the phantom is placed. And the last one is
the MicroCT subsystem which consists of an X-ray tube

Table 2: Optical parameters of the phantom.

Wavelength (nm) 𝜇
𝑎
(mm−1) 𝜇

󸀠

𝑠
(mm−1)

671 0.00029 1.08
710 0.00051 1.11

(OXFORD INSTRUMENTS series 5000 Apogee X-ray tube,
X-ray technology Inc., CA)with a focal spot size of 35 𝜇mand
a high-resolution flat panel X-ray detector (HAMAMATSU
C7921CA-02, Hamamatsu city, Japan) incorporating a 1032 ×
1012 pixel photodiode array with a 50 𝜇m pixel pitch.

Three phantom experiments were conducted to evaluate
the performance of the proposed method and two phantoms
were utilized. The phantoms are made from polyoxymethy-
lene and the optical parameters at the excitation and emission
wavelengths are illustrated in Table 2 [26]. Phantom number
1 is 25mm × 30mm × 30mm and five small holes with 2mm
radius are drilled and the distance between the two adjacent
holes is 5mm; phantom number 2 is cubic with side length of
25mm and four small holes of 2mm radius are drilled along
the diagonal line and the distance between the two adjacent
holes is about 7mm.

In phantom Experiment 1, two of the five holes in phan-
tom number 1 were used to emplace capillary tubes filled
with Cy5.5 solution of different concentrations. The top view
and the front view of the phantom are illustrated in Figure 3.
Four cases were investigated. In case 1, the two tubes were
placed 20mm apart from each other; in case 2, the two tubes
were placed 15mm apart from each other; in case 3, the two
tubes were placed 10mm apart from each other; and in case
4, the two tubes were placed 5mm apart from each other.
The hole displayed in green color means that this hole has
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Figure 3: Top view and front view of source 1 and source 2 for phantom Experiment 1. From left to right: (a) case 1: 2 sources were 20mm
apart, (b) case 2: 2 sources were 15mm apart, (c) case 3: 2 sources were 10mm apart, and (d) case 4: 2 sources were 5mm apart.
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Figure 4: Time courses of the Cy5.5 dye in 2 tubes. Different colors
correspond to concentrations in different tubes (red: tube 1 and
green: tube 2).

Cy5.5 solution. The time courses of the Cy5.5 dye at six time
points are shown in Figure 4. In phantom Experiment 2, as
shown in Figure 5, two of the four holes in phantomnumber 2
were used to emplace capillary tubes filledwithCy5.5 solution
of different concentrations. Three cases were investigated in
this experiment. In case 1, both the lateral distance and the
vertical depth between the 2 sources were 15mm; in case 2,
both the lateral distance and the vertical depth between the 2
sources were 10mm; in case 3, both the lateral distance and
the vertical depth between the two sources were 5mm. The
top and front views of the phantom are illustrated in Figure 8
and the green color means that this hole has fluorescent dye.

The dye concentrations are the same as those in Experiment 1
which are shown in Figure 4. In phantom Experiment 3, the
capability of the method to separate more than two sources,
for example, three sources, was studied. To simulate three
sources, three capillary tubes of Cy5.5 solutions were put into
three holes of phantom number 1. And the tubes were 10mm
away from the adjacent ones. The time courses of the Cy5.5
solution in the three capillary tubes are plotted in Figure 6.

During each phantom experiment, the phantom was
placed on the rotational stage, which was controlled by a
computer. The excitation illumination was provided by a
671 nm CW diode laser with a power of 3mW. A 35 nm
band-pass filter centered at 720 nm was placed in front
of the camera to allow light transmission at the emission
wavelength. The EMCCD camera was cooled to −80∘C when
collecting the fluorescent signals frame by frame.

3. Results and Discussion

3.1. Simulation Study. In this section, three simulation results
are presented. Simulation 1 is to separate two correlated
sources, Simulation 2 is to extract two uncorrelated sources,
and Simulation 3 is to unmix uncorrelated sources with
Gaussian additive noise.

