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True seals (phocids) have achieved a global distribution by crossing the equator multiple times in their evolutionary history. This is

remarkable, as warm tropical waters are regarded as a barrier to marine mammal dispersal and—following Bergmann’s rule—may

have limited crossings to small-bodied species only. Here, we show that ancestral phocids weremedium sized and did not obviously

follow Bergmann’s rule. Instead, they ranged across a broad spectrum of environmental temperatures, without undergoing shifts

in temperature- or size-related evolutionary rates following dispersals across the equator. We conclude that the tropics have not

constrained phocid biogeography.
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The global distribution of true seals reflects their success as sec-

ondarily aquatic tetrapods. Since returning to the water, they

have evolved a wide range of body sizes (Churchill et al. 2015),

adapted to thermoregulation in aquatic environments (Liwanag

et al. 2012), and dispersed around the globe (Berta et al. 2015).

Their current range includes both polar regions and the tropics

(Berta et al. 2018; Fig. 1), resulting in conflicting hypotheses as

to whether they originated in a cold (Fulton and Strobeck 2010;

Davies 1958a,b) or warm environment (Repenning et al. 1979;

Deméré et al. 2003; Fyler et al. 2005; Mason et al. 2020).

Modern marine mammals are mostly cold adapted, with their

relatively large size and blubber insulation putting them at risk

of overheating in warm environments (Davies 1958a, 1963; Holt

et al. 2020). Consequently, they are thought to follow Bergmann’s

rule (Bergmann 1847), which postulates an inverse relationship

between body size and environmental temperature (Sepúlveda

et al. 2013; Torres-Romero et al. 2016; Adamczak et al. 2020).

If so, warm tropical waters should be home to relatively small

body forms only, whereas larger species might be expected to

show antitropical distributions (Holt et al. 2020).

True seals arose in the Northern Hemisphere (Fulton and

Strobeck 2010; Fig. 1). Their earliest (Miocene—Pliocene)

Southern Hemisphere representatives are notably small (Rule

et al. 2021a). This perhaps indicates restricted cross-equatorial

dispersal consistent with Bergmann’s rule, as the latitudinal ther-

mal gradient was present throughout the Neogene (Fig. 1c). Yet

phocids appear to have crossed the tropics several times during

their evolutionary history (Rule et al. 2020a; Fig. 1), in stark con-

trast to the single major southern dispersal of their otariid cousins,

the fur seals and sea lions (Yonezawa et al. 2009; Churchill
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TRUE SEALS BREAK BERGMANN’S RULE

Figure 1. Biogeography of crown Phocidae. (a) Phylogeny of extant true seals (Rule et al. 2021b) with geographic distributions. (b)

Dispersals for crown-phocids (modified from Rule et al. 2020a), with the tropics in light red and polar environments in light blue. (c)

Variation of Sea Surface Temperature by latitude through time (Herbert et al. 2016), demonstrating consistently high temperatures in the

tropics, and broader Sea Surface Temperatures across latitudes closer to the present.

et al. 2014). Here, we test phocid dispersal capabilities by test-

ing whether (i) equatorial crossings were accompanied by no-

table shifts in body size and/or environmental temperature, and

(ii) Bergmann’s rule truly applies to them.

Materials and Methods
We based our study on the phylogeny of Rule et al. (2020a,

2021b), excluding tips with no phenotypic and/or environmen-

tal data. Analyses were carried out in RStudio version 1.2.1335

(R Version 3.6.0) using the packages “ape,” “phytools,” “geiger,”

“ratematrix,” “nlme,” and “RRphylo” (Paradis et al. 2004; Revell

2012; Pennell et al. 2014; Caetano and Harmon 2017; Pinheiro

et al. 2017; Castiglione et al. 2018). Taxa resolved as ancestors

in the original tree were assigned artificial branch lengths of 0.01

million years to enable analyses to run.

Maximum and minimum total body lengths for each

specimen were taken from the literature (Stirling 1971; King

1983; Modig 1996; Andersen et al. 1999; Bininda-Emonds and

Gittleman 2000; Samaranch and Gonzalez 2000; Lindenfors

et al. 2002; Laws et al. 2003; Rogers 2009; Churchill et al. 2015;

Valenzuela-Toro et al. 2016; Dewaele et al. 2017; Rule et al.

