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Abstract: Quasi-continuous metasurfaces are widely used in various optical systems and their
subwavelength structures invalidate traditional design methods based on scalar diffraction theory.
Here, a novel vector iterative Fourier transform algorithm (IFTA) is proposed to realize the fast
design of quasi-continuous metasurface beam splitters with subwavelength structures. Compared
with traditional optimization algorithms that either require extensive numerical simulations or lack
accuracy, this method has the advantages of accuracy and low computational cost. As proof-of-
concept demonstrations, several beam splitters with custom-tailored diffraction patterns and a 7 × 7
beam splitter are numerically demonstrated, among which the maximal diffraction angle reaches
70◦ and the best uniformity error reaches 0.0195, showing good consistency with the target energy
distribution and these results suggest that the proposed vector IFTA may find wide applications in
three-dimensional imaging, lidar techniques, machine vision, and so forth.

Keywords: quasi-continuous metasurface; beam splitter; iterative Fourier transform algorithm;
vector diffraction theory

1. Introduction

The metasurface is an important tool to control light, showing a wide range of poten-
tial applications in display [1,2], biomedicine [3,4], illumination source [5], and detection [6].
Especially, asymmetric photonic spin-orbit interactions, enabled by the combination of the
geometric phase and propagation phase, have shown great potential to achieve multifunc-
tional devices and systems [7,8]. Different from the traditional metasurface that spatially
tailors the geometries of the scatters to introduce the phase discontinuities [9], a quasi-
continuous metasurface does not rely on numerous elaborately arranged elements to fulfill
various functionalities [10–12]. A quasi-continuous metasurface beam splitter divides one
laser beam into multiple beams and can be applied in structured light [13–16], optical
interconnects [17], and camera calibration [18,19]. For these applications, the maximal
diffraction angle and uniformity error are two important indicators that determine the
performance of the device. However, traditional methods based on scalar diffraction theory
for designing beam splitters can hardly enable a large diffraction angle and low uniformity
error owing to the limitation of paraxial approximation and electromagnetic coupling [20].
When a beam splitter’s maximal diffraction angle becomes larger, its feature size of the
structure will be reduced to the wavelength- or even subwavelength-scale, leading to
non-ignorable electromagnetic coupling that would cause unpredictable disturbances. Gen-
erally, the stronger the coupling is, the larger deviation of actual electromagnetic fields
from the target one will be, causing a bigger difference in the diffraction energy distribution
between real and theoretical ones.
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Due to the reasons mentioned above, vector diffraction theory is necessary for the
design of beam splitters with a large diffraction angle. Since vectorial electromagnetic
analysis methods are computationally intensive and time-consuming, many efforts have
been paid to reduce the simulation time on the premise that the results are accurate
enough [21]. However, the major factor that determines the computation load is the times
of simulation. For example, famous simulated annealing algorithm and genetic algorithm
had been applied to design beam splitters [22,23], but evaluating dozens of samples at
each iteration needs lots of computation power and limits these algorithms to achieve
the fast design. Adjoint-based optimization method was applied in the design of optical
devices recently [21,24–26], and beam splitters have also been designed by this method [27].
This method is powerful and flexible but requires twice simulations at each iteration, which
increases the time-taking in the optimization process.

In this work, a novel vector iterative Fourier transform algorithm (IFTA) is proposed.
Different from the traditional scalar IFTA that imposes constraints in the output spatial
frequency domain merely by replacing the amplitude distribution with the target one [28],
the proposed method here adjusts the amplitude distribution according to both the target
one and results obtained by vectorial electromagnetic simulation. This method can realize
the fast design of beam splitters with a wide diffraction angle, since it needs only once
vectorial electromagnetic simulation at each iteration and begins to converge at about the
40~60th iteration in the design example of 5× 5 beam splitters. A 7× 7 beam splitter with a
maximal diffraction angle of 70◦ is also designed to test the proposed method with different
design requirements. These design cases show a good optimization effect and require less
computational power compared with the traditional methods mentioned above.

2. Materials and Methods

Before the whole optimization starts, the period of the beam splitter is determined by
the grating equation according to the required diffraction angle and diffraction patterns [29].
After that, to realize a two-level phase distribution, the grating structure height can be
determined by:

hgrating =
λ

2(ngrating − 1)
(1)

where the ngrating is the refractive index of the grating structure, the λ is the wavelength
of the incident light. With the period and the height of grating structures determined,
the grating profile is optimized by the process in Figure 1.

