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In transplantation, direct allorecognition is a complex interplay between T-cell receptors
(TCR) and HLA molecules and their bound peptides expressed on antigen-presenting
cells. In analogy to HLA mismatched hematopoietic stem cell transplantation (HSCT), the
TCR CDR3b repertoires of alloreactive cytotoxic CD8+ responder T cells, defined by the
cell surface expression of CD137 and triggered in vitro by HLA mismatched stimulating
cells, were analyzed in different HLA class I mismatched combinations. The same HLA
mismatched stimulatory cells induced very different repertoires in distinct but HLA identical
responders. Likewise, stimulator cells derived from HLA identical donors activated CD8+

cells expressing very different repertoires in the same mismatched responder. To mimic in
vivo inflammation, expression of HLA class l antigens was upregulated in vitro on
stimulating cells by the inflammatory cytokines TNFa and IFNb. The repertoires differed
whether the same responder cells were stimulated with cells treated or not with both
cytokines. In conclusion, the selection and expansion of alloreactive cytotoxic T-cell
clonotypes expressing a very diverse repertoire is observed repeatedly despite controlling
for HLA disparities and is significantly influenced by the inflammatory status. This makes
prediction of alloreactive T-cell repertoires a major challenge in HLA mismatched HSCT.

Keywords: T-cell alloreactivity, human leukocyte antigen (HLA), T-cell repertoire, T-cell receptor, hematopoietic
stem cell transplantation (HSCT)
INTRODUCTION

Solid-organ and hematopoietic stem cell transplantations (HSCT) are characterized by an immune
response mediated by direct, indirect and semi-direct T-cell allorecognition (1–5). In the context of
HSCT, HLA compatibility between the donor and recipient is critical to prevent severe
complications such as graft versus host disease (GVHD). The current standard of HLA
compatibility includes the loci HLA-A, B, C, DRB1, and DQB1, with HLA-DPB1 matching
considered additionally according to the number of potential compatible donors. Although HLA
compatibility (i.e., the so-called 10/10 matching) is the best option, a mismatched situation can also
org January 2021 | Volume 11 | Article 5887411
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be considered, usually involving one mismatch at a single HLA
class I or class II locus (i.e., 9/10) (6–12).

HLA class I molecules have extremely high allelic polymorphism
(ebi.ac.uk/ipd/imgt/hla/stats.html) (13), potentially influencing
direct alloreactivity in HLA mismatched situations. Indeed, we
and others (14–16) have previously shown that HLA alloantigens
can induce variable strengths of alloreactive T-cell response in
cellular in vitro assays and in vivo, emphasizing the potential role of
the TCR repertoire of the alloreactive responder T-cell population.

The T-cell repertoire is initially shaped in the thymus by
positive and negative selection of maturing T cells on self-
peptide-HLA complexes and then modulated overtime at the
periphery by the cumulative history of foreign antigenic
exposures (2–5). Cross-reactivity and flexibility of the T-cell
receptor (TCR) allow each TCR to potentially interact with
many HLA-peptide complexes (5, 17). While the CDR1 and
CDR2 loops of the TCR interact primarily with cognate HLA
molecules, the most variable region of the TCR, encoded by the
third complementary region (CDR3) of a and b chains, is
specifically involved in antigenic peptide recognition. Its
nucleotide sequence, generated by somatic rearrangements of
V(D)J gene segments and the random insertion/deletion of
nucleotides, allows to characterize unique T-cell clonotypes.
Powerful high-throughput T-cell receptor sequencing
technology has been proposed as an approach to study T-cell
response at the clonal level (18).

In HLA mismatched HSCT, TCRs of the donor’s T cells can
cross-react with non-self-HLA-peptide complexes expressed on
the recipient’s cells and thereby elicit a direct alloreactive
immune response, which can induce a strong clinical
complication called GVHD (19).

In the context of semi or fully HLA mismatched situations,
quantitative analyses of in vitro induced alloimmune responses
have revealed that up to one-tenth of circulating CD4+ and CD8+

T-cell clones are potentially alloreactive, accounting thus for the
large diversity of the alloresponse (20, 21). In a single HLA-DPB1
mismatched situation, Arrieta-Bolanos et al. (22) demonstrated
that alloreactive CD4+ T-cell repertoires had virtually no
overlapping TCR rearrangements in three different HLA-
DPB1*04:02 individuals when stimulated by two different
HeLa cells (i.e., expressing either HLA-DPB1*02:01 or
DPB1*09:01). The clonal diversity was independent of the
level of alloreactivity and was not based on HLA-DPB1
alloantigen structure and dissimilarity between responder and
stimulator cells.

In this study, we have investigated the specificity of the
alloreactive cytotoxic CD8+ T-cell repertoire by using as an in
vitro model a one-way mixed lymphocyte reaction (MLR) assay.
We have performed the analyses on specific HLA class I
incompatibilities according to two scenarios. In the first one, T
cells derived from a given anonymous blood donor (responder
cells) were stimulated with cells from distinct blood donors
(stimulator cells) mismatched for the same HLA. In the second
one, responder T cells of different HLA-matched anonymous
blood donors were stimulated with HLA-mismatched cells from
the same given blood donor. This experimental approach
Frontiers in Immunology | www.frontiersin.org 2
investigates the specific cytotoxic CD8+ T-cell response in a
more physiological environment involving other leukocytes like
helper T cells and monocytes, representing an approximation of
events occurring during the in vivo direct alloreactive immune
response. In addition, to mimic the effect of inflammation
induced by a clinical event such as infection or conditioning
regimen, HLA molecules expressed by stimulator cells were
upregulated by transiently incubating cells with the
inflammatory cytokines, namely tumor necrosis factor alpha
(TNFa) and interferon beta (IFNb) (23).
MATERIALS AND METHODS