2020b, 2021a; Tables A3, A4) or, where unavailable (for 12 out

of 17 extinct taxa), maximum total body length was estimated

following Rule et al. (2020b; Tables A1, A2). All length data

were then log10 transformed prior to analysis. For extant species,

we used the minimum, median, and maximum sea surface

temperature (SST) of their entire geographic range (IUCN Red

List) as a proxy for environmental temperature (Appendix). For

extinct taxa, median SST estimates aligning with the tip age and

geographic region of the fossils in question were taken from the

literature (Dowsett and Wiggs 1992; Barrick et al. 1993; Warne

2005; Amiot et al. 2008; Dowsett et al. 2012; Herbert et al. 2016).
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Table 1. Summary statistics on datasets analyses. TBL = log10 total body length, SST = sea surface temperature.

Dataset N Mean Median Minimum Maximum
Standard
Deviation

Maximum TBL
extant + extinct

36 2.31 2.29 1.83 2.75 0.17

Maximum TBL
minus ancestors

26 2.37 2.37 2.11 2.75 0.15

Maximum TBL
extant only

19 2.37 2.37 2.11 2.75 0.17

Minimum TBL
extant only

19 2.32 2.33 2.52 2.52 0.13

Median SST extant
+ extinct

32 13.60 14.40 4.00 27.00 7.01

Median SST minus
ancestors

26 12.32 12.00 4.00 27.00 7.02

Minimum SST
extant only

19 3.47 0.00 0.00 24.00 7.63

Median SST extant
only

19 10.37 7.50 4.00 27.00 7.12

Maximum SST
extant only

19 17.37 15.00 8.00 30.00 8.01

We used median SST (Tables A5, A6) to enable direct com-

parisons between extant and extinct phocids, and to account for

migratory movements meant to avoid seasonal extremes.

We examined the evolution of maximum total body length

and median sea surface temperature (Table 1) for (i) extant

species only, (ii) extant + extinct species minus ancestors (to

rule out the possibility of ultrashort branch lengths producing ar-

tificial shifts), and (iii) the complete phylogeny via “RRphylo”

(Castiglione et al. 2018, 2019a,b). For extant species only, we

also analyzed minimum total body length, and minimum and

maximum SST, to test the effects of extremes on the evo-

lutionary analyses. Ancestral states of both traits (log10 to-

tal body length and SST) were estimated for the extant and

complete datasets only. We tested for evolutionary rate shifts

using the auto-recognize feature of the search.shift function

(Castiglione et al. 2018). Finally, we used the function over-

fitRR to measure the uncertainty associated with our RRphylo

results.

We ran two sets of analyses to test for a possible relationship

between log10 total body length and sea surface temperature (i.e.,

Bergmann’s rule). First, we regressed maximum log10 total body

length against median SST via a linear regression and phyloge-

netic generalized least squares. Second, we tested for correlated

evolution via a Bayesian Markov chain Monte Carlo (MCMC)

analysis of evolutionary rate matrices, as implemented in the

package “ratematrix” (Caetano and Harmon 2017). We ran two

chains for 1,000,000 generations, sampling every 1000 genera-

tions and discarding the first 25% as burn-in. We checked the ac-

ceptance ratio for the two chain logs, and tested for convergence

between them. When convergence was achieved, we merged the

two MCMC chains and plotted the rate matrix to test for an evo-

lutionary correlation between the two traits.

Results
For the evolutionary rate shift analyses, including ancestors in

the phylogeny did not result in additional evolutionary shifts

(Tables 3, 4), and the results of the extant + extinct evolutionary

rate analyses were better supported than the extant only analy-

ses (Tables 2, A7; Fig. A1). Extant-only ancestral state estima-

tions suggest that archaic phocines were far smaller (1.97−2.12

m) than monachines (2.56−2.93 m), with their last common an-

cestor being 2.32−2.50 m (Fig. 2). Phocids as a whole appear

adapted to cold water (<12°C), with only monk seals being

tolerant of warmer environments (Fig. 3). Taking into account

fossil taxa reveals a more even pattern, with ancestral phocids,

phocines, and monachines all showing a similar range of body

lengths (1.64−2.25 m) and environmental temperatures (∼19°C)

(Fig. 4).

Both the extant (Fig. 2) and the extant + extinct (Fig. 4)

datasets show little variation in evolutionary rates for log10 to-

tal body length. Nevertheless, significant decreases in the rate

of body size evolution characterize Antarctic seals (lobodon-

tins) + elephant seals (ARD [Actual Rate Difference]: −0.008),

and monk seals (ARD: −0.006) in the extant-only datasets, and

stem phocids in the extant + extinct dataset (ARDs: −0.019 and

1262 EVOLUTION JUNE 2022



TRUE SEALS BREAK BERGMANN’S RULE

Table 2. OverfitRR results for the 95% confidence intervals of the root value obtained by the RRphylo analysis. TBL = log10 total body

length.