Figure 1 shows the process of the proposed vector IFTA. The optimization needs an
initial solution, which can be obtained by the scalar IFTA [28,30], to start the iteration.
Beam splitters designed by the scalar IFTA is purely based on scalar diffraction theory,
so the corresponding initial solutions are also called scalar solutions. In scalar IFTA, Fourier
transformation relates the input plane in the time domain and the output plane in the
frequency domain, where constraints are imposed to promote the convergence of the algo-
rithm. The constraints on both planes are about the amplitude. The constraint on the input
plane is to replace the amplitude with the amplitude of a plane wave, while on the output
plane is to replace the amplitude with the amplitude of the target image. After enough
iterations, the output plane in the frequency domain will take on the desired diffraction
pattern, and then the corresponding complex amplitude G(u,v) = A(u,v)exp[iϕ(u,v)] on the
output plane will serve as the initial solution in the proposed vector IFTA, where the A(u,v)
means the amplitude distribution, and the ϕ(u,v) is the phase distribution. The amplitude
distribution and the phase distribution are expanded with the aid of the zero-padding
approach to enhance the resolution. To get a better initial solution, there is a modification
in the scalar IFTA. In practice, it is difficult to obtain the phase distribution, which can well
reproduce the target image, merely by the original scalar IFTA. By releasing the constraint
in the unconcerned region, significant improvement is found in the image performance
on the output plane, and the details about the modification operations as well as the
improvement effect are presented in our previous work [31]. The purpose to utilize the
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modified scalar IFTA to improve the quality of the initial solutions is to exclude their
potential adverse effects on the proposed vector algorithm. For instance, if one does not get
the target amplitude distribution on the output plane in the scalar simulation, it is hard to
tell that if the problem occurs in the initial solution or the algorithm once the optimization
result does not meet the demand.

Materials 2021, 14, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 1. Schematic of the proposed vector IFTA. The flow chart of the optimization algorithm is illustrated combining 
with the design example of a beam splitter with a cross-shaped diffraction pattern, and each diffraction order is expected 
to have equal intensity. 

Figure 1 shows the process of the proposed vector IFTA. The optimization needs an 
initial solution, which can be obtained by the scalar IFTA [28,30], to start the iteration. 
Beam splitters designed by the scalar IFTA is purely based on scalar diffraction theory, so 
the corresponding initial solutions are also called scalar solutions. In scalar IFTA, Fourier 
transformation relates the input plane in the time domain and the output plane in the 
frequency domain, where constraints are imposed to promote the convergence of the al-
gorithm. The constraints on both planes are about the amplitude. The constraint on the 
input plane is to replace the amplitude with the amplitude of a plane wave, while on the 
output plane is to replace the amplitude with the amplitude of the target image. After 
enough iterations, the output plane in the frequency domain will take on the desired dif-
fraction pattern, and then the corresponding complex amplitude G(u,v) = 
A(u,v)exp[iφ(u,v)] on the output plane will serve as the initial solution in the proposed 
vector IFTA, where the A(u,v) means the amplitude distribution, and the φ(u,v) is the 
phase distribution. The amplitude distribution and the phase distribution are expanded 
with the aid of the zero-padding approach to enhance the resolution. To get a better initial 
solution, there is a modification in the scalar IFTA. In practice, it is difficult to obtain the 
phase distribution, which can well reproduce the target image, merely by the original sca-
lar IFTA. By releasing the constraint in the unconcerned region, significant improvement 
is found in the image performance on the output plane, and the details about the modifi-
cation operations as well as the improvement effect are presented in our previous work 
[31]. The purpose to utilize the modified scalar IFTA to improve the quality of the initial 
solutions is to exclude their potential adverse effects on the proposed vector algorithm. 
For instance, if one does not get the target amplitude distribution on the output plane in 
the scalar simulation, it is hard to tell that if the problem occurs in the initial solution or 
the algorithm once the optimization result does not meet the demand. 

To transform the complex amplitude in the frequency domain into a specific beam 
splitter model, the first step is to perform inverse Fourier transformation to obtain the 
complex amplitude in the time domain: 

1g( , ) [ ( , )]x y G u v−=   (2)

The beam splitter is designed to have a binary surface profile, so a binarization oper-
ation is imposed on the phase distribution to obtain a new two-level phase distribution: 

Figure 1. Schematic of the proposed vector IFTA. The flow chart of the optimization algorithm is illustrated combining with
the design example of a beam splitter with a cross-shaped diffraction pattern, and each diffraction order is expected to have
equal intensity.

