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Abstract

Natural selection endows animals with the abilities to store lipid when food is

abundant and to synthesize lipid when it is limited. However, the relevant

adaptive strategy of lipid metabolism has not been clearly elucidated in fish.

This study examined the systemic metabolic strategies of Nile tilapia to main-

tain lipid homeostasis when fed with low- or high-fat diets. Three diets with

different lipid contents (1%, 7%, and 13%) were formulated and fed to tila-

pias for 10 weeks. At the end of the feeding trial, the growth rate, hepatic

somatic index, and the triglyceride (TG) contents of serum, liver, muscle, and

adipose tissue were comparable among three groups, whereas the total body

lipid contents and the mass of adipose tissue increased with the increased

dietary lipid levels. Overall quantitative PCR, western blotting and transcrip-

tomic assays indicated that the liver was the primary responding organ to

low-fat (LF) diet feeding, and the elevated glycolysis and accelerated biosyn-

thesis of fatty acids (FA) in the liver is likely to be the main strategies of tila-

pia toward LF intake. In contrast, excess ingested lipid was preferentially

stored in adipose tissue through increasing the capability of FA uptake and

TG synthesis. Increasing numbers, but not enlarging size, of adipocytes may

be the main strategy of Nile tilapia responding to continuous high-fat (HF)

diet feeding. This is the first study illuminating the systemic adaptation of

lipid metabolism responding to LF or HF diet in fish, and our results shed

new light on fish physiology.

Introduction

The main biological functions of lipids include storing

energy, signaling, and acting as structural components of

cell membranes. Abnormal fluctuations of endogenous

lipids or lipid metabolites can cause a number of diseases,

particularly metabolic syndromes, in most vertebrates

(Eckel et al. 2005). Therefore, maintaining lipid home-

ostasis is critical for an organism’s survival, health, and

reproduction (Brasaemle 2007). In evolutionary history,

animals have developed an accurate and complicated

metabolic system to adapt to different nutritional states.

In nature, food is not always available, thus when food is

plentiful, a lot of eating occurs and properly storing the

excess energy as lipid in body in an innoxious way is a

survival strategy for most animals. In contrast, when food
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or dietary lipid is very limited, accelerating lipid biosyn-

thesis to satisfy the physiological lipid requirement is also

necessary.

In mammalian models, the adaptive lipid metabolism

responding to different dietary lipid levels has been largely

discussed, especially in the high-fat diet (HF diet) feeding

conditions that mimic the western dietary pattern of

humans (Ikemoto et al. 1996; Lin et al. 2000; Buettner

et al. 2007; Kohsaka et al. 2007). In general, mammals

mostly store excess energy in the form of neutral lipid

(triglyceride, TG) in white adipose tissue (WAT), a speci-

fic lipid deposit organ mainly composed of adipocytes.

However, a sustained HF diet induces impaired lipid

homeostasis, in which large amounts of lipid also patho-

logically accumulate in other organs such as the liver (Du

et al. 2013). In lipid deficiency, de novo lipid biosynthesis

will be accelerated, but the major sites of lipid biosynthe-

sis are species-specific. For example, the liver and WAT

are two main sources for newly synthesized lipid in

rodents (Gondret et al. 2001; Gonz�alez et al. 2014), but

lipogenesis in pigs occurs principally in WAT, whereas in

avian species the liver is the main lipogenic site (Gondret

et al. 2001). Along with lipid deposits and lipogenesis,

lipid transport and lipid catabolism, mainly including

lipolysis and fatty acid (FA) b-oxidation, also play impor-

tant roles in maintaining lipid homeostasis (Jocken et al.

2007; Khasawneh et al. 2009). These metabolic pathways

and organs constitute a fine lipid metabolic system with

high adaptation toward different nutritional or physiolog-

ical conditions and the metabolic imbalance between

these pathways or organs leads to a series of metabolic

syndromes, such as heart failure, obesity, diabetes, and

non-alcoholic fatty liver disease in mammals (Unger et al.

2010).

Compared with mammals, fish, the largest vertebrate

group, are poikilothermic and have lower capabilities to

use carbohydrates as energy (Tocher 2003); thus, energy

metabolism in fish is different from mammals. In nature,

high energy intake and long-term food deficiency is also

commonly seen in the life cycle of some fish, particularly

migratory fish (Sandercock 1991). In addition, in modern

aquaculture HF diets have been widely used in many eco-

nomic fish species to save dietary protein as an energy

source and increase feed efficiency (Hillestad et al. 1998;

Boujard et al. 2004). However, HF diets commonly

caused excess fat accumulation in the liver or visceral fat

tissue in farmed fish, accompanied by low growth, sur-

vival and resistance to pathogens and environmental

stresses (Regost et al. 2001; Wang et al. 2005a), suggesting

impaired lipid homeostasis. So far, people have known

that the liver, adipose tissues, or muscle have the capabil-

ity to store lipid in fish (Lin et al. 1977; Ando et al. 1993;

Kaneko et al. 2013), and a number of lipid-metabolism-

related genes in some farmed fishes have been cloned and

the preliminary functions have also been illustrated (He

et al. 2014). However, at present, studies about the effects

of dietary lipid on lipid metabolism in fish are mostly

descriptive, or only focus on different organs separately.

The lipid metabolism of fish, especially the adaptive

capability to deal with different lipid intake, has not been

well understood. Moreover, the lack of genomic informa-

tion in most of farmed fish species limits the intensive

study of the mechanisms of lipid metabolism in fish.

Nile tilapia (Oreochromis niloticus) is an important

aquaculture species cultured worldwide. Compared with

zebra fish (Danio rerio), Nile tilapia could be used as a

better fish model for nutrition and metabolism studies,

not only because it grows fast and has high resistance to

diseases and toxic stress (Deng et al. 2010), but also its

whole genomic information is available (Guyon et al.

2012). Moreover, Nile tilapia have well-developed diges-

tive and metabolic organs, including liver, muscle, and

adipose tissue. In this study, we used Nile tilapia as a fish

model to systemically elucidate the metabolic strategies of

fish to maintain lipid homeostasis when fed with low-fat

(LF) or HF diets for 10 weeks. The results of histology,

quantitative PCR (qPCR), metabolites content measure-

ment, western blotting and transcriptomic assays indi-

cated that the elevated glycolysis, accelerated biosynthesis

of FA, and enhanced lipid transport mediated by lipopro-

teins in the liver were likely to be the main strategies of

tilapia toward LF intake. In contrast, excess ingested lipid

was preferentially stored in adipose tissue through

increasing FA uptake and TG synthesis. Increasing num-

bers, but not enlarging size, of adipocytes was the main

strategy of Nile tilapia responding to continuous HF diet

feeding. This study provides a novel insight into the lipid

nutrition and metabolism in fish.

Materials and Methods

Animals and feeding

Juvenile Nile tilapias weighed about 2 g were obtained

from Shanghai Ocean University. The fishes were fed with

a commercial diet (Dajiang, China) prior to experiment.

Based on a number of previous nutritional studies in Nile

tilapia, 5–7.4% was the optimal lipid level in diet of Nile

tilapia (Santiago and Reyes 1993; Wang et al. 2005b;

Abdel-Tawwab et al. 2010; Deng et al. 2010; Xiong et al.