Dataset Root Value 2.5% CI 97.5% CI

Extant + extinct maximum TBL 2.35 2.35 2.36
Minus ancestors maximum TBL 2.36 2.36 2.36
Extant only minimum TBL 2.37 2.16 2.38
Extant only maximum TBL 2.4 2.2 2.42
Extant + extinct median SST 19.21 16.79 19.28
Minus ancestors median SST 14.18 14.62 14.81
Extant only Minimum SST 1.74 0.18 0.4
Extant only Median SST 7.15 5.21 25.8
Extant only maximum SST 12.58 10.12 27.62

Figure 2. Evolution of body size in extant true seals estimated by RRphylo analysis, using phylogeny fromRule et al. (2021b). (a) Ancestral

state estimation and (b) evolutionary rates for Log10 minimum total body length. (c) Ancestral state estimation and (d) evolutionary rates

for Log10 maximum total body length. Timescales in millions of years.

−0.022; Table 3). There was more variation in evolutionary rates

for sea surface temperature within the monachine clade than the

phocine clade (Figs. 3–4). The extant data furthermore suggest

rate decreases associated with a shift toward colder minimum

SSTs for Phocinae and colder maximum SSTs for Monachinae;

however, these significant evolutionary rate decreases disappear

when fossils are included (Table 4).

Neither the linear regression (P = 0.23) nor the PGLS (P

= 0.75) show any relationship between body length and environ-

mental temperature (Fig. 5; Tables A8, A9). For the evolutionary
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Figure 3. Evolution of sea surface temperature (SST) in extant true seals estimated by RRphylo analysis, using phylogeny from Rule

et al. (2021b). Ancestral state estimation (a) and evolutionary rates (b) for minimum SST. Ancestral state estimation (c) and evolutionary

rates (d) for median SST. Ancestral state estimation (e) and evolutionary rates (f) for maximum SST. Timescales in millions of years.

rate matrix analysis, convergence was achieved between the two

MCMC chains after 1,000,000 generations (Figs. A2–A6; Tables

A10, A11). The posterior distribution of the evolutionary rate

matrices (Figs. 6, A7) of the merged MCMC chains shows no

evolutionary correlation between log10 total body length and sea

surface temperature.

Discussion
EVOLUTION OF BODY SIZE AND SST IN TRUE SEALS

Previous studies disagreed on whether early phocids were small

(Churchill et al. 2015) or large (Wyss 1994). In isolation, our

extant phylogeny supports intermediate ancestral sizes (Fig. 2),

which is also supported when fossil taxa are taken into account
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Figure 4. Evolution of body size and SST in extant and extinct true seals estimated by RRphylo analysis, using phylogeny from Rule

et al. (2021b). Ancestral state estimation (a) and evolutionary rates (b) for log10 total body length. Ancestral state estimation (c) and

evolutionary rates (d) for median SST. Timescales in millions of years.

(Fig. 4). Both phocines and monachines waxed and waned in

size over time (Wyss 1994; Churchill et al. 2015; Valenzuela-

Toro et al. 2016; Dewaele et al. 2017; Rule et al. 2020b, 2021a),

and between them gave rise to both the smallest (0.68 m) and the

largest (>5 m) seals known to date. Our results suggest that these

extremes represent derived conditions.

Extant-only ancestral state estimations of SST (Fig. 3) sup-

port a cold-water origin of true seals (Davies 1958a,b; Fulton

and Strobeck 2010), as opposed to a more temperate range when

fossils are included (Fig. 4). The latter suggests separate origins

for the cold-water adaptations of phocines and Antarctic seals

(Repenning et al. 1979; Deméré et al. 2003; Fyler et al. 2005;

Mason et al. 2020), with pagophily likely arising in response to

Plio-Pleistocene cooling. Likewise, the tropical affinities of monk

seals appear to be a derived condition. Overall, the modern con-

trast between polar and tropical phocids appears relictual, and

largely reflects local extinctions of phocids at mid-latitudes dur-

ing the late Neogene (Avery and Klein 2011; Valenzuela-Toro

et al. 2013; Pimiento et al. 2017; Dewaele et al. 2018; Rule et al.

2019).
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Figure 5. Regression analyses for log total body length and median SST in extant and extinct true seals. (a) Linear regression of log10

total body length versus median SST (adjusted R2 = 0.017, P-value = 0.226). (b) Phylogenetic generalized least squares regression for

log10 total body length versus median SST (P-value = 0.753).

Table 3. Results of the search.shift analysis of log10 total body

length (TBL) in RRphylo. Only significant results are shown; for full

results, see Supporting Information. ARD = Average Rate Differ-

ence.