Simulation 1 (correlated sources separation). The ICGbiodis-
tribution in the heart and the lungs of a digital mouse at six
time points was simulated. The sources are correlated and
the correlation coefficient is 0.64. The ordered eigenvalues of
the correlationmatrix are 0.0000, 0.0000, 0.0000, 0.0001, and
0.0532, according to which the number of the sources in the
mouse is set to be 2.Thenormalized separated results by PCA,
ICA, andCAMNS are illustrated in Figure 7.The correspond-
ing RMSEs for PCA, ICA, and CAMNS are 9.5736, 4.2500,
and 0.2250, respectively. As PCA and ICA need the sources
to be statistically uncorrelated or independent, they do not
perform as well as CAMNS does.
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Figure 5: Top view and front view of 2 source locations in phantom Experiment 2, (a) 15mm apart in depth, (b) 10mm apart in depth, and
(c) 5mm apart in depth.
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Figure 6: Time courses of Cy5.5 in three tubes.

Simulation 2 (uncorrelated sources separation). The ICG
biodistribution in the heart and the liver of a digital mouse
at six time points were simulated, where the heart and
liver images were taken as the sources. The correlation
coefficient between the two sources is 0.01, which means
that they are uncorrelated. The ordered eigenvalues of the
correlationmatrix are 0.0000, 0.0000, 0.0000, 0.0000, 0.0047,
and 0.0406, so the number of sources is set to be 2. The
extracted sources obtained by PCA, ICA, and CAMNS are
shown in Figure 8. The RMSEs for PCA, ICA, and CAMNS

are 0.0001, 0.0002, and 0.0001, respectively. We can see
that all these methods can work well when the sources are
uncorrelated.

Simulation 3 (uncorrelated sources separation under noisy
environment). In this section, we investigate the robustness
of PCA, ICA, and CAMNS under noisy environment. To
exclude the effect of sources correlation, we use the same
uncorrelated sources as those in Simulation 2. Gaussian noise
with zero mean and varying variance is added. The variance
of the Gaussian noise is 1, 10−1, 10−2, 10−3, 10−4, 10−5, and
10−6, while the maximum amplitude of the clean images is
1. For every variance, 100 Monte Carlo (MC) tests are run
and the RMSEs defined by (9) are calculated. The separation
results by PCA, ICA, andCAMNSof oneMC test whenPSNR
is 0 dB, 30 dB, and 50 dB are shown in Figure 9. The average
RMSEs over 100 MC tests for different PSNRs (defined here
as 10log(𝑠2/𝜎2

)where 𝑠2 is the peak power in the clean images
and 𝜎

2 is the variance of the Gaussian noise) are plotted
in Figure 10. We can see that CAMNS extracts the sources
successfully when PSNR reaches 30 dB, while PCA and ICA
perform as well as CAMNS does when PSNR is no less than
50 dB. As shown in (7), the temporal frames are averaged to
get the correlation matrix CΨ. This averaging is equivalent to
a mean filter, which can reduce the effect of noise. Benefitting
from the averaging effect, CAMNS is more robust than PCA
and ICA.

3.2. Phantom Experiments. In this section, three physical
phantom experiments are presented to demonstrate the effi-
cacy of the nonnegative blind source separation method for
dynamic images analysis. Experiment 1 is to test the influence
of source distance on the performance of the separation
method. Experiment 2 is to further test the vertical spatial
resolution of themethod, so two sources with different lateral
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Figure 7: Temporal unmixing results for two organs (heart and lungs) in the mouse: (a) the true images and the unmixed results by (b) PCA,
(c) ICA, and (d) CAMNS.
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Figure 8: Temporal unmixing results for two organs (heart and liver) in the mouse: (a) the true images and the extracted images by (b) PCA,
(c) ICA, and (d) CAMNS.

and vertical depthwere used. And Experiment 3 is to evaluate
the capability of themethod to unmixmore than two sources.

Experiment 1 (two sources with different lateral distances).
The fluorescent images for six concentrations were captured
from the front view and are shown in Figure 11, from which
we can see that the two targets inside the phantom cannot be
discriminated due to the intrinsic scattering and the limited
spatial resolution. To get the background signal, we made
a measurement when all the five holes are empty. Before
temporal unmixing, all the observed images were subtracted
by the background signal.