To transform the complex amplitude in the frequency domain into a specific beam
splitter model, the first step is to perform inverse Fourier transformation to obtain the
complex amplitude in the time domain:

g(x, y) = F−1[G(u, v)] (2)

The beam splitter is designed to have a binary surface profile, so a binarization
operation is imposed on the phase distribution to obtain a new two-level phase distribution:

φ(x, y) =
{

π/2 if arg[g(x, y)] ≥ 0
−π/2 if arg[g(x, y)] < 0

(3)

where the arg(*) is the function of obtaining phase information. After binarization, the struc-
tural material is filled in the design region where φ(x, y) = π/2, with the unfilled space
being air.

When the period and height of the grating structure is determined, the substrate is
properly selected and the grating structure from the initial solution is calculated, the beam
splitter’s diffraction efficiency of each order in the kth iteration, ηk, can be obtained by
performing vectorial electromagnetic simulations. The purpose of the optimization is to
achieve an equal intensity of the valid diffraction orders, so the figure of merit (FoM)
describing the uniformity of these diffraction orders can be written as uniformity error:

FoM =
ηmax − ηmin

ηmax + ηmin
(4)

where the ηmax and the ηmin mean the maximal and the minimal diffraction efficiency,
respectively. Additionally, they belong to those valid diffraction orders that are expected to
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exist. For example, the valid diffraction orders in Figure 1 includes nine diffraction orders
on the cross pattern. If the FoM is good enough or the number of iteration steps reaches
the upper limit, the optimization stops. Otherwise, the A with the current best FoM will
be saved until the optimization ends if no better solution takes its place in the following
iterations, where A is updated constantly. The optimal solution is usually obtained on the
convergence stage instead of the last iteration step.

The Mfunc(*) is the modification function. To realize a uniform energy distribution of
each order, the corresponding amplitude coefficient should be modified to suppress the
strongest order and enhance the weakest order to promote the uniform energy distribution.
Therefore, we choose a modification function given by:

A k+1_max/min = Mfunc(A k, ηk) =
A k_max/min

(ηk_max/min/ηk_mean)
R (5)

where the Ak_max/min is the amplitude coefficient corresponds to the diffraction order with
the maximal or minimal diffraction efficiency in the kth iteration; ηk_mean is the mean
value of the ηk; ηk_max/min is the diffraction efficiency of the strongest or the weakest
diffraction order; R is the disturbance factor to further optimize the results for any possible
improvement when the algorithm begins to converge. Note that the R varies between
0.7 and 0.9 randomly in the following simulation. The diffraction efficiency of a certain
order has a similar change trend with its corresponding amplitude coefficient, and the
modification function utilizes this feature to suppress the strongest order and enhance the
weakest order by modifying their amplitude coefficients, while the amplitude coefficients
correspond to other diffraction orders remain unchanged. Note that the more energy the
strongest order has, the stronger the suppression operation will be, which is true of the
enhancement of the weakest order.

After optimization, the beam splitter shows a significant improvement in the unifor-
mity of energy distribution, which can be seen by comparing the diffraction efficiency bar
charts on the lower left and lower right of Figure 1, respectively.

3. Results
3.1. The Design of 5 × 5 Beam Splitter with Uniformity Energy Distribution

To demonstrate the effectiveness of this method, a simulation model of a beam splitter
is constructed with the following parameters: 5× 5 spot array with the maximal diffraction
angle of 35◦. Silicon is chosen as the structural material, whose thickness and refractive
index is 0.182 µm and 3.60, respectively. Sapphire, with a refractive index of 1.76, is chosen
as the material of the substrate. According to the grating equation, the period of the beam
splitter’s unit cell is 4.6 µm × 4.6 µm. The incident light has a wavelength of 940 nm and
is linearly polarized along the y-axis in Figure 2b. The optimization process stops either
when the FoM is less than 0.02 or the number of iterations is more than 100. Reticolo,
a rigorous coupled wave analysis (RCWA) solver [32], is used to perform the vectorial
electromagnetic simulation since RCWA can directly obtain the diffraction efficiency of
each order of devices with periodic structures.