Extinct + Extant maximum TBL

Clade ARD P-value

D. emyri + D. claytoni + Kawas +
Motunau

–0.019 <0.01

D. claytoni + Kawas + Motunau –0.022 <0.01
Minus ancestors maximum TBL
Clade ARD P-value
Monachini –0.011 <0.01
Extant only maximum TBL
Clade ARD P-value
Lobodontini + Miroungini –0.008 <0.03
Extant only minimum TBL
Clade ARD P-value
Monachinae –0.006 <0.01

Trait evolution is best assessed based on phylogenies includ-

ing both extant and extinct taxa (Quental and Marshall 2010).

This is supported by our findings, with extant + extinct datasets

producing different, and more robust, results than those compris-

ing living species only. Previous studies focusing on extant pho-

cids likely underestimated their past ecological diversity (Davies

1958a,b; Fyler et al. 2005; Fulton and Strobeck 2010; Mason

et al. 2020), which in turn may have prevented a more widespread

extinction of the group during the late Neogene (Knope et al.

2020).

Table 4. Results of the search.shift analysis of sea surface tem-

perature (SST) in RRphylo. Only significant results are shown; for

full results, see Supporting Information. ARD = Average Rate Dif-

ference.

Minus ancestors median SST

Clade ARD P-value

Homiphoca + Hadrokirus +
Piscophoca + Acrophoca

–0.369 <0.02

Extant only maximum SST
Clade ARD P-value
Lobodontini –0.658 <0.01
Lobodontini + Mirounga –0.482 <0.03
Extant only minimum SST
Clade ARD P-value
Cystophora + Phocini –0.594 <0.01
Phocini –0.522 <0.01
Halichoerus + Phoca + Pusa –0.387 <0.01
Pusa –0.370 0.03

THERMAL BARRIERS TO DISPERSAL

True seals repeatedly crossed the tropics in the course of their

evolution (Rule et al. 2020a), even though they are thought to

hinder marine mammal dispersal (Davies 1963; Holt et al. 2020).

A warm-water equatorial barrier could explain the small size of

the oldest true seals from the Southern Hemisphere (Rule et al.

2020b, 2021a), but surprisingly is not evident in our evolutionary

rate shift analysis. Overall, equatorial crossings for true seals are

thus not obviously constrained by body size.

No shifts in SST were detected once extinct seals were taken

into account (Table 4). Therefore, phocids appear tolerant of a
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Figure 6. Posterior distribution of the evolutionary rate matrices for the merged MCMC chains. Histograms show the posterior distribu-

tion of evolutionary rate variance values for log10 total body length (TBL, top left) and sea surface temperature (SST, bottom right); and

pairwise evolutionary covariance values between log total body length and sea surface temperature (top right). Ellipses (bottom left) are

50 bivariate distributions randomly sampled from the posterior distribution. The vertical orientation of the ellipses demonstrates that

there is no evolutionary correlation between log10 total body length and sea surface temperature. The elongated shape of the ellipses

demonstrates that log10 total body length has faster evolutionary rates than sea surface temperature.

broad range of environmental temperatures, which plausibly en-

abled them to invade both the tropics and polar environments with

relative ease.

BERGMANN’S RULE

Bergmann’s rule is thought to restrict the body size of marine

mammals at lower latitudes (Torres-Romero et al. 2016; Adam-

czak et al. 2020), which may limit cross-equatorial dispersals.

The rule applies to fur seals and sea lions (Sepúlveda et al. 2013)

but seemingly not phocids, with our regressions and evolutionary

rate matrix analysis showing no relationship between total body

length and SST (Figs. 5, 6; Tables A8, A9). Body size evolution

in true seals was thus not obviously driven by temperature, and

instead may reflect nutrient availability and/or feeding ecology

(Dewaele et al. 2017, 2018; Rule et al. 2021a).

GLOBAL DISPERSAL OF TRUE SEALS

Unlike fur seals, sea lions, and walruses—all of which remained

restricted to the North Pacific for much of their evolution—true

seals have long enjoyed a global distribution (Berta et al. 2018;

Velez-Juarbe and Valenzuela-Toro 2019). Broad temperature

tolerances may help to explain this pattern, with true seals being

able to invade new environments relatively easily. By contrast,

fur seals and sea lions only crossed into the Southern Hemi-

sphere following Pliocene cooling and an attendant increase

in productivity along the equator (Churchill et al. 2014). The

same cooling event produced sea-level fluctuations that impacted

coastal habitats (with lowered sea levels eliminating shallow

coastal waters) and likely disrupted the global distribution of

phocids by driving their replacement with otariids at southern

temperate latitudes (Boessenecker 2013; Valenzuela-Toro et al.