2014). LF diet, medium fat (MF) diet, and HF diet (1%,

7% and 13% fat content, respectively) were formu-

lated and coded as LF, MF, and HF, respectively

(Table 1). After 1-week acclimation, fishes were randomly

divided into three dietary groups with three tanks

(100 cm 9 60 cm 9 50 cm) per group and 30 fishes per
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tank. The daily feeding rate was 4% of fish biomass and

the trial lasted for 10 weeks. During the trial, the pho-

toperiod was 12 h daylight and 12 h nightlight. The tem-

perature was maintained at 26 � 2°C and the water was

changed 1/3 every day. The body weights were weighed

every 10 days and the exact feeding amounts were

adjusted correspondently. After the trial, three individuals

per tank were anesthetized using MS-222 after feeding for

1 h and dissected for liver, muscle, and visceral adipose

tissue collection. Hepatic somatic index (HSI) and visceral

adipose tissue somatic index (VSI) were calculated.

HSI = the weight of liver/body weight (%) and VSI = the

weight of visceral adipose tissue/body weight (%). All

samples were stored at �80°C. All experiments were con-

ducted under the Guidance of the Care and Use of Labo-

ratory Animals in China. This research was approved by

the Committee on the Ethics of Animal Experiments of

East China Normal University.

Histology and metabolites content
measurement

The paraffin sectioning and hematoxylin and eosin stain-

ing of visceral adipose tissue were performed as described

(Du et al. 2011). Two blocks of tissue per fish were sec-

tioned and 10 sections per tissue were evaluated. Twelve

sections per group were evaluated for counting cell num-

ber. The relative cell size (RAS, RAS = 1/cell number per

unit square) was calculated. The relative total adipocyte

number (RAN) = cell number per unit square 9 adipose

tissue weight/body weight (assuming the density of adi-

pose tissue is homogeneous). The TG content and aspar-

tate transaminase (AST) activity were measured using

commercial kits (Jiancheng Bioengineering Institute, Nan-

jing, China) performed as described in the protocols

attached in kits. Lipid content in whole body was mea-

sured in Soxtec 2050 (FOSS Analytical AB, Höganäs, Swe-

den) using the standard protocol. RAS, RAN, and TG

level were normalized using the data of LF group.

Antibody and western blotting assay

Frozen tissues were homogenized on ice with a homoge-

nizer in RIPA buffer from Beyotime (Catalog no. P0013B;

Haimen City, Jiangsu, China). This buffer contained

50 mmol/L Tris (pH 7.4), 150 mmol/L NaCl, 1% Triton

X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mmol/L

PMSF, and protease inhibitors. Homogenates were cen-

trifuged for 10 min at 12,000 g. The supernatants were

aliquoted and stored at �80°C. Protein concentrations

were determined using the Beyotime protein assay kit

(Catalog no. P0010). Cell lysates (45 lg of protein) were

subjected to SDS-PAGE using the appropriate antibody.

b-actin amino acid (AA) sequences of Nile tilapia were

totally identical with those of mouse. The rabbit poly-

clonal antibody against mouse b-actin was obtained from

HuaAn Biotech (Catalog no. R1102-1; Hangzhou, Zhe-

jiang, China). Preliminary experiment was conducted to

choose an appropriate antibody against peroxisome pro-

liferator-activated receptor gamma (PPARc). Finally, a

rabbit polyclonal antibody against mouse PPARc from

Proteintech (Catalog no. 16643-1-AP; Proteintech Group,

Inc., Chicago, IL) was chosen. The AA sequence of mouse

PPARc used to produce this antibody was 318 AA in

length and had 75.0% identity with the correspondent

sequence of PPARc in Nile tilapia. IRDye 800CW goat

(polyclonal) anti-Rabbit secondary antibody was from LI-

COR (Catalog no. 926-32211; LI-COR Biosciences

Corporate, Lincoln, NE). Bands were visualized by

infrared fluorescence using the Odyssey imaging system

(LI-COR Biotechnology).

RNA extraction and quantitative real-time
PCR

RNA isolation, cDNA synthesis, and qPCR was performed

as described previously (He et al. 2014). Briefly, 800 ng

of total RNA was used to synthesize cDNA by using ran-

Table 1. The formulation of the experimental diets

Component (g/kg) LF MF HF

Casein 360 360 360

Gelatin 80 80 80

Soybean oil 10 70 130

Corn starch 324.75 324.75 324.75

Vitamin premix* 10 10 10

Mineral premix† 40 40 40

CMC 30 30 30

Cellulose 140 80 20

Choline chloride 5 5 5

BHT 0.25 0.25 0.25

Total 1000 1000 1000

Composition

Dry matter (%) 92.31 92.27 92.25

Crude protein (%) 43.21 43.16 43.25

Crude lipid (%) 1.17 6.98 13.11

Ash (%) 5.23 5.19 5.16

*Mineral premix (g/kg): 314.0 g CaCO3; 469.3 KH2PO4; 147.4 g

MgSO4�7H2O; 49.8 g NaCl; 10.9 g Fe(II) gluconate; 3.12 g

MnSO4�H2O; 4.67 g ZnSO4�7H2O; 0.62 g CuSO4�5H2O; 0.16 g KJ;

0.08 g CoCl2�6H2O; 0.06 g NH4 molybdate; 0.02 g NaSeO3.
†Vitamin premix (mg or IU/kg): 500,000 I.U. (international units)

Vitamin A, 50,000 I.U. Vitamin D3, 2500 mg Vitamin E, 1000

mg Vitamin K3, 5000 mg Vitamin B1, 5000 mg Vitamin B2,

5000 mg Vitamin B6, 5000 lg Vitamin B12, 25,000 mg Inositol,

10,000 mg Pantothenic acid, 100,000 mg Cholin, 25,000 mg

Niacin, 1000 mg Folic acid, 250 mg Biotin, 10,000 mg Vitamin C.
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dom primers. All primer pairs were designed to overlap

one intron to avoid amplification of genomic DNA (the

elongation time was limited so that the PCR using geno-

mic DNA as template failed). The products of amplifica-

tion were cloned into pMD19-T vector to sequencing for

confirming the accuracy of amplicon (the lengths were

Table 2. The primers used in this study

Function

classifications Gene name Sense and antisense primer (50–30)
Size

(bp) GenBank No.

Internal reference b-actin CAGGATGCAGAAGGAGATCACA 92 KJ126772

CGATCCAGACGGAGTATTTACG

Elongation factor 1 alpha (EF1a) CTACGTGACCATCATTGATGCC 106 KJ123689

AACACCAGCAGCAACGATCA

Regulatory factors Peroxisome proliferator-activated receptor alpha

(PPARa)

CTGATAAAGCTTCGGGCTTCCA 106 KF871430

CGCTCACACTTATCATACTCCAGCT

Peroxisome proliferator-activated receptor beta

(PPARb)

CAGGAGAACAGTGACAACAAGCA 100 KF751705

CCAAACGCAGCTGTTCTGAGA

Peroxisome proliferator-activated receptor gamma

variant 1 (PPARc1)

TCCAGCTTCAGAAACAGAGAGTGTG 111 KF918712

AGACTGAAGCCAACAGGCCA

Peroxisome proliferator-activated receptor gamma

variant 2 (PPARc2)

CAGGCAGAGATTTTACCCATCAAAC 104 KF918713

TGCTGTGTTCAGACTGAAGCCAA

Sterol regulatory element-binding transcription

factor 1 (SREBP1)