Figure 2a shows a design example of a 5 × 5 beam splitter. There is considerable
improvement in the FoM from 0.8801 to 0.1264, and the improvement can also be seen by
comparing the two bar charts of diffraction efficiency. Furthermore, the relative diffraction
efficiency, defined as the ratio of energy needed to the energy transmitted, changes from
89% to 87%. These comparisons above come from the initial solution at the first iteration
and the optimal solution at the 40th iteration. Moreover, Figure 2b shows the phase profiles
of the initial and the optimal solutions, from which the changes of the material distribution
are obtained. It is worth noting that the relative diffraction efficiency drops a little bit after
the vector optimization. Though the uniformity error improves significantly, the diffraction
efficiency usually drops slightly when the whole vector optimization cycle completes,
which does not affect the effectiveness of the proposed algorithm. Because the scalar IFTA
has provided the initial solutions with a sufficiently good diffraction efficiency performance
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while the uniformity error performance is usually unsatisfactory. Therefore, one could
hardly promote the two performance indices significantly at the same time if the material of
the device remains unchanged. Additionally, the uniformity of energy distribution is more
important in practice. That is why the main focus is placed on optimizing the uniformity
error of the beam splitter.

Figure 2. The optimization process of 5 × 5 beam splitter. (a) FoM as a function of the iteration in the optimization of the
5 × 5 beam splitter with a maximal diffraction angle of ±35◦. The iteration step where the initial solution and the optimal
solution are obtained are both marked by the red circles. The bar charts represent the diffraction efficiency of each order
from the initial solution and the optimal solution, respectively. (b) The phase profiles of the initial and the optimal solution,
and the changes in the material distribution from the initial solution to the optimal solution. The red arrow means the
operations of structural modeling and comparison. The air, the grating structure and its changes are marked in different
colors. The yellow and the blue parts indicate the material distribution remains unchanged after optimization. The green
parts mean the grating structure expands to where there was air previously, while the red part, which is magnified to
facilitate the observation, indicates the grating structure shrinks after the optimization.

3.2. The Design of Beam Splitter with Tailored Diffraction Order Pattern

To demonstrate the applicability of the proposed method, several beam splitters with
tailored diffraction orders are designed and the results are recorded in Figure 3. Except for
the target diffraction pattern, the other initial parameters are consistent with the 5× 5 beam
splitter’s. The optimization of the three design cases, whose diffraction order distributions
are presented from left to right in Figure 3, stops at 17th, 17th, and 36th iteration with an
FoM of 0.0195, 0.0198, and 0.0196, respectively. Their relative diffraction efficiencies are
70%, 70% and 67%, respectively.
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4. Discussion

As a local optimization algorithm, optimization performance usually varies with
different initial solutions. To further analyze their influence, 40 scalar solutions for the
5 × 5 beam splitter are optimized. Among these samples, the best FoM reaches 0.094 while
the worst one is 0.390. All the samples have gone through 100 iterations. By checking the
number of the vector simulations, one can easily estimate the quantity of the computational
cost of an algorithm, since the vector simulation takes enough factors into account to
consume a large part of computer’s computational power. As a comparison, Hao et al. [22]
designed a beam splitter with the same diffraction angle and spot array by the genetic
algorithm, achieving a uniformity error of 0.174. According to the data and description
in their paper, the size of a population is 144 and the optimization required about 70
iterations to achieve convergence, so one design requires about 10,080 vector simulations.
As shown in Figure 2, the proposed method can achieve better uniformity error using
100 vector simulations, enabling about 100 times more computationally economic. It is
worth mentioning that the scalar simulation is not involved in the statistics of computation
power consumption, since the scalar simulation costs too little time to make any difference
to the total time-taking. For instance, generating one initial solution by scalar IFTA costs
0.29 s, while one vector simulation spends 94.35 s (the time-taking information is obtained
from a personal computer with Intel(R) Core(TM) i7-9750H CPU and 16 GB RAM, and it
can be further reduced by using a more powerful computer), which means 100 iterations
will take about 2.6 h.