Cells
Peripheral blood mononuclear cells (PBMCs) were purified
using standard Ficoll procedure from blood collected from
anonymous donors who have been HLA genotyped at loci A,
B, C, DRB1, DRB3/4/5, DQB1 and DPB1 at high resolution by
the Swiss National Reference Laboratory for Histocompatibility
(LNRH), while searching potential unrelated HSC donors. Cells
were cryopreserved in RPMI 1640 medium (Gibco, Life
Technologies, Oslo Norway) supplemented with 10 mM
L-glutamine, 100 units/ml, penicillin/streptomycin (Gibco),
10% heat-inactivated human AB serum (own preparation) and
10% DMSO (Merk, Darmstadt, Germany). HLA typing was
performed by reverse PCR-sequence-specific oligonucleotide
microbeads arrays and high throughput sequencing
(One Lambda, Canoga Park, USA). Unstimulated total CD8+ T
cells (average purity of 95.8%) were isolated from PBMCs by
negative selection using a CD8 cell magnetic microbeads
isolation kit (No. 130-096-495) (Miltenyi Biotec, Bergisch
Gladbach, Germany).

Mixed Lymphocyte Reactions
One way MLRs were performed as previously described (14, 24).
Briefly, responder PBMC cells (2x106) were stimulated at a ratio
of 1:1 with 30Gy irradiated stimulator PBMC cells in RPMI 1640
medium (Gibco) supplemented with 10 mM L-glutamine, 100
units/ml penicillin/streptomycin (Gibco) and 10% human AB
serum (own preparation). Twenty units per milliliter rIL-2
(Peprotech, London, UK) were added at days 3, 7, and 11.
After 13 days of culture, responding T cells were restimulated
overnight at a ratio of 1:1 with irradiated PKH-2 (Sigma-Aldrich,
Buchs, Switzerland)-labeled PHA blasts obtained by activation of
non-irradiated stimulatory PBMCs with one µg/ml PHA
(Gibco). As a control, part of the cells was also restimulated
with autologous PHA blasts. The percentage of CD137-positive
PKH-2 negative CD8-positive CD56-negative viable T cells was
quantified by flow cytometry. The level of alloreactivity was
measured as % CD137+CD8+ cells. It corresponds to the delta
between the % CD137+CD8+ cells measured at day 14, after
restimulation on day 13 with allogeneic cells, minus %
CD137+CD8+ measured at day 14, after restimulation with
autologous cells (14, 24). To upregulate the HLA expression of
stimulator cells, stimulator cells were incubated in culture
January 2021 | Volume 11 | Article 588741
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medium overnight with or without 50 ng/ml TNFa and 100 ng/ml
IFNb (PrepoTech, London, UK) prior irradiation and mixing with
the responder cells.

Immunofluorescence
To label activated cytotoxic CD8 cells, APC-labeled anti-human
CD8a, (clone HT8a) PerCP/Cy5.5-labeled anti-human CD56
(clone HCD56) (BioLegend, Fell, Germany) and FITC-labeled
anti-human CD137 (clone 4B4-1) (Milteny Biotec) antibodies, as
well as APC- and FITC-labeled murine IgG1 isotype controls
(clone MOPC) (BD Bioscience, Switzerland) were used.

HLA class I surface expression was determined on CD3+ T
cells using the monoclonal antibodies APC-labeled anti-human
CD3 and FITC-labeled anti-HLA-ABC (Miltenyi Biotec) and
their corresponding isotype control. HLA- C surface expression
was determined on CD3+ T cells using the monoclonal
antibodies APC-labeled anti-human CD3 and anti-HLA-C
(clone DT9) (Milliport, Darmstadt Germany) and FITC-
labeled anti-mouse IgG2b and their corresponding isotype
controls (Lucernachem, Luzern, Switzerland). Data acquisition
was performed on gated mononuclear cells, using the ACCURI-
C6 cytometer (BD) and the CFLOWPLUS analysis software (BD
Bioscience, Allschwil, Switzerland).

Cell Sorting
Activated CD8+ CD137+ T cells were sorted after staining with
anti-CD137-FITC and anti-CD8-PEVio770 (clone BW135/80)
(Miltenyi Biotec), as CD137-positive CD8-positive PKH negative
cells on a BioRad s3 cell sorter (BioRad, Hercules, USA). The
gating strategy is presented in Supplementary Figure 1. A mean
of 6937 ± 5757 CD137+CD8 cells were isolated, depending on
the strength of the alloresponse (average purity was 96.1 ± 1.5%).