TGCAGCAGAGAGACTGTATCCGA 102 XM_005457771

ACTGCCCTGAATGTGTTCAGACA

Lipid uptake Fatty acid transport protein 5 (FATP5) TACACATCTGGGACCACAGGTTTG 110 XM_003443859.2

AAGATGTCCTCTGCTGTGACTCCA

Cluster determinant 36 (CD36) TGGAGCACTGGACATCAGTTCCT 96 XM_003452029

CCCAACACAACCTCCCGTAGATAT

Hepatic lipase (HL) GCAGACGCTACAGGAGCACTACAA 97 FJ436083.1

AAAGCTCCCAGCAAATCCAGAGAT

Lipoprotein lipase (LPL) CACCAAACTAGTGGGTCGTGATGT 103 NM_001279753

TCCCAGACTATAACCCAGCAGATGA

Intracellular fatty

acid transportation

Fatty acid-binding protein 4 (FABP4) AAGCTGGGAGAGGAGTTTGATGAA 112 XM_003458335

TCTCTTTGCCGTCCCACTTCT

Fatty acid synthesis Acetyl-CoA carboxylase alpha (ACCa) TAGCTGAAGAGGAGGGTGCAAGA 110 XM_005471970

AACCTCTGGATTGGCTTGAACA

ATP citrate lyase (ACLY) AAAAGCTTTGATGAGCTTGGGG 102 XM_003442027

TACAGTGGGAGGAGGCAACTCTT

Fatty acid synthase (FAS) TCATCCAGCAGTTCACTGGCATT 102 GU433188

TGATTAGGTCCACGGCCACA

Glycerol synthesis Phosphoenolpyruvate carboxykinase 1 (PEPCK1) TGGAAGAACAAACCTTGGCG 99 XM_003448375

TGGGTCAATAATGGGACACTGTCT

TG synthesis Glycerol-3-phosphate acyltransferase 1 (GPAT) ATAACATCAAAGCCCCGCACAT 105 XM_005471309

CCATTCTTCGTCGTATGAAGAAACC

Diacylglycerol O-acyltransferase 2 (DGAT2) GCTTGAATTCTGTCACCCTGAAGA 106 XM_003458972

ACCTGCTTGTAGGCGTCGTTCT

Lipolysis Hormone-sensitive lipase (HSL) AACCTGGATGTCCATTTCTGGAAG 102 FJ601660

TCGGTTTACCTTGACTTGAGTGGA

Adipose triglyceride lipase (ATGL) AAAACGTCCTGGTGACCCAGT 104 XM_003440346

TAGGAGGAATGATGCCACAGTACA

Fatty acid

b-oxidation

Acetyl-CoA carboxylase beta (ACCb) ACATGCAGTCCATGCTGCGT 106 XM_003451659

AAATGCCTCTCAAGCCACTCAA

Carnitine palmitoyltransferase I alpha (CPT1a) TTTCCAGGCCTCCTTACCCA 102 XM_003440552

TTGTACTGCTCATTGTCCAGCAGA

Carnitine palmitoyltransferase I beta (CPT1b) AAGGGACGTTACTTCAAGGTG 101 GQ395696

TCCGACTTGTCTGCCAAGAT

Very low-density

lipoprotein protein

ApoB TCCCCAGCTACACTGCACAGTT 102 XM_005461940

CATCGCCTCTTCCTGACATCATC

ApoE ATAAGCTGCAGAAGCGCCTCAATA 106 XM_003447249

TTCACTGTATCCAGGTTCTGGGAG
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ranged from 92 to 112 bp). A series diluted cDNA was

used to assess the amplification efficiency. The primer

pairs with the efficiency of amplification between 99%

and 101% were chose to conduct qPCR (Table 2). Two

genes stably expressed in different dietary groups, b-actin
and elongation factor 1 alpha (EF1a), were chosen for

qPCR normalization. The methods 2�DDCt was used (LF

group as the control), and values of three groups were

further normalized by fixing LF group as 1. Every target

gene measured and the normalized genes in each cDNA

sample were always determined on the same plate. The

qPCR was performed on CFX Connect Real-Time System

(Bio-Rad Laboratories, Inc., Hercules, CA).

The genes investigated in this study were related to:

metabolic regulatory factors (PPARa, PPARb, PPARc1,
PPARc2, and sterol regulatory element binding protein 1

[SREBP1]), PPARc1 and PPARc2 were only different at 50-
untranslated region of mRNA; FA uptake (hepatic lipase

[HL], lipoprotein lipase [LPL], fatty acid transport protein

5 [FATP5], Cluster of Differentiation 36 [CD36, also

known as FA translocase]); intracellular FA transportation

(fatty acid binding protein 4 [FABP4]); FA biosynthesis de

novo (fatty acid synthase [FAS], ATP-citrate lyase [ACLY],

and acetyl-CoA carboxylase alpha [ACCa]); fatty acid b-
oxidation (Acetyl-CoA carboxylase beta [ACCb], carnitine
palmitoyl transferase 1 [CPT1a and CPT1b]); glyceroneo-

genesis (phosphoenolpyruvate carboxykinase 1 [PEPCK1]),

triacylglycerol synthesis (glycerol phosphate acyltransferase

[GPAT], and diacylglycerol O-acyltransferase 2 [DGAT2]);

very low-density lipoprotein related protein (apoprotein B

[ApoB] and apoprotein E [ApoE]), and lipolysis (hormone

sensitive lipase [HSL] and adipose triglyceride lipase

[ATGL]). The primers and estimated functions of all the

genes measured were listed in Table 2.

Transcriptomic assay of liver

Three total hepatic RNAs per dietary group were pooled

in equal amount. Pooled RNA of 5 lg was used to isolate

mRNA by using magnetic beads (Invitrogen Corporation,

Carlsbad, CA). RNA Sequencing Library Preparation and

Deep Sequencing were performed as described (Li et al.

2013). In this study, each sample was subjected to 200

cycles of sequencing from both ends in one lane of an

Illumina Hiseq2000 Sequencer (Illumina, Inc., San Diego,

CA). For each sample, reads with a quality score of >Q20
that passed filtering were used to generate a complete

FASTQ file, which was then mapped to UCSC Nile tilapia

reference (Jan. 2011 [Broad oreNil1.1/oreNil2]) using

Tophat2 (v2.0.2) (Kim et al. 2013) with the default

parameter setting of 40 alignments per read and up to 2

mismatches per alignment. The resulting aligned reads

were then analyzed with Cufflinks suite (v2.1.1) (http://

cufflinks.cbcb.umd.edu) which assembles the aligned

reads into transcripts and measures their relative abun-

dance. The expression level of transcripts was assessed

using FPKM (fragments per kilobase of exon per million

fragments mapped). On the basis of the P values, the false

discovery rate (FDR) was calculated by the method of

Benjamini and Hochberg (1995), and the change between

two groups was viewed as significant when FDR ≤ 0.05, |

logFC| ≥ 1. Raw reads were deposited at the National

Center for Biotechnology Information’s Sequence Read

Archive under accession no. SRX838027 (LF, DL; MF, ZL;

and HF, GL). Cluster analysis was conducted using dis-

tance algorithm (Spearman between samples and Pearson

between genes). GO (Gene Ontology) enrichment analysis

was conducted by using Goatools (https://github.-

com/tanghaibao/GOatools). Bonferroni, Holm, Sidak, and

FDR were used to control the rate of false positive.