The eigenvalues of the correlation matrix are listed in
Table 3, from which the number of the fluorescent sources
can be determined based on the number of nonnegligible

Table 3: Eigenvalues of the correlationmatrix of themeasured data.

Case Eigenvalues (×104)
1 30.2451 0.0227 0.0000 0.0000 0.0000 0.0000
2 74.9827 0.0397 0.0000 0.0000 0.0000 0.0000
3 192.6189 0.0337 0.0000 0.0000 0.0000 0.0000
4 70.1423 0.0048 0.0000 0.0000 0.0000 0.0000

values. According to Table 3, the number of fluorescent
sources is set to be 2 for all the four cases. The true images
and the temporal unmixed results by PCA, ICA, andCAMNS
are shown in Figures 12(a)–12(d), which are corresponding
to cases 1–4, respectively. Images in the first row are the
results for source 1 and those in the second row for source 2.
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Figure 9: Uncorrelated sources separation under noisy condition: (a) the true images and the separated images by PCA, ICA, and CMANS
when PSNR is (b) 0 dB, (c) 30 dB, and (d) 50 dB.

Table 4: RMSEs of unmixed images for Experiment 1.

Case PCA ICA CAMNS
1 22.8498 24.1539 10.2471
2 24.9656 20.9899 10.7717
3 25.6323 23.7272 11.6476
4 23.4577 18.7858 13.1284

The true images are obtained by putting only one inclusion
in one of the two holes. All the images are normalized for
comparison. The performance of the temporal unmixing
methods, evaluated by the rootedmean squared error, is given
in Table 4.

It is shown that, for two sources of different lateral
distances, the source number can be determined from the
number of nonnegligible eigenvalues; see Table 3. From

Figure 12 and Table 4, we can see that the unmixed results
obtained by CAMNS are closer to the true ones and the
RMSEs are smaller compared to the results obtained by PCA
and ICA.The results by PCAand ICAare somewhat similar to
each other in Figures 12(a)–12(d). We also find that the errors
by PCA and ICA are not affected by the lateral distance, while
the error by CAMNS decreases with the lateral distance. The
reason may be that the theoretical basis of these methods is
different from one another. For example, PCA is to find the
orthogonal components and ICA is to find the independent
components. And the orthogonality and the independence
between the sources have no relationwith the lateral distance.
CAMNS is to find the extreme points of the observation-
constructed polyhedral set. As the distance increases, the
interference between the sources decreased and the number
of pure pixel in the measured data increases. Hence the
extracted extreme points maybe more accurate. The concept
of pure pixel is referred to [31].
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Figure 10: Average RMSEs by PCA, ICA, and CAMNS under noisy
condition.

Table 5: RMSEs of unmixed images for Experiment 2.

Case PCA ICA CAMNS
1 42.8651 40.2336 8.2746
2 20.1198 14.6347 9.4369
3 18.9276 11.1825 10.9726

Experiment 2 (two sources with different lateral distances and
different vertical depths). To further detect the efficacy of the
proposed temporal unmixing method, sources of different
lateral distances and different vertical depths were used. For
two sources of different lateral and vertical distances, the
source number can also be determined from the number of
nonnegligible eigenvalues, which are not listed in this paper.
As shown in Figure 13 and Table 5, the ICA and CAMNS
have better performance than the PCA does, and the error by
CAMNS is smaller than those by ICA. In Table 5, the mean
squared errors by ICA and PCA in the first row are large
because there are negative values in the unmixed images.
While the CAMNS contain only nonnegative results, the
error is much smaller. As the lateral distance and the vertical
depth between the two sources increase, the performance of
CAMNS becomes better, while PCA and ICA do not. The
reason remains the same as that in phantom Experiment 1.