DNA Extraction of Sorted Cell
Genomic DNA was extracted using the Genomic DNA
extraction kit NucleoSpin (Machery-Nagel, Düren, Germany)

T-Cell Receptor Immunosequencing
High throughput sequencing of the TCR CDR3b region was
carried out at survey resolution on the Illumina HiSeq system
(Illumina, San Diego, USA) following a multiplex PCR
(ImmunoSEQ© assay, Adaptive Biotechnologies, Seattle, USA).
We used 400 ng of DNA from unstimulated isolated CD8+ cells
and the total amount of extracted DNA from sorted alloreactive
CD137+CD8+ cells (see Supplementary Table 1). Sequencing
results were sent to Adaptive Biotechnologies for analysis and
datasets were downloaded from the Adaptive Biotechnologies
platform for further investigations. Sample overview indicating
number of productive templates, rearrangements, maximal
productive frequencies and clonalities is provided in
Supplementary Table 1. T-cell repertoire diversity was
estimated by Shannon clonality, defining maximum diversity
(i.e., polyclonal samples) at 0 and minimum diversity (i.e.,
monoclonal samples) at one. Analyses were performed using
the online ImmunoSEQ Analyzer 3.0 software provided by
Adaptive Biotechnologies. TCR overlap analyses were based on
Frontiers in Immunology | www.frontiersin.org 3
the amino acid sequences of the CDR3 region. Repertoire overlap
between two samples (S1 and S2) was calculated with the
following formulas: % TCR overlap is the number of shared
clonotypes between S1 and S2 divided by the total number of
clonotypes in S1 and S2. This formula is similar to the Jaccard
index. Respective % overlap was calculated as the number of
shared clonotypes between S1 and S2 divided by the number of
clonotypes in S1 or S2, respectively. In addition, the Morisita’s
index (25) was estimated with ImmunoSEQ Analyzer 3.0
software. This index measures the overlap based on the
statistical dispersion of clonotypes in the samples and is
expected to vary between 0 (no similarity) and 1 (complete
similarity). To compare rearrangements (i.e., unique CDR3b
amino acid sequences) with significantly increased or
decreased frequencies between two samples or experimental
conditions, binomial differential abundance analysis was
performed with the ImmunoSEQ Analyzer 3.0 software and as
specified in (26). Respective cumulative frequencies of shared
clonotypes in different experiment conditions were calculated
based on abundance scatter files. Scatterplots, barplots, and
boxplots were generated using R version 3.5.1.

Statistics
Paired t-tests were performed with GraphPad prism software
version 8.01 (GraphPad, San Diego, CA, USA) A threshold of 5%
was considered for statistical significance. Clonotypes with p-
values lower than 0.01 were identified as being differentially
abundant between two samples or experimental conditions
according to the differential abundance tool.
RESULTS

To investigate alloreactive T-cell repertoires, peripheral blood
mononuclear cells (PBMC) of HLA genotyped anonymous blood
donors were cultured in vitro in a classical one-way MLR assay.
After specific restimulation, CD8+ responder T cells expressing
the activation antigen CD137 were isolated by flow cytometry
and their repertoire determined by high throughput sequencing
of the TCR CDR3b region.

Clonotype Frequency Distribution of
Alloreactive CD137+CD8+ T Cells
Alloreactive repertoires were determined in nine different MLR
cultures and compared between responder cells, which were
either activated with allogeneic stimulator cells harboring one
or two HLA class I mismatches or with fully HLA mismatched
stimulator cells (Figures 1 and 2 and Supplementary Tables 1
and 2). In Figures 1A, B, representative of two prototypical MLR
cultures, we observe the presence of a majority of low frequency
(<0.1%) clonotypes in the unstimulated CD8+ population of the
responder isolated before the MLR cultures. By contrast, after
allogeneic stimulation, most clonotypes were retrieved at much
higher frequencies (up to 74.6%) in the alloreactive
CD137+CD8+ responder population. Furthermore, some
clonotypes with specific TCR rearrangements, although not
January 2021 | Volume 11 | Article 588741
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detected in the unstimulated CD8+ population, were isolated
after stimulation representing the expansion of very low-
frequency (< 0.001%) clonotypes. Conversely, some other
clonotypes were observed only in the unstimulated population
but not after stimulation. Overall, repertoire overlap between
unstimulated and activated cells was very low, with Morisita
indices below 0.0015. Compared to unstimulated cells, activated
CD137+CD8+ T-cell repertoires showed a substantial increase in
clonality: from 0.006 to 0.55 (Figure 1A) and from 0.006 to 0.31
(Figure 1B), respectively. The clonal distribution of
unstimulated cells was even with clonotype frequencies varying
between 0.001% and 0.1%, while a few dominant clonotypes were
Frontiers in Immunology | www.frontiersin.org 4
observed at much higher frequencies in activated cells (Figure
1C). The cumulative frequencies of the clonotypes retrieved after
allogeneic stimulation and observed in the unstimulated
population are of 61% and 88% in the two MLR, respectively.
This is characteristic of the strong alloreactive expansion to high
frequencies of a few clonotypes among a broad repertoire of low
frequency clonotypes in the unstimulated T-cell population.
Accordingly, while the 50 most frequent clonotypes in
unstimulated CD8 cells represent 1.2% of all the clonotypes,
they represent more than 78% of the clonotypes retrieved from
activated CD137+CD8+ cells (Figure 1D). The proportion of
specifically activated cells was not significantly (p>0.05) different
A B