Statistical analysis

All data are presented as mean � SEM. Significant differ-

ences (P < 0.05) of each variable were first determined

using the one-way analyses of variance test, followed by

Tukey–Kramer test to rank the three experimental groups.

All analyses were performed using SPSS 19.0 software

(SPSS, Chicago, IL).

Results

Growth performance and body lipid content

In this study, the tilapia grew from 2 g to more than 20 g

during 10 weeks. At the end of the trial, there were no

significant differences in final body weight among three

dietary groups (Fig. 1A). This was in accordance with a

previous study in which dietary lipid content ranged from

0% to 15% did not significantly affect final body weights

of juvenile tilapia in 8 weeks (Chou and Shiau 1996).

This verified that our experimental fish and feeding con-

ditions were normal. As predicted, total body lipid con-

tents of the experimental fish significantly increased with

increased dietary lipid content from 1% to 13% (Fig. 1B);

however, serum TG concentrations were comparable

among the three groups (Fig. 1C). This suggests that in

the present experiment tilapia stored excess lipid intake in

the body but still maintained lipid homeostasis.

Liver is the main site of lipid biosynthesis
de novo in Nile tilapia when fed with LF
diet

There were no significant changes of HSI and hepatic TG

contents among the three groups (Figs. 1D and E). The
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activity of serum AST, a marker of hepatic injury, was

also not altered by dietary lipid levels (Fig. 1F). Consider-

ing the dietary lipid levels varied from 1% to 13%, the

comparable hepatic lipid contents in the three groups

suggested that Nile tilapia had adaptive mechanisms to

maintain lipid homeostasis in the liver. Thus, we further

examined the hepatic mRNA levels of several important

metabolic regulatory factors involved in lipid metabolism

(PPARa, PPARb, PPARc1, PPARc2, and SREBP1) and

found that only SREBP1 was significantly higher in the

LF group than the MF and HF groups (Fig. 2A). Higher

SREBP1, a master regulator of lipogenesis, in the LF

group led us to speculate that lipogenesis was increased

in the liver when lipid intake was limited. Compared with

the MF and HF groups, the higher expression of lipogenic

genes (ACCa, ACLY, and FAS), along with the compara-

ble expression of exogenous FA transport genes (LPL, HL,

FATP5, and CD36) in the LF group confirmed our specu-

lation (Fig. 2B–D). This suggests that FA synthesis de

novo was likely to contribute more to hepatic FA pool in

LF group. Moreover, higher expression of FABP4, an

important binding protein in intracellular FA transport

(Furuhashi et al. 2014), in the LF group suggested

increased intracellular FA metabolism (Fig. 2E). However,

the TG contents in the liver were comparable among the

three groups (Fig. 1E), showing higher FA synthesis did

not cause higher TG accumulation in the LF group. This

might because (1) the newly synthesized FAs were broken

down through b-oxidation, or (2) the hepatic TGs

biosynthesized in the LF group were transported by

VLDL, or (3) the amount of the substrates for liver TG

synthesis in LF group were comparable to those of other

two groups. Thus we measured key genes in FA b-
oxidation (ACCb, CPT1a and CPT1b) (Fig. 2G), but no

significant differences were found among three groups.

We also measured the mRNA levels of both ApoE and

ApoB. The significantly higher expression of ApoE, but

not ApoB, in the LF group versus the other two groups

indicated that the altered lipoprotein transporting effi-

ciency may help to maintain stable lipid contents in the

liver (Fig. 2H). We finally measured the genes in glycerol

synthesis (PEPCK1) (Fig. 2F) and triglyceride synthesis

(GPAT and DGAT2) (Fig. 2I), but no significant differ-

ences were found among three groups, suggesting the

total amount of glycerol and FA – the substrates of TG

synthesis were comparable among three groups, although

FA de novo synthesis increased in the LF group. How-

ever, it must be noted that the posttranscription modifi-

cation would also affect the amount of proteins coded by

these genes. Compared with LF group, it was noticed that

A B C

D E F

Figure 1. Growth, body lipid content, hepatic somatic index, triglyceride content in serum and liver, and aspartate aminotransferase activity in

serum of Nile tilapia fed with diets containing low (1%), medium (7%), and high (13%) lipid content for 10 weeks. (A) Growth curve of Nile

tilapia during 10-week feeding trial. (B) Crude lipid content in whole body (dry matter) of Nile tilapia at the end of the feeding trial. (C) Serum

triglyceride (TG) content. (D) Hepatic-somatic index (HSI). (E) Hepatic TG content. (F) Serum aspartate transaminase (AST) activity. For A and B,

Values are means � SEM (n = 3); for C–F, Values are means � SEM (n = 6). Values with different letters on columns statistically differ at

P < 0.05.
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the MF and HF groups had similar metabolic and molec-

ular characteristics in the liver, suggesting that the liver of

tilapia is not sensitive to HF intake in a normal physio-

logical state.

To understand fully the physiological changes in the

liver caused by different dietary lipid levels, we conducted

transcriptomic analyses for liver samples by using Hiseq-

2000. The number of high-quality reads (>Q20) was

44,096,624, 59,359,238, and 50,967,622 in the LF, MF,

and HF groups, respectively. The reads were mapped on

the genome of Nile tilapia and the mapping rates of the

LF, MF, and HF groups were 85.64%, 84.35%, and

86.49%, respectively. Cluster analysis showed that the MF

and HF groups were clustered together, and the LF was

separated from MF and HF (Fig. 3). This indicated that

the liver of Nile tilapia had similar physiological responses

to MF and HF diets, but had specific metabolic changes

in the LF diet feeding. This was in accordance with the

results obtained from real-time PCR (Fig. 2A–I).
There was no enriched KEEG pathway found in any

group pair (LF vs. MF, LF vs. HF, and MF vs. HF), but

some enriched GO pathways were observed in three

group pairs and these enriched pathways were rearranged

and organized (Table 3). There were 1004 differently

expressed genes enriched in 46 pathways in LF versus

MF, 1200 genes in 41 pathways in LF versus HF, and only

506 genes in 17 pathways in MF versus HF. These results

corresponded to the findings in cluster analysis that the

A

C

G H I

D E F

B

Figure 2. The mRNA expression of the genes in hepatic triglyceride (TG) metabolism of Nile tilapia fed with diets containing low (1%),

medium (7%), and high (13%) lipid content for 10 weeks. (A) The relative mRNA abundance of PPARa, PPARb, PPARc1, PPARc2, and SREBP1

in liver. (B) The relative mRNA abundance of ACCa, ACLY, and FAS showing the FA biosynthetic activity de novo. (C) The relative mRNA

abundance of HL and LPL showing the ability of triglyceride hydrolysis. (D) The relative mRNA abundance of FATP5 and CD36 showing the

ability of FA uptake. (E) The relative mRNA abundance of FABP4 showing the activity of intracellular FA transport. (F) The relative mRNA

abundance of PEPCK1 participating in the pathway of glyceroneogenesis. (G) The relative mRNA abundance of ACCb, CPT1a, and CPT1b

showing the activity of FA b-oxidation. (H) The relative mRNA abundance of ApoB and ApoE which are important components of VLDL. (I)

GPAT and DGAT2 showing the activity of TG synthesis. All values are means � SEM (n = 6). Values with different letters on columns

statistically differ at P < 0.05.
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cluster distance between the MF and HF groups was clo-

ser than that between LF and MF or between LF and HF.