Experiment 3 (three sources). From Experiments 1 and 2,
we can see that the temporal unmixing method based on
CAMNS performs better than PCA and ICA do for two
sources. In this experiment, we investigate the capability
of the method to separate three sources. The true images
were captured by the EMCCD camera after putting one

inclusion in one hole of the phantom. Figure 14 shows the
true images and the unmixed images obtained by PCA, ICA,
and CAMNS. And the corresponding mean squared error
for PCA, ICA, and CAMNS is 32.0566, 41.2831, and 19.6388,
respectively. Again, the CAMNS gets the best results although
the third source is a little different from the true one. The
unmixed images got by PCA and ICA are deformed a lot
compared with the true ones, which may be caused by the
fact that there exist negative values in these images. From the
results itmay be concluded that the temporal unmixing based
on CAMNS is more appropriate for situations where more
than two targets exist. Similar to the assumption in phased-
array signal processing, the maximum number of sources the
method can discriminate properly should not be larger than
the frames of the recorded images [29].

4. Conclusion

Dynamic FMT allows exploring perfusion, biodistribution,
and pharmacokinetics of labeled substances in vivo by
recording a time series of tomographic images. Usually,
the image data sequence is measured first and then the
dynamic tomographic images are reconstructed frame by
frame and finally the unmixing operation based on PCA or
ICA is performed to detect and visualize functional structures
with different kinetic patterns. PCA and ICA utilize the
statistical property that the sources aremutually uncorrelated
or independent. When the sources satisfy these properties,
PCA and ICA can get excellent results.

This paper focuses on the nonnegative temporal unmix-
ing of the measured data in dynamic fluorescent molecular
imaging. We deduce the relationship between the measured
data sequence and the kinetic patterns using the finite ele-
mentmethod and the relationship can be described in a linear
form. Based on this liner relationship, the temporal unmixing
can be performed on the measured data directly before
the tomographic image reconstruction.The nonnegative BSS
based method, named CAMNS, is presented to temporally
unmix the measured data. CAMNS does not need sources to
be uncorrelated or independent. It assumes that the sources
are the extreme points of the polyhedral set constructed by
the measurement and tries to find the extreme points. To
evaluate the efficacy of the proposedmethod, three numerical
simulations and three phantom experiments are conducted.
In numerical simulation, PCA, ICA, and CAMNS are used
to separate both correlated sources and uncorrelated sources.
The results show that they all perform well to separate the
uncorrelated sources while only CAMNS extracts the cor-
related sources successfully. We also study the performance
of CAMNS under noisy condition. The results show the
following. (a) PCA, ICA, and CAMNS fail to separate the
sources when PSNR is less than 30 dB; (b) CAMNS can
extract the sources correctly when PSNR reaches 30 dB; and
(c) all the methods separate the sources successfully and
the RMSEs are similar when PSNR is larger than 50 dB. In
phantom experiments, PCA, ICA, and CAMNS are adopted
to separate two sources of different distances. The case when
three sources are present is also studied. The results show
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Figure 11: The mixed images captured by EMCCD camera. Six frames in a row are corresponding to six concentrations for one case.
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Figure 12: Temporal unmixing results for 2 sources of different distances. (a) Case 1: 20mm apart, (b) case 2: 15mm apart, (c) case 3: 10mm
apart, and (d) case 4: 5mm apart.

that CAMNS gets more accurate results compared with PCA
and ICA. Although CAMNS performs better than PCA
and ICA do, it needs to know the number of sources. We
determine the number of sources by looking at the first
nonnegligible eigenvalues of the measurement correlation
matrix. PCA and ICA are recommended when the sources

are uncorrelated and the noise is low. CAMNS is a better
choice for dynamic FMT because this imaging modality is
to explore the metabolic processes of fluorescent biomarkers
inside small animals where the sources are usually correlated.
In the future, wewill pay attention to in vivo application of the
algorithm.
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Figure 13: Temporal unmixing results for 2 sources of different lateral distances and vertical depths. (a) Case 1: 2 sources were 15mm apart
in depth, (b) case 2: 2 sources were 10mm apart in depth, and (c) case 3: 2 sources were 5mm apart in depth.
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Figure 14: True images and unmixed images by PCA, ICA, and
CAMNS for 3 sources. The first, the second, and the third row are
corresponding to sources 1, 2, and 3, respectively.
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