After sufficient tests and observation, a phenomenon is found that the (0,0)th order
being unable to be suppressed is the main reason for the failure of the optimization. To ver-
ify this deduction, a new quantity S0 is defined in Equation (6) to reveal the relationship
between the (0,0)th order and the FoM:

S0 = η(0, 0)− ηs (6)

where the ηs is the diffraction efficiency of the second strongest order. Thus, the S0 shows
the extent that the (0,0)th order is stronger than the other orders. The visualization of the
data of 40 samples is presented in Figure 4, where the S0 and the S′0 are calculated with the
data from the initial solution and optimal solution, respectively. In another word, the S0
and the S′0 show one characteristics of the device in two different stages: the initial stage
(before the vector optimization starts) and the optimal stage. And the deduction that the
(0,0)th order is mainly responsible for the failure of the optimization can be confirmed
from Figure 4. For those samples with greater S0 and greater S′0, their spots tend to have a
worse FoM. Another phenomenon found in Figure 4 is that a scalar solution with a weak
initial (0,0)th order is more likely to develop into a good one. Moreover, the energy of the
(0,0)th order of beam splitters with 0-π binary structures always increases if the deviation
of etching depth exists [33]. In another word, if the (0,0)th order is already strong in the
simulation, it may tend to be stronger in the experiment, which harms the uniformity of the
spot array. Therefore, the control over the (0,0)th order is meaningful both in simulation
and practice. Given that the difficulty to suppress the (0,0)th order in vector optimization,
the scalar IFTA could provide initial solutions with less energy in the (0,0)th order, since the
enhancement is easier than suppression in terms of the (0,0)th order.

To further demonstrate the applicability of the vector IFTA in a more demanding
design case, a beam splitter with a 7 × 7 spot array and maximal diffraction angle of 70◦

is designed, where the method to control the (0,0)th order is also presented. The unit
cell of the device has a period of 4.24 µm, the material of the grating structure and the
substrate is titania and silicon dioxide with refractive indices of 2.49 and 1.45, respectively.
The thickness of the grating structure is 0.313 µm. The change of the material is a test for
the proposed algorithm in a different simulation condition. Given that the failure case and
its reason mentioned above, the scalar IFTA provides an initial solution with a suppressed
(0,0)th amplitude coefficient, which is illustrated in Figure 5b, while the target of vector
optimization remains a beam splitter with a uniform spot array. The optimization achieves
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the best FoM of 0.2622 at the 90th iteration with 81% relative diffraction efficiency. As can
be seen from Figure 5a, it is easy to find that the performance of the 7 × 7 beam splitter
is not as good as those of the 5 × 5 beam splitter, which mainly results from the more
demanding design requirements instead of the change of material parameters. In another
word, the increase of the beams and a larger diffraction angle will make the optimization
harder. The improvement is also illustrated by the comparison of the two diffraction
efficiency bar charts from the initial solution and the optimal solution in Figure 5c.
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fraction order distributions are designed to prove the effectiveness of this method. Among 
these design cases, the optimization process of the 5 × 5 beam splitter with a maximal 
diffraction angle of 35° is presented and 40 initial solutions of this kind of beam splitter 
are optimized to further analyze the relationship between the (0,0)th order and uniformity 
error, where the best result achieves a uniformity error of 0.094. All three beam splitters 
with custom-tailored diffraction distributions achieve a uniformity error of less than 0.02. 
The way to suppress the (0,0)th order is demonstrated in the optimization process of the 
7 × 7 beam splitter with a maximal diffraction angle of 70°, and this 7 × 7 beam splitter 
achieves a uniformity error of 0.2622. This method could promote the applications of beam 
splitters in different usage scenarios such as depth perception, camera calibration and op-
tical communication. 
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5. Conclusions

In summary, vector IFTA is used to design beam splitters with a non-paraxial diffrac-
tion angle, consuming a very small amount of computational power while achieving a
significant improvement in the uniformity of the diffraction energy distribution. An effi-
cient modification function is defined to realize a fast convergence of the algorithm and a
detailed search for the optimal solution. Beam splitters with several custom-tailored diffrac-
tion order distributions are designed to prove the effectiveness of this method. Among
these design cases, the optimization process of the 5 × 5 beam splitter with a maximal
diffraction angle of 35◦ is presented and 40 initial solutions of this kind of beam splitter
are optimized to further analyze the relationship between the (0,0)th order and uniformity
error, where the best result achieves a uniformity error of 0.094. All three beam splitters
with custom-tailored diffraction distributions achieve a uniformity error of less than 0.02.
The way to suppress the (0,0)th order is demonstrated in the optimization process of the
7 × 7 beam splitter with a maximal diffraction angle of 70◦, and this 7 × 7 beam splitter
achieves a uniformity error of 0.2622. This method could promote the applications of beam
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splitters in different usage scenarios such as depth perception, camera calibration and
optical communication.
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