FA metabolic processes, FA biosynthetic processes, lipid

transport, and lipid biosynthetic processes, of which the

key enzymes have been investigated by qPCR, were

included in the enriched pathways. These results further

confirmed the findings in liver using qPCR. Both of these

findings suggested that hepatic lipogenesis in the LF

group increased to cope with the deficiency of dietary

lipids, whereas higher dietary lipid intake would not cause

significant metabolic alterations in the liver of Nile

tilapia.

Adipocyte proliferation is the main strategy
in Nile tilapia responding to HF intake

The mass of visceral adipose tissue, which was presented

by VSI, increased with the increased dietary lipid level in

tilapia (Fig. 4B). The histological images of adipose tis-

sues are shown in Figure 4A. By calculating the size and

number of adipocytes, we found the increased adipose tis-

sue mass was mainly caused by increased adipocyte num-

bers (Fig. 4D), but not the enlargement of the size of

adipocytes (Fig. 4C). PPARs and SREBP1 are the impor-

tant nuclear receptors in adipogenesis (Eberle et al. 2004;

Wang 2010), whereas the mRNA expression of these

genes showed only PPARc significantly highly expressed

in the HF group (Fig. 4E). Moreover, western blotting

also verified that the protein levels of PPARc in adipose

tissue increased with increasing dietary lipid levels

(Fig. 4F). Because PPARc has been shown to be a critical

receptor in regulating the differentiation and multiplica-

tion of adipocytes in mammals and fishes (Semple et al.

2006; Bouraoui et al. 2008), the higher mRNA and pro-

tein levels of PPARc in the HF group confirmed again

that the proliferation of adipocytes is likely to be the

main strategy of Nile tilapia responding to HF intake.

To understand the metabolic details in adipose tissue

of Nile tilapia in the HF group, a number of lipid meta-

bolism-related genes were measured. Compared with the

LF and MF groups, the higher mRNA expression of the

genes related to exogenous FA uptake (CD36 and LPL)

(Fig. 5A), glycerol synthesis (PEPCK1) (Fig. 5B), and TG
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Figure 3. Clustered heat map of hepatic transcriptome of Nile

tilapia fed with diets containing low (1%), medium (7%), and high

(13%) lipid content for 10 weeks. Cluster analysis was conducted

using distance algorithm (Spearman between samples and Pearson

between genes). Transcript enrichment is encoded in the heat map

from low (green) to high (red). Transcripts that show similar

expression patterns are clustered together, as indicated by the

colored groups to the left of the heat map.
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Table 3. Gene ontology analysis of hepatic transcriptome

GO id Description

Ratio in study

LF versus HF LF versus MF MF versus HF

GO:0006629 Lipid metabolic process 42/1200 34/1004 22/506

GO:0006631 Fatty acid metabolic process 11/1200 10/1004

GO:0006633 Fatty acid biosynthetic process 9/1200 9/1004

GO:0008610 Lipid biosynthetic process 26/1200 22/1004

GO:0006869 Lipid transport 13/1004

GO:0003824 Catalytic activity 347/1200 327/1004

GO:0003987 Acetate-CoA ligase activity 3/1200 3/1004

GO:0004497 Monooxygenase activity 15/1200 15/1004 10/506

GO:0005506 Iron ion binding 29/1200 26/1004 16/506

GO:0005783 Endoplasmic reticulum 20/1200 12/1004 8/506

GO:0005996 Monosaccharide metabolic process 14/1200 15/1004

GO:0006006 Glucose metabolic process 11/1200 11/1004

GO:0006082 Organic acid metabolic process 32/1200 28/1004

GO:0006083 Acetate metabolic process 3/1200 3/1004

GO:0006085 Acetyl-CoA biosynthetic process 4/1200 3/1004

GO:0006091 Generation of precursor metabolites and energy 11/1200 10/1004

GO:0006096 Glycolysis 8/1004

GO:0007050 Cell cycle arrest 6/1200

GO:0008150 Biological_process 673/1200 585/1004

GO:0008152 Metabolic process 349/1200 322/1004

GO:0008443 Phosphofructokinase activity 6/1200

GO:0009055 Electron carrier activity 21/1200 17/1004 11/506

GO:0009628 Response to abiotic stimulus 12/1200

GO:0016208 AMP binding 3/1200 3/1004

GO:0016405 CoA-ligase activity 5/1200 5/1004

GO:0016418 S-acetyltransferase activity 2/506

GO:0016491 Oxidoreductase activity 65/1200 65/1004 30/506

GO:0016705 Oxidoreductase activity, acting on paired donors,

with incorporation or reduction of molecular oxygen

24/1200 25/1004 17/506

GO:0016746 Transferase activity, transferring acyl groups 12/506

GO:0016877 Ligase activity, forming carbon-sulfur bonds 6/1200 6/1004

GO:0016878 Acid-thiol ligase activity 6/1200 6/1004

GO:0019200 Carbohydrate kinase activity 7/1200 7/1004

GO:0019318 Hexose metabolic process 14/1200 15/1004

GO:0019427 Acetyl-CoA biosynthetic process from acetate 3/1200 3/1004

GO:0019752 Carboxylic acid metabolic process 31/1200 27/1004

GO:0019842 Vitamin binding 8/506

GO:0020037 Heme binding 22/1200 20/1004 11/506

GO:0031406 Carboxylic acid binding 6/506

GO:0031418 L-ascorbic acid binding 6/1004 5/506

GO:0032787 Monocarboxylic acid metabolic process 15/1200 14/1004

GO:0035384 Thioester biosynthetic process 4/1200

GO:0043436 Oxoacid metabolic process 32/1200 28/1004

GO:0044283 Small molecule biosynthetic process 15/1004

GO:0044710 Single-organism metabolic process 297/1004

GO:0044711 Single-organism biosynthetic process 15/1004

GO:0045786 Negative regulation of cell cycle 6/1200

GO:0046394 Carboxylic acid biosynthetic process 15/1004

GO:0046906 Tetrapyrrole binding 23/1200 20/1004 13/506

GO:0046914 Transition metal ion binding 32/1200 31/1004 17/506

GO:0047150 Betaine-homocysteine S-methyltransferase activity 3/1004

GO:0048029 Monosaccharide binding 6/1004 5/506

GO:0055114 Oxidation-reduction process 63/1200 64/1004 29/506

GO:0071616 Acyl-CoA biosynthetic process 4/1200

GO:0072330 Monocarboxylic acid biosynthetic process 9/1200 10/1004

ª 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
the American Physiological Society and The Physiological Society.
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synthesis (DGAT) (Fig. 5C) in the HF group clearly indi-

cated that adipose tissue could efficiently uptake excess

exogenous FFA and store it in the form of TG. Of note,

the genes related to intracellular FA biosynthesis, such as

ACCa and FAS (Fig. 5D), also expressed higher in HF

group, suggesting some newly synthesized FAs could also

contribute to the TG synthesis. Although the total adipose

tissue mass and the total TG contents in whole adipose

tissue were significantly higher in the HF group than in

the other two groups (Fig. 5F), we noticed that the adi-

pocyte size and the TG contents per unit weight of adi-

pose tissue were similar in the three groups (Figs. 4C and

5G). This suggested that the lipid contents in a single adi-

pocyte of tilapia are accurately regulated and excess cellu-

lar lipid would be decreased in some way. Thus, we

measured the mRNA levels of three enzymes involved in

FA b-oxidation (ACCb, CPT1a, and CPT1b) (Fig. 5H),

which could break down the intracellular FFA, and two

enzymes that are responsible for lipolysis of TG (HSL and

ATGL) (Fig. 5I). The dietary lipid content-dependent

increase in mRNA levels was only seen in lipolytic genes.