2013; Govender 2015; Pimiento et al. 2017; Rule et al. 2019).

This idea is again consistent with our results, which suggest

that—contrary to earlier suggestions (Ray 1976)—changing

climates likely did not exceed the temperature tolerances of

phocids as such. This suggests that phocids will be affected by

physical oceanic and ecological changes from future climatic

change, rather than directly by changes in temperature.
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Appendix
Body Size Estimations

Table A1. Equations used for total body length estimations of extinct taxa.

Acronym Definition Equation Reference

BZB Bizygomatic width 1.03 × Log(#) + 1.10 Churchill et al. 2014
CW Width across canines 0.72 × Log(#) + 1.83 Churchill et al. 2014
HOC Height of occipital shield 1.30 × Log(#) + 1.28 Churchill et al. 2014
LB Length of tympanic bulla 0.75 × Log(#) + 1.91 Churchill et al. 2014
LUPC Length of upper postcanine toothrow 0.96 × Log(#) + 1.64 Churchill et al. 2014
LUTR Length of upper toothrow 1.00 × Log(#) + 1.50 Churchill et al. 2014
OCB Width across occipital condyles 1.54 × Log(#) + 1.02 Churchill et al. 2014
PL Palate length 0.96 × Log(#) + 1.32 Churchill et al. 2014
WB Width of tympanic bulla 1.08 × Log(#) + 1.58 Churchill et al. 2014
P. sibirica % estimate Humerus 8.12% total body length in

Pusa sibirica
# / 0.0812 Dewaele et al. 2017

P. vitulina % estimate Humerus 7.76% total body length in
Phoca vitulina

# / 0.077 6 Dewaele et al. 2017

O. rossii % estimate Humerus 5.95% total body length in
Ommatophoca rossii

# / 0.0595 Dewaele et al. 2017

L. weddellii % estimate Humerus 6.5% total body length in
Leptonychotes weddellii

# / 0.065 Dewaele et al. 2017
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Table A3. Average of estimates of total body length for extinct taxa taken from the literature, or calculated in this study.

Taxon

Body Length
(m) Averaged
Estimates Source and Method

Noriphoca gaudini 2.29 Churchill et al. (2015) (CW, PL, BZB, LUPC)
Devinophoca emyri 1.64 Churchill et al. (2015) (BZB, WB, LUPC, LB)
Devinophoca claytoni

†
1.68 Churchill et al. (2015) (BZB, WB, LUPC, CW, LB)

Kawas benegasorum † 1.63 Rule et al. (2020a)
CM ZFa333 Motunau † 1.64 Churchill et al. (2015) (LB, WB)
Leptophoca proxima † 2.09 Churchill et al. (2015) (All subsets)
Nanophoca

vitulinoides †
0.98 Dewaele et al. (2017) (Modified for this study using

Phocinae humeri percentages only)
Monotherium wymani

†
1.64 Churchill et al. (2015) (WB, LB)

Homiphoca capensis † 1.80 Churchill et al. (2015)
Piscophoca pacifica † 1.96 Churchill et al. (2015)
Acrophoca longirostris

†
1.91 Churchill et al. (2015)

Hadrokirus martini † 2.70 Churchill et al. (2015) (All subsets)
Australophoca

changorum †
0.68 Valenzuela-Toro et al. (2016)

Sarcodectes magnus † 2.83 Churchill et al. (2015) and Rule et al. (2020b) (LUTR,
LUPC, WB, LB) and Dewaele et al. (2017)
(Monachinae humeri percentages only)

Pliophoca etrusca † 1.69 Churchill et al. (2015) (CW) and Dewaele et al. (2017)
(Monachinae humeri percentages only)

NMV P160399
Beaumaris †

1.58 Churchill et al. (2015) (WB, LB)

Eomonachus
belegaerensis †

2.47 Churchill et al. (2015) (BZB, WB, LB, OCB, HOC,
LUPC, LUTR)
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Sea Surface Temperature data

Table A5. Sea Surface Temperature data for extant taxa from NOAA Earth System Research Laboratory database.

Taxon Winter SST Summer SST Median SST

Erignathus barbatus 0–2 8–10 5
Cystophora cristata 0–2 8–10 5
Histriophoca fasciata 0–2 12–14 7
Pagophilus groenlandicus 0–2 12–14 7
Phoca largha 0–2 26–28 14
Phoca vitulina 0–2 22–24 12
Halichoerus grypus 2–4 18–20 10
Pusa caspica 0–2 24–26 13
Pusa sibirica 0