DC

FIGURE 1 | Comparison of T-cell clonotype frequency distributions between unstimulated CD8+ T cells and activated CD137+CD8+ T cells. Clonotype frequency
scatterplots of CD8+ T cells isolated from unstimulated PBMC of the responder blood donor before culture and CD137+CD8+ T cells isolated at day 14 from MLR
cultures between responder and stimulator cells harboring: (A) two HLA class I mismatches A*11:01/24:02 and C*01:01/04:01(i.e., 8/10 HLA matched, 2 MM) and
(B) full HLA mismatch (i.e., 0/10 HLA matched, full MM). In (A) 4.68% and in (B) 31.97% of the CD137+CD8+ clonotypes are shared with the unstimulated CD8+ T-
cells clonotypes. The cumulative frequencies of the shared CD137+CD8+ clonotypes observed in the unstimulated population are in (A) 0.61 and in (B) 0.88. The
differential abundance tool of ImmunoSEQ Analyzer 3.0 was used to analyze clonotype frequencies (26). Red dots represent clonotypes that are observed with a
statistically significant greater frequency in sample A compared to sample (B) Grey dots represent clonotypes that are not found to be differentially abundant. Black
dots represent clonotypes that are excluded from the analyses. (C) Barplots showing the % clonal frequency distribution of the 50 most frequent clonotypes in
unstimulated CD8+ T cells versus CD137+CD8+ activated cells of MLR with two HLA class I mismatches and full HLA mismatch. Same colors represent same
clonotypes. (D) Cumulative frequency of the top 50 rearrangements (cyan-blue bars) from unstimulated CD8+ T cells (1.2%), CD137+CD8+ activated cells in 2 HLA
class I MM MLR (89.5%) and full MM MLR (78.4%), respectively. TCR clonalities are 0.006, 0.55, and 0.31 for the unstimulated CD8+ T cells, the CD137+CD8+ T
cells in the 2 HLA class I MM, and full MM MLR, respectively. Morisita indices among the three samples are <0.0015.
January 2021 | Volume 11 | Article 588741
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whether the responder cells were stimulated with cells harboring
one or two (mean, 18.39 ± 8.1) HLA mismatched alleles or cells
fully (mean, 22.43 ± 5.1) HLA mismatched (Figure 2A). By
contrast, the clonality was significantly lower in cells activated
with fully mismatched stimulator cells (mean, 0.22 ± 0.16) than
stimulator cells with one or two HLA class I mismatches (mean,
0.46 ± 0.18, p = 0.01, Figure 2B). Note: the CDR3b amino acid
identity, referred to in this study as “% TCR overlap” (also
named Jaccard index), represents the percentage of clonotypes
shared among the total number of clonotypes observed in two
repertoires under comparison. Figure 2C shows that the % TCR
overlap between the activated CD137+CD8+ T cells in one to two
HLA class I mismatched or fully mismatched MLR was low in all
MLR pairs (mean, 1.28 ± 0.4%).

We investigated in a few MLR cultures whether CMV-specific
T cell clonotypes could be enriched after the in vitro stimulation.
However, based on a set of 18,855 potentially public CMV-
specific T-cell clonotypes gathered from two resources (27, 28),
we did not observed over representation of such clonotypes (data
not shown).

Reproducibility of Clonal Stimulation
To evaluate whether the low TCR overlap observed in different
MLR conditions is genuinely a consistent result, we monitored
our experiments’ reproducibility. Interestingly, MLR repeats
showed heterogeneous CDR3b clonal distributions, although
similar ranges of T-cell activation and clonality were retrieved
(Supplementary Table 1A and 3 and Supplementary Figure 2).
Nevertheless, up to 10% of shared CD137+CD8+ T-cell
clonotypes were detected in triplicate MLRs. In pairwise
comparisons, TCR overlap as high as 23.6% was observed, also
reflected by Morisita’s index up to 0.45 and respective cumulative
frequencies of shared clonotypes up to 83% and above 50% in all
but one replicate. Shared and non-shared clonotypes among the
replicates were present across all ranges of frequencies.
Frontiers in Immunology | www.frontiersin.org 5
T-Cell Receptor Repertoires of
Alloreactive T-cell Clonotypes in Mixed
Lymphocyte Reaction Cultures
To further investigate the allogeneic repertoire specificity,
different combinations of HLA mismatched responder/
stimulator cells were tested in distinct MLR cultures. The TCR
repertoires of purified activated CD137+CD8+ cells were
sequenced and analyzed (Figure 3 and Table 1).

First, responder T cells isolated from two distinct HLA
identical blood donors (i.e., HLA-A, B, C, DRB1, DRB3/4/5,
and DQB1 matched at high resolution) were stimulated in
parallel cultures by cells isolated from a third HLA
mismatched donor (see the illustrative chart in Figure 3A and
the top half of Table 1). Second, cells isolated from one donor
were stimulated in parallel cultures with HLA mismatched
stimulator cells isolated from two HLA identical donors (see
the illustrative chart in Figure 3B and bottom part of Table 1).

As shown in Table 1, the clonality and percentage of activated
CD137+CD8+ T cells were constrained within close ranges of
values for each pair of MLRs. Interestingly, the percentage of
activated clonotypes sharing a CDR3b amino acid sequence (i.e.,
% TCR overlap) was low when comparing pairs of MLR culture
performed at the same time in parallel, ranging between 0 and
1.9%. In addition, the percentage of activated clonotypes shared
in one MLR culture compared to the other culture ranged
between 0 and 5.8% (i.e., respective % TCR overlap). Along
this line, very low cumulative frequencies of shared clonotypes
were measured between pairs of MLR. Accordingly, the
Morisita’s indices were very low and varied from 10−6 to 0.044.
The clonal distribution of the 50 most frequent clonotypes
revealed dominant clonotypes in each MLR condition (Figure
3, right panel), but these clonotypes did not share the same
CDR3b amino acid sequence. Of note, the CD8+ T-cell
repertoires of the two HLA matched responders’ pairs
(responders 1 and 2 or responders 3 and 4, respectively) were
A B C