This indicated that the excess TG in adipocytes would be

lipolyzed and the released FFA would be absorbed by

newly differentiated adipocytes. In fact, some studies have

reported that high FFA would upregulate the expression of

PPARc and accelerate adipocyte proliferation (Yessoufou

and Wahli 2010).

Lipid metabolism in muscle

Different dietary lipid contents did not affect TG con-

tents in muscle (Fig. 6A). The mRNA levels of three

lipid metabolic regulators (PPARa, PPARb, and PPARc)
were comparable among the three groups (Fig. 6B).

Moreover, a number of genes related to FA uptake

(Fig. 6C and D), FA intracellular transport (Fig. 6E),

and FA b-oxidation (Fig. 6F), which contribute to main-

tain TG homeostasis, did not change. The data of other

lipogenic genes in muscle, including FA synthesis, glyc-

eroneogenesis, and TG synthesis, were not presented

because of the extremely low expression. These results

indicated that the muscle of tilapia is unlikely to be the

main responding organ to deal with high or low lipid

intake.

A B

E

F

C D

Figure 4. Histological characteristics and expression of regulatory genes related to adipocyte proliferation of Nile tilapia fed with diets

containing low (1%), medium (7%), and high (13%) lipid content for 10 weeks. (A) Representative histologic appearance of visceral adipose

tissue. (B) Visceral adipose tissue-somatic index (VSI). (C) Relative adipocyte size. (D) Relative visceral adipocyte number in whole adipose tissue.

(E) The relative mRNA abundance of PPARa, PPARb, PPARc1, PPARc2, and SREBP1 in visceral adipose tissue. (F) The result of western blotting,

PPARc antibody was used (top) and b-actin antibody was used as a loading control (bottom), a protein sample from mouse liver was loaded as

positive control – the lane (mL). For B–E, values are means � SEM (n = 6). Values with different letters on columns statistically differ at

P < 0.05.
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Discussion

The strategy of Nile tilapia responding to
low lipid intake

Dietary lipid (mainly TG) is important for almost all

organisms, not only as a provider of essential FA (EFA)

but also an important source of energy and signaling

molecules. Therefore, limited dietary lipid is a nutritional

stress for organisms. In this study, one of our purposes

was to understand the metabolic strategies of tilapia to

deal with LF intake. In many fish species, limited dietary

lipid resulted in low growth and a series of symptoms

related to EFA efficiency (Takeuchi et al. 1990; Watanabe

1993). However, some fish, especially herbivorous and

omnivorous species, such as grass carp (Ctenopharyngodon

idella) and tilapia, have the ability to endure EFA defi-

ciency for a relatively long period and synthesize lipid

when dietary lipid is low (Chou and Shiau 1996; Du et al.

2005). In grass carp, the optimal dietary lipid content was

A

D

G H I

E F

B C

Figure 5. The mRNA expression of the genes in TG metabolism in adipose tissue of Nile tilapia fed with diets containing low (1%), medium

(7%), and high (13%) lipid content for 10 weeks. (A) The relative mRNA abundance of CD36 and LPL showing the ability of FA uptake. (B) The

relative mRNA abundance of PEPCK1 participating in the pathway of glyceroneogenesis. (C) The relative mRNA abundance of GPAT and

DGAT2 showing the activity of TG synthesis. (D) The relative mRNA abundance of ACCa, ACLY, and FAS showing the FA biosynthetic activity

de novo. (E) The relative mRNA abundance of FABP4 showing the activity of intracellular FA transport. (F) The relative visceral adipose TG level.

(G) The relative visceral adipose TG level in whole body (right). (H) The relative mRNA abundance of ACCb,CPT1a, and CPT1b showing the

activity of FA b-oxidation. (I) The relative mRNA abundance of HSL and ATGL showing the activities of lipolysis. For A–I, values are

means � SEM (n = 6). Values with different letters on columns statistically differ at P < 0.05.
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3–6%, and diets containing 0%, 2%, and 4% lipid did

not cause significant changes in growth, liver lipid con-

tent and mesenteric fat mass during a 10-week trial (Du

et al. 2005). Similarly, there were no significant differ-

ences in body lipid content between the tilapia fed with

the diets of 0% and 5% lipid contents at least during an

8-week laboratory trial (Chou and Shiau 1996). These

results indicated that some fish could have the ability to

adapt to LF intake by synthesizing lipid to promote

endogenous lipid homeostasis, at least in a given period.

However, few studies focused on the lipogenic sites and

the systemic metabolic strategies of fish responding to LF

intake. Even though a few studies had investigated some

metabolic changes in the fish fed with LF diet, many con-

tradictions were found in these preliminary works. In tur-

bot (Psetta maxima), only hepatic lipogenic enzymes

(glucose-6-phosphate dehydrogenase, G6PD; malic

enzyme, ME; and acetyl CoA carboxylase) were detected

and did not show any clear change in activity in response

to low dietary fat content (Regost et al. 2001). However,

the activities of G6PD, ME, FAS, and ACLY in liver of

European sea bass were reduced with increasing fat

intake, though the TG balance in the liver was not eluci-

dated (Dias et al. 1998). Compared with these two studies

above, the work of Lin et al. (1977) in Coho salmon

found that the activities of lipogenic enzymes in the liver

increased in the LF diet group, but these activities were

relatively low and comparable in adipose tissue between

different dietary lipid content groups.

In this study, by comparing the systemic metabolic

alterations of lipid metabolism in different tissues, liver is

verified as the main lipogenic organ in tilapia when diet-

ary lipid intake is low. As a main proof, the significantly

A

D E F

B C

Figure 6. The mRNA expression of the genes in TG metabolism in muscle of Nile tilapia fed with diets containing low (1%), medium (7%),

and high (13%) lipid content for 10 weeks. (A) The relative abundance of TG. (B) The relative mRNA abundance of PPARa, PPARb, PPARc1,

and PPARc2. (C) The relative mRNA abundance of LPL. (D) The relative mRNA abundance of CD36 showing the ability of FA uptake. (E) The

relative mRNA abundance of FABP4 showing the activity of intracellular FA transport. (F) ACCb, CPT1a, and CPT1b showing the activity of FA

b-oxidation. For A–F, values are means � SEM (n = 6). Values with different letters on columns statistically differ at P < 0.05.

Peripheral tissues VLDL

FABP4

FA synthesis

SREBP1

TG pool

Glycolysis

Acetyl-CoA
pool

Figure 7. Proposed model of the metabolic adaptation to the low-

fat diet in the liver of Nile tilapia. In the liver of LF diet-fed Nile

tilapia, accelerated glycolysis provides more substrate – acetyl-CoA

for FA and TG synthesis to maintain the content of liver TG. This

process is upregulated by SREBP1. The newly synthesized TG can be

transported out to other peripheral tissues mediated by increased

VLDL consisting of ApoB and ApoE.
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higher expression of SREBP1 was seen in the liver of the

LF group. SREBP1 plays important roles in lipogenesis,

and the proteins encoded by SREBP1 bind to a sequence

in the promoter of different genes required for glucose

metabolism and lipid production (Eberle et al. 2004).

Correspondingly, the SREBP1-targeted lipogenic genes,

such as ACCa, ACLY, and FAS, were all upregulated in

the liver of the LF group. The metabolic strategy respond-

ing to a LF diet in the liver was briefly illustrated (Fig. 7).

In short, the increased SREBP1-mediated expression of

lipogenic genes (ACCa, ACLY and FAS) and intracellular

FA transport gene (FABP) promised the FA would be effi-

ciently synthesized and esterified to form TG in hepato-

cytes. At the same time, high expression of hepatic

lipoprotein ApoE in the LF group revealed the possibility

that the newly synthesized TG could also be efficiently

transported to peripheral tissues for further use. As the

final output of lipid homeostasis, the serum TG contents

in the LF, MF, and HF groups were comparable. In the

case of lipid deficiency, it is possible that higher glycolysis

would be stimulated and provide more acetyl-CoA, which

will be catalyzed by ACCa to malonyl-CoA for FA synthe-

sis. As proof, our transcriptomic analysis, which was first

conducted to examine the effects of dietary lipid levels on

physiological response in fish until now, did indicate that

glycolysis, hexose metabolic processes, carbohydrate

kinase activity, and glucose metabolic processes were

included in GO enriched pathways only between LF ver-

sus MF and/or LF versus HF, but not between MF versus

HF pairs (Table 3). Moreover, three direct glycolysis-re-

lated limiting enzymes (hexokinase, phosphofructokinase,

and pyruvate kinase) tended to highly express in the LF

group compared with the MF or HF groups, although

there was no significant change for some genes (P > 0.05)

(Table 4). These data suggested that the glycolysis in the

liver of the tilapia fed with the LF diet was highly proba-

ble to be stimulated. Furthermore, the higher mRNA

expression of ACCa, ACLY, and FAS in the LF group

(Fig. 2B) indicated that glycolysis-sourced acetyl-CoA

would be efficiently transformed to FA. The similar gene

expression patterns between MF and HF showed that

when the minimal lipid requirement was satisfied, the

liver was not sensitive to higher dietary lipid intake. It is

of note that the mRNA levels of genes possibly do not fit

the real levels or activities of the proteins and metabolites.

For example, even if the mRNA levels of lipogenic

enzymes were elevated in LF group, the actual increase in

FA synthesis might be small if very little substrates were

available. However, considering the hepatic TG content

was comparable among three groups, and the genes in

glycolysis and FA synthesis were upregulated in liver of

LF group, our study suggest that in fish, at least in Nile

tilapia, the LF diet would accelerate the utilization of car-

bohydrate to satisfy the physiological requirement of lipid

synthesis, and this process is mainly performed in the

liver.

The strategy of Nile tilapia responding to
high lipid intake

It has been known that HF diets cause fat accumulation

in the bodies of most animals, including fish. However,

different from rodents, lipid storage sites in fish are highly

species-specific. Some fish, such as cod, store fat mainly

in the liver (Dos Santos et al. 1993), whereas other fish,

such as salmon, could store high amounts of fat between

muscle fibers (Torstensen et al. 2000). Nevertheless, for

most fish, increased lipid contents in the liver and muscle,

along with increased mass of visceral adipose tissue, were

commonly reported when fish were fed with HF diets

Table 4. The data of hexokinase, phosphofructokinase, and pyruvate kinase from hepatic transcriptomic assay

Item LF MF HF LF versus HF LF versus MF

Gene name Gene_id FPKM FPKM FPKM P-value P-value

Hexokinase ENSONIG00000000186 2.27367 0.896305 1.05924 0.03195 0.0112

ENSONIG00000015846 2.59032 1.73474 2.21806 0.65405 0.24605

ENSONIG00000016400 2.16001 0.882575 1.1411 0.0923 0.0277

ENSONIG00000017298 0.065365 0 0 1 1

ENSONIG00000017024 36.5945 29.0355 28.9209 0.46645 0.47475

Phosphofructokinase ENSONIG00000009075 4.97003 3.96111 3.73735 0.37995 0.4854

ENSONIG00000019109 0.236625 0.376833 0.0449021 1 1

ENSONIG00000003640 3.11663 0.779021 0.930055 0.00585 0.0033

ENSONIG00000011877 51.6894 32.0229 22.2438 0.01315 0.14715

ENSONIG00000014930 1.23049 0.648307 0.402476 0.03335 0.15895

Pyruvate kinase ENSONIG00000002725 7.78104 2.08947 2.80815 0.3122 0.21015

ENSONIG00000006474 11.233 11.7074 10.9754 0.9407 0.89515
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(Du et al. 2005; Wang et al. 2005a). In the fish fed with

dietary fat, the majority of the intestinal lipoproteins are

transported via the lymphatic system before appearing in

the circulatory system and being delivered to the liver in

fish, like that of mammals (Sheridan 1988). However, the

priority of the position of lipid storage has not been fully

known, and the systemic strategy of fish responding to

HF intake has not been illustrated either. In this study,

the mass of adipose tissue of Nile tilapia had a dose-de-

pendent increase with dietary lipid levels; however, the

TG contents in the liver and muscle were relatively stable.

Therefore, we clarified that adipose tissue is the prior tis-

sue for lipid deposit in Nile tilapia when fed with a HF

diet, at least in this 10-week trial.

In mammals, when energy intake is greater than energy

expenditure, adipose tissue swells through increasing the

numbers and/or enlarging the size of adipocytes (Rosen

and Spiegelman 2006). In this study of Nile tilapia, we first

report that the increase in adipocyte numbers is the main

metabolic solution to deal with HF intake and this was also

confirmed by the enhanced expression of mRNA and pro-

tein levels of PPARc. In mammals, PPARc functions in

adipocyte differentiation and in many cases can convert

non-adipose cells to adipocyte-like cells (Rosen et al. 1999;

Wu et al. 1999). A number of studies have indicated that

HF feeding leads to increased expression of PPARc and a

number of PPARc-targeted genes involved in adipocyte

differentiation and lipid storage (Brun and Spiegelman

1997). Most FA can activate PPARc (Kliewer et al. 1997)

and the highest binding affinity is achieved with 16–20 car-

bon chain-length FAs (Forman et al. 1997), which are the

dominant compounds in the increased FFAs in circulation

in the HF feeding state. HF feeding does not only cause the

differentiation of adipocytes, but also induce adipogenesis

through elevating FA synthesis de novo and TG synthesis

(Ilich et al. 2014). The expression of lipogenic genes in

adipocytes is controlled by the transcription factors

SREBP-1 (Jeon and Osborne 2012). Compared with the

upregulated PPARc in the adipose tissue of Nile tilapia in

the HF group, the expression of SREBP1 was not affected

by dietary lipid level in this study. However, the mRNA

levels of some SREBP1-targeted genes in FA synthesis, such

as ACCa and FAS, were highly expressed in HF diet. This

discrepancy could be explained by the inconsistency among

mRNA levels, protein levels/activities and metabolic flux.