FIGURE 2 | TCR analyses of sorted CD137+CD8+ T cells. The same responder cells are stimulated with allogeneic cells mismatched for either one or two HLA
alleles (orange box, i.e., 8–9/10 HLA matched, 1–2 MM) or for all HLA alleles (blue box, i.e., 0/10 HLA matched, full MM) in nine different MLR cultures (see
Supplementary Table 2 for HLA genotyping of the cells used for the experiments and Supplementary Table 1 for TCR sequencing sample overview).
(A) Percentage of CD137+CD8+ cells measured after specific minus autologous restimulation. Mean ± SD: 1–2 MM 18.39 ± 8.1, full MM 22.43 ± 5.1, ns, not
significant paired t test p>0.05. (B) TCR clonality mean ± SD: 1–2 MM 0.46 ± 0.18, full MM 0.22 ± 0.16, **significant paired t test p = 0.01 and (C) percentage of
CD137+CD8+ T cell clonotypes shared between the two culture conditions (mean, 1.28 ± 0.4).
January 2021 | Volume 11 | Article 588741
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very distinct sharing only 0.1% to 1.1% of TCR rearrangements
(results not shown).

Effect of Human Leukocyte Antigen
Upregulation on the T-Cell Receptor
Repertoire of the Alloreactive T-cell
Response
Under in vivo conditions, HLA expression, which has previously
been shown to influence the allogeneic immune response (14–16),
might be affected by inflammation driven by infection or GVHD.
The HLA expression of stimulator cells was upregulated in vitro by
overnight incubation with TNFa alpha and IFNb to mimic
inflammation. RNA sequencing (results not shown) and
cytofluorometric analysis (Supplementary Figure 3) revealed
that, although expressed at variable levels, all HLA class I alleles,
including HLA-C alleles, were upregulated after TNFa/IFNb
induction to similar extent. This was confirmed by correlation
coefficients of r = 0.84 and r = 0.92 between unstimulated and
upregulated HLA-ABC and HLA-C expression, respectively. The
mean fold cell surface expression upregulation measured on
PBMCs, isolated from 56 different blood donors, was 1.62 for
Frontiers in Immunology | www.frontiersin.org 6
total HLA class antigens and 1.9 for HLA-C antigens on PBMCs
from 32 of these 56 blood donors. Compared to untreated
stimulator cells, cytokine TNFa/IFNb treated stimulator cells,
induced similar percentages of activated CD137+CD8+ T cells in
20 parallel MLR cultures (Supplementary Figure 4). The mean
percentage of CD137+CD8+ T cells were 18.5 ± 9.8 and 14.6 ± 11.2
(p=0.051) inMLRcultures ofuntreatedversusTNFa/IFNb treated
stimulator cells, although the cell surface expression was
significantly increased in treated stimulator cells (p<0.0001).

The clonal analysis of alloreactive CD137+CD8+ T cells
induced by the same mismatched HLA stimulator cells with
basal or elevated HLA antigen expression is shown for one
representative experiment in the upper panels of Figure 4. The
percentage of shared clonotypes was only 1.5% (Morisita index
of 0.011). Cumulative frequencies of clonotypes shared was of
33% in the MLR culture toward cells with upregulated HLA
expression compared with clonotypes of the paired MLR toward
cells of basal HLA class I expression. Of note, four shared
clonotypes were present at frequencies above 0.01 in one or
the other cultures. The clonal distribution of the 50 most
frequent clonotypes is represented in Figure 4 (upper right
A

B

FIGURE 3 | TCR analysis of paired MLRs. CD137+CD8+ T-cell clonotype frequency scatterplot comparisons between paired MLRs and clonal distribution of the top
50 most frequent clonotypes retrieved from each culture (illustrative examples of results taken from Table 1). (A) Two MLR cultures of different HLA 10/10 matched
responder cells (R1 or R2) stimulated by the same mismatched stimulator cells (Sa). R1/R2 cells are HLA-A*11:01 versus 24:02 and HLA-C*04:01 versus 01:02
mismatched with Sa cells. (B) Two MLR cultures of the same responder cells (R1) stimulated with cells from two distinct stimulators (Sa and Sb). Sa and Sb are 10/
10 HLA matched. R1 cells are HLA-C*07:02 versus 16:01 mismatched with Sa/Sb cells. The top 50 clonotypes represent 89.5% in R1/Sa and 82.3% in R2/Sa (top
experiments shown in panel A), and 91.9% in R1/Sa and 90.5% in R1/Sb (bottom experiments shown in panel B) of the respective repertoires. Colored dots in
scatterplots represent clonotypes with frequencies differing significantly between paired MLRs. Cyan-blue dots represent clonotypes observed with a statistically
significant greater frequency in sample A compared to sample B, red and purple dots clonotypes have a statistically significant greater frequency in sample B
compared to sample A, while gray dots represent clonotypes not differing significantly in frequency. Black dots clonotypes are excluded from the analyses.
Frequency analysis was performed with the differential abundance tool in ImmunoSEQAnalyzer 3.0. Barplots represent the clonal distribution of the 50 most frequent
clonotypes.
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panel) and shows a few unshared dominant clonotypes in both
culture conditions. The results of five different MLR cultures
with basal or elevated HLA antigen expression are shown in
Figure 4 (lower panels). The mean percentage and clonality of
activated CD137+CD8+ T cells did not significantly differ when
induced by stimulating cells treated or not with the cytokines.
The % TCR overlap of activated CD37+CD8+ cells in untreated
and treated conditions was low and ranged between 1.4% and
2.9% in three out of the five cultures. However, a slightly higher
proportion (3.3% to 6.3%) of the TCR rearrangements was
observed in the CD137+CD8+ T cells induced by the TNFa/
IFNb treated stimulator compared to the cells detected in the
parallel MLR induced by untreated stimulator cells (Figure 4,
lower, right panel). The cumulative frequencies of the shared
clonotypes between cultures stimulated with TNFa/IFNb treated
stimulator versus untreated stimulator cells was 0.18 ± 0.15. It is
important to note that in two out of the five cultures (Figure 4,
dots circled in red), the repertoires were not analyzed based on
activated CD137+CD8+ cells but on the total of CD8+ sorted
responder T cells, as the number of CD137+CD8+ cells was to
low to be sorted. This explains the greater overlap ranging
between 10.4% and 22.9% in these two experiments.
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

The data of this study suggest that in donor/recipient HLA
mismatched situations (like it might occur in HSCT), the same
mismatched stimulatory cells (in the case of HSCT: recipient
antigen-presenting cells) induce the proliferation of different
responder T-cell clonotypes (donor T-cell clonotypes) with a
little percentage of shared TCRs in distinct HLA identical
(i.e., 10/10 matched) responder cells. Similarly, distinct HLA
identical (i.e., 10/10 matched) stimulators cells (recipient
antigen-presenting cells) induce the proliferation of different
responders TCR clonotypes (donor T-cell clonotypes) and
repertoire in the same HLA mismatched responder/stimulator
configuration. Random selection and expansion of alloreactive
T-cell clonotypes were also observed in MLR repeats and
triplicates, although at a lesser extent Moreover, the level of
mismatched HLA cytokine-modulated expression on the cell
surface does not influence the strength of the T-cell response, but
it affects the repertoire of the alloreactive CD137+CD8+ T cells
retrieved after culture. Our results are in line with previous
reports (3–5, 17) indicating the very high flexibility of
alloreactive TCRs in the alloimmune response, as well as the
TABLE 1 | Paired alloreactive T-cell response.

MLRa) HLA MMb) %
CD137+CD8

TCR
clonality

%TCR
overlapc)

Morisita
index

Respective% TCR
overlapd)

Cumulative freq. of shared
clonotypes

Responder 1

Stimulator a

HLA-A*11:01 vs
24:02

HLA-C*04:01 vs
01:02

12.0 0.55

0.2 10−6

0.3 0.0002

Responder 2

HLA-A*11:01 vs
24:02

HLA-C*04:01 vs
01:02

8.8 0.64 1.6 0.004

Responder 3

Stimulator b

HLA-C*07:01 vs
12:03

12.9 0.31

0 –

– –

Responder 4 HLA-C*07:01 vs
12:03

13.1 0.30 – –

Responder 5e)

Stimulator c HLA-C*07:02 vs
16:01

25.6 0.51

1.9 0.0002

3.1 0.0099

Stimulator d HLA-C*07:02 vs
16:01

18.8 0.49 4.6 0.054

Responder 5e)

Stimulator c HLA-C*07:02 vs
16:01

22.2 0.38

1.9 0.044

4.6 0.10

Stimulator d HLA-C*07:02 vs
16:01

11.3 0.41 3.1 0.08

Responder 3

Stimulator b HLA-C*07:01 vs
12:03

12.9 0.31

1.7 0.022

5.8 0.10

Stimulator e HLA-C*07:01 vs
12:03

13.5 0.31 2.3 0.05
January 20
a)Responder 1 cells are 10/10 HLA matched with responder 2 cells, dito responder 3 with responder 4, stimulator c with stimulator d and stimulator b with stimulator e cells.
b)mismatched HLA class I alleles between responder and stimulator cells.
c)total % shared T cell clonotypes.
d)% shared T cell clonotypes in one MLR compared to the other MLR.
e)MLRs performed in duplicate.
Responder 1and responder 2 TCR clonalities of unstimulated CD8+ T cells are 0.006 and 0.023 respectively with 0.1% overlapping T-cell clonotypes and responder 3 and responder 4
TCR clonalities are 0.04 and 0.06, respectively, with 1,1% overlapping T-cell clonotypes. TCR clonality of responder 5 cells is 0.026.
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random selection and expansion of alloreactive cytotoxic T-cell
clones, which is influenced by the complex interplay between the
TCRs and mismatched-HLA-peptide complexes, alongside
additional factors such as the fitness of clones, cytokines and
inflammatory events.

To monitor the cytotoxic T-cell response in transplantation, T
cells were isolated from defined HLA genotyped healthy donors
and stimulated with specific HLA-mismatched allogeneic cells in
vitro.We are aware that this study’s in vitromodelmight represent
only a snapshot of the possible in vivo alloimmune response.
Indeed, the observed expansion of dominant clonotypes can be
affected by the clones’microenvironment and fitness. In this study,
the starting PBMC number was 2 million and might not always
include the total number of cells with alloreactive potential. This is
especially truewhen considering that the clonotypes observedwith
increased frequencies in the responding cell population were not
necessarily detected in the starting population because of their
Frontiers in Immunology | www.frontiersin.org 8
supposed too low frequencies. Only an increased number of
cultures performed in parallel would probably clarify this matter
and minimize technical limitations (29–31). However, working
with a higher number of cells from two individuals with a single
HLA mismatch would be cumbersome and require higher blood
withdrawals, which is not ethically acceptable. Emerson et al. (32)
distinguished low (i.e., not seen before stimulation and
representing 84% of the reacting clonotypes) and high
abundance clonotypes (i.e., seen before and after stimulation) in
the alloresponse of the total T-cell population. They reported
repetitive detection of the high abundance clonotypes only.

Similarly to others (33), we observed shared and non-shared
clonotypes at various frequencies in activated CD137+CD8+ cells
of MLR triplicates (Supplementary Figure 2). Conscious of the
technical restrictions, we expected that the very abundant
alloreactive clones would be repeatedly detected, and we have
reduced the possible randomization of the results by testing
A

B

FIGURE 4 | Modulation of allogeneic T cell response by HLA class I upregulation. (A) Chart of MLR stimulations: responder cells (R) derived from the same blood
donor are stimulated in parallel cultures with allogeneic stimulator cells, with basal (Sa) or upregulated HLA surface expression after overnight TNFa and IFNb
cytokine treatment (Sa: TNFaINFb). Scatterplot and barplot are a representative example of one of the five parallel MLRs shown in (B). Frequency scatterplot
showing 1.5% (8/531) of shared clonotypes between the two conditions. Colored dots in scatterplots represent clonotypes with frequencies differing significantly
between paired MLRs (i.e., cyan-blue dots represent clonotypes that have a statistically significant greater frequency in sample A compared to sample B, red dots
clonotypes have a statistically significant greater frequency in sample B compared to sample A), while gray dots represent clonotypes not differing significantly in
frequency. The frequency analysis was performed with the differential abundance tool in ImmunoSEQAnalyzer 3.0). The cumulative frequency of the shared
clonotypes in MLR stimulation with Sa : TNFaINFb is 0.33 and with untreated Sa is 0.75, respectively. (Right panel) Clonal distribution of the top 50 most frequent
clonotypes in each culture (i.e., with basal (R/Sa) or upregulated (R/SaTNFaINFb) HLA cell surface expression of stimulator cells). Responder and stimulator cells are
mismatched for HLA-A*03:01 versus 24:02. The top 50 clonotypes represent: 91.3% in R/Sa and 87.4% in R/Sa+TNFaINFb of the respective repertoires. (B) HLA
cell surface upregulation, T-cell activation, TCRb clonality and % TCR overlap determined in five pairs of MLRs performed with stimulator cells treated with TNFa and
IFNb (cyan-blue boxes) or not treated before stimulation (orange boxes). The light and dark gray boxes in the last panel represent total and respective TCR overlap
(in %), respectively. The mean value of Morisita’s indices for TCR overlap is 0.024. Of note, among the five pairs of MLR, two pairs were performed with fully HLA
mismatched stimulator cells, while the other stimulator cells were mismatched for one HLA-C (07:02 versus 16:01) or one HLA-A (03:01 versus 24:02) allele. TCR
overlap was determined based on CD137+CD8+ T cells except in two out of the five MLR cultures where total CD8+ T cells were isolated. This is shown by the red
circled dots on the lower right panel. No statistical differences (ns) in T-cell activation or TCR clonality is observed between MLRs with basal or upregulated HLA
expression (paired t-tests). ***) HLA induced upregulation was statistically significant (paired t test, p = 0.0053).
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multiple alloresponses toward different single HLA antigens.
With these precautions in mind, we are confident that the
results obtained in this study stand to estimate events
occurring during the alloimmune response. To avoid inter-
individual variability and to better define the diversity of the
TCR repertoire of alloreactive cells, distinct stimulations of the
same cells were examined. Furthermore, alloreactive activated
CD137+CD8+ T cells were sorted after being specifically
restimulated to minimize bystander stimulation of non-specific
clones. We can however not exclude that, while sorting activated
cells, we also sorted some auto-specific cells. Note that when
measuring T cell activation, we did stimulate the cultures with
autologous cells to monitor specificity. Accordingly, the referred
activation represents % CD137+CD8+ in specifically restimulated
cultures minus % CD137+CD8+ T cells in the same culture after
autologous restimulation. The % after autologous stimulation
never exceeded 10% of CD137+CD8+ (data not shown).

Using such assays and similar to others (21, 22, 33), we
identified highly frequent clonotypes among alloreactive CD8+ T
cells previously not detected in unstimulated cells. This confirms
the highly efficient expansion of reactive T-cell clones in the
allogeneic immune response. The increased clonality observed in
Figures 1 and 2 for T cells stimulated with a single or a few
alloantigens compared to T cells stimulated with a large number
of alloantigens is concordant with the results of de Wolf et al.
(21). These authors reported a reduced diversity and thus
increased clonality of the alloresponsive CD4+ and CD8+ T
cells stimulated by haploidentical cells (i.e., half-matched for
HLA) as compared to cells stimulated with fully HLAmismatched
cells. This supports the belief that a higher number of HLA
mismatches correspond to a higher number of potential
alloantigens, thus inducing a more diverse alloreactive repertoire
at fault for a stronger immune response in transplantation.
Nevertheless, it has to be kept in mind that a single mismatched
HLA molecule might bind a large variety of peptides and may
represent many different alloantigens, possibly interacting with
different TCRs. On the other side of this multifaceted ligand/
receptor cognate interaction, one given TCR was reported to react
with more than 100 different peptides (17, 34). Other authors
reported up to 1 million peptides being potentially recognized by
each TCR. This TCR’s particularity probably also influences the
specificity of the alloresponse. In an HLA class II mismatched
situation, Arrieta-Bolanos et al. (22) reported that although higher
levels of alloresponse were detected in the same HLA-DPB1*04:02
individual after stimulation with Hela cells expressing HLA-
DPB1*09:01 rather than HLA-DPB1*02:01, very different
clonotypes of similar TCR clonality were measured among the
responding CD4+ T cells. Their results suggest that the number of
amino acid mismatches between the HLA of the responder and
stimulator cell does not influence the clonality of the responding T
cells, leading to the same conclusion as we do regarding the
pleiotropy of the TCR repertoire when stimulated under similar
controlled conditions.

Furthermore, in this study, we have described that the very
same HLA mismatched stimulatory cells (thus expressing the
same HLA-peptide alloantigens) induce the proliferation of
Frontiers in Immunology | www.frontiersin.org 9
clonotypes with a very low percentage of shared TCR in
distinct but HLA 10/10 matched responder cells. This was also
the case when the alloresponse was restricted to a single allelic
mismatch. These results suggest an individual selection of these
clonotypes, which could be influenced by environmental factors
and/or immunological memory of the responding cells’ past
immune responses, similar to the phenomenon described in
twins (35). The preferential thymic selection of different
repertoires as well as the distinctive memory versus naïve
CD8+ T-cell repertoires could also influence the results (36,
37). Likewise to us, Arrieta-Bolanos et al. (22) reported that
the same HLA-DP mismatched expressing cells induce CD4+ T
cells with different TCR rearrangements in different individuals.

We have also shown that HLA identical (10/10 matched)
stimulatory cells isolated from distinct healthy donors induced
the proliferation of different T-cell clonotypes in the same HLA
mismatched responder cells. Such diversity stands for the
“peptide-centric model” described by Cole and al (38). as it
probably reflects the T-cell response toward heterogeneous
peptidomes bound by the same HLA alleles of different
individuals. A refined peptidome analysis would be required to
investigate this hypothesis further. Along this line, Koyama et al.
(39) reported that different T-cell clonotypes were detected in
patients undergoing GVHD in the skin, colon, or blood of the
very same patient, suggesting that HLA molecules present
distinct peptides in various organs. In contrast, Michalek et al.
(40) reported the expansion of a unique specific CD4+ T-cell
clone in the blood of an HSCT patient undergoing GVHD.

Since additional factors such as concomitant infection or any
ongoing inflammatory processes could play a role in the in vivo
allogeneic response, we have monitored inflammatory cytokines’
effect on the alloresponse. To do so, the levels of HLA expression
of stimulatory cells were boosted in vitro with a combination of
TNFa and IFNb. We could observe that all HLA class I alleles’
transcription (results not shown) and translation were increased
with the same order of magnitude. Whether increased HLA
expression alters the peptidome presented, has not yet been
investigated. Nevertheless, comparing the alloresponses of the
same CD8+ T cells induced by stimulating cells with or without
upregulated HLA surface expression revealed no significant
change in the response’s strength and clonality. Some TCR
rearrangements were shared, revealing mean cumulative
frequencies of 0.38 ± 0.32 and 0.18 ± 0.15 for shared
clonotypes of the same CD8+ T cells induced by stimulating
cells without or with upregulated HLA surface expression. The
overlap of activated CD8+ cells in these two conditions was
however weak, with a maximum of 6.3% of shared clonotypes.
Although the low overlap might be influenced by the
randomness observed in culture repeats, it supports a random
selection and expansion of responding T cells with high TCR
flexibility to bind foreign peptide-HLA complexes in alloimmune
processes. Additionally, the results suggest that inflammation,
occurring for example, after a bystander viral infection in
transplantation, might also alter the allogeneic immune
response as it might induce the activation of new responding
alloreactive T cells. Potential effect of allele-specific expression
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which is a topic of debate (41–43) has not been investigated in
this study.

Our study focused on specific HLA class I incompatibilities,
mainly at the HLA-C locus. This could be considered a limitation
of the study, however as HLA mismatched transplantations at
the HLA-C locus have been privileged for many years in our
institution, while HLA-B mismatches avoided, we did not have
cells to perform HLA-B mismatch experiments and only a few
experiments could involve HLA-A incompatibilities. In addition,
it was not possible to assess every HLA-Cmismatch combination
due to the extensive HLA polymorphism. In HSCT, it is well
known that particular mismatch combinations are so-called
“permissive” and are leading to different transplantation
outcomes (10, 14, 44). In our previous study (14), permissive
HLA mismatched combinations did not induce CD137+CD8+

positive T cells suggesting any TCR repertoire bias before or
after stimulation.

In conclusion, our data demonstrated the vast diversity of the
alloimmune response regarding the expansion of T-cell clones.
However, we are aware of the limitation of in vitro studies not
allowing to fully extrapolate to in vivo situations. Factors that
influence this expansion such as infection, immunosuppression
and GVHD are under investigation (45–47). Interestingly, we
recently presumed about such factors when we reported that the
expansion of TCR clones in reconstructing the repertoire after
HSCT was correlated to CMV reactivation in patients one-year
post-HSCT, without being CMV specific (45). Another recent
publication also demonstrates the difficulties to clearly associate
the TCR repertoire and clinical events (46). Thus, the prediction
of alloreactive T-cell response based on the TCR repertoire
before and after transplantation remains a major challenge in
HLA mismatched si tuat ions . Cl in ical protocols or
pharmacological agents targeting specifically alloreactive T cells
to control clinical complications such as GVHD or the graft-
versus-leukemia effect (GVL) could be very challenging
to establish.
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