The related systemic metabolic mechanism of HF diet-in-

duced proliferation of adipocytes in Nile tilapia is also

illustrated (Fig. 8). In short, in the state of HF intake in

Nile tilapia, diet-sourced FFAs are mainly absorbed by adi-

pocytes, and at the same time, the FA synthesis de novo

are also increased. Then glycerol and TG synthesis in adi-

pocytes is elevated to form more TGs, which are stored in

lipid droplets. At the same time, lipolysis is also increased

to limit the lipid accumulating capacity; thus, the excess

accumulated TGs will be hydrolyzed again and released as

FFAs from adipocytes. Many studies had indicated that

FFAs would upregulate the expression of PPARc as an

endogenous ligand (Spiegelman 1998). Therefore, both the

increased lipolysis in adipocytes and the continuous intake

of HF diets induce high expression of PPARc and trigger

the process of adipocyte proliferation.

It is of note that the enlargement of adipocytes, which

is mainly caused by the increasing size of intracellular

lipid droplets, is the normal physiological consequence of

rodents in HF diet feeding (Weyer et al. 2000). However,

in this study, the adipocyte size and the TG content per

unit weight of adipose tissue did not change among three

dietary lipid levels in tilapia. Therefore, an interesting

question that arises from this study is whether the size of

adipocytes would increase with the duration of HF diet

feeding, or would the numbers of adipocyte increase con-

tinuously. What we can conclude from this study is that

the increase in the number of adipocytes is the primary

strategy of Nile tilapia, at least in the early stages of the

progression of systemic obesity. It should be pointed out

that the efficient uptake of high circulating FFAs and

transforming these to TGs in specific lipid deposit tissue

has been shown to be a protective mechanism against the

lipotoxicity of FFAs in many animals responding to tem-

porary HF intake (Boden and Shulman 2002). However,

during long-term HF diet feeding, the maintenance of

lipid homeostasis will finally fail and result in excess lipid

accumulation in other nonlipid-storage tissues, such as

FA uptake
TG synthesis

TG pool

Lipolysis
PPARγ

Adipocyte prolifera�on

Figure 8. Proposed model of the metabolic adaptation to the

high-fat diet in the adipose tissue of Nile tilapia. In the adipocytes

of Nile tilapia fed with HF diet, the uptake of diet-sourced FFA, de

novo synthesis of FA and glycerol are up-regulated and contribute

to increasing TG synthesis. The excess cellular TG is hydrolyzed by

accelerated lipolysis and the released FFA, together with the diet-

sourced circulating FFA, upregulates PPARc to trigger the

differentiation and proliferation of visceral adipocyte.
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skeletal muscle, heart, and liver, along with the high pro-

duction of many inflammatory and oxidative factors in

the endogenous environment (Posey et al. 2009; De La

Serre et al. 2010). The similar developing process of HF

diet-caused dyslipidemia was also previously reported in

fish (Lin et al. 1977; Hemre and Sandnes 1999; Du et al.

2008). Therefore, we suppose that the prolonged duration

of HF diet feeding would also cause a series of dyslipi-

demic symptoms in Nile tilapia, and the lipid metabolism

would be largely changed. But it should be pointed out

that in that situation, the metabolic changes are mostly

pathological consequences rather than physiological

adaptations.

Lipid homeostasis in fish is differently
affected by protein, lipid, and carbohydrate
intake

In this study in Nile tilapia, the 10-week HF diet feeding

did not affect growth and lipid content of the liver, but

only increased the mass of adipose tissue. However, in

other studies, altered dietary protein and/or carbohydrate

for a similar, even shorter duration would significantly

affect lipid accumulation in the liver, muscle, and visceral

fat mass in fish (Regost et al. 2001; Alam et al. 2009). As

in most animals, metabolic energy in fish is available

from proteins, lipids, and carbohydrates. Although excess

energy is mainly stored in the form of lipid, dietary lipid,

protein, and carbohydrate have different physiological

roles in lipid homeostasis in fish. Several studies have

found that high protein intake normally did not cause

severe lipid accumulation in liver, muscle, and visceral

adipose tissue in fish (Shyong et al. 1998; Yang et al.

2002, 2003; Alam et al. 2009), which could be because

fish preferentially utilize protein as an energy source

rather than carbohydrate (Tocher 2003).

In contrast, a number of reports indicated that excess

body lipid accumulation is highly correlated to high con-

tent of dietary carbohydrate in fish (Tian et al. 2012;

Zamora-Sillero et al. 2013; Li et al. 2014). Although the

detailed mechanisms are still unknown, some studies have

found that the decrease rate of blood insulin level after

high carbohydrate feeding in fish is much slower than

that in mammals, which is similar to the prediabetic insu-

lin-resistant state in mammals (Warram et al. 1990).

Recent studies had indicated that insulin significantly

stimulate lipogenesis in rainbow trout (Li et al. 2014).

Considering high carbohydrate diet also increases the

activities of glycolytic enzymes in some fish species

(P�erez-Jim�enez et al. 2009), more carbohydrate-sourced

acetyl-CoA would be available as the substrate for lipoge-

nesis which is induced by high circulating insulin in the

fish fed with high carbohydrate. Although this process has

not been fully confirmed, a recent study provided new

proofs (Wang 2010). In this study, tilapia were fed with

high protein + low carbohydrate diet (HPLC) and low

protein + high carbohydrate diet (LPHC), respectively,

and body composition and liver transcriptomic assays

were performed. The results indicated a LPHC diet signif-

icantly increased lipid accumulation in the liver, muscle,

and viscera, as compared with an HPLC diet, and this

severe lipid accumulation positively correlated with high

expression of mRNA of glycolysis and FA synthesis (GCK,

ACC, ACLY, FAS). Interestingly, this hepatic gene pattern

in the LPHC diet-induced lipid accumulation was very

similar with the gene pattern in the LF group in this

study. This suggests that either in the case of dietary lipid

deficiency or high dietary carbohydrate situations, the

stimulated glycolysis may provide the substrates for lipo-

genesis in tilapia.

In some fish species, HF diet would induce severe fat

deposit. This is not only because the excess ingested lipid

cannot be efficiently degraded in tissues, but also because

the HF diet would impair insulin sensitivity and further

impair glucose and lipid homeostasis (Figueiredo-Silva

et al. 2012). Comparing the different metabolic responses

to the high intake of protein, carbohydrate, and lipid

between this study and previous literatures (Brun and

Spiegelman 1997; Semple et al. 2006), we demonstrate

tilapia could be a species that has the capability to endure

a HF diet. The systemic adaptation of lipid metabolism of

tilapia responding to a HF diet illustrated by this study

could also be regarded as a metabolic model and refer-

enced for other fish species. It should also be mentioned

that different ratios of dietary lipid to other nutrients,

particularly carbohydrate, would possibly change the

metabolic adaptation strategies in tilapia, and this is wait-

ing for further studies.

Conclusion

High or limited fat intake is commonly seen in farmed or

wild fish. However, the detailed metabolic adaptation

mechanisms have not been elucidated. This study indi-

cated that LF intake would elevate glycolysis and acceler-

ate biosynthesis of FAs in the liver, which is the primary

responding organ to LF diet feeding. In contrast, excess

ingested lipid is preferentially stored in adipose tissue

through increased capability of FA uptake and TG synthe-

sis. The increase in adipocyte numbers, which is mainly

through adipocyte proliferation mediated by PPARc, but
not the enlargement of adipocyte size is the main strategy

of Nile tilapia responding to continuous HF diet feeding.

This is the first study illuminating the systemic adaptation

of lipid metabolism responding to a LF or HF diet in fish,

and could be a reference for other fish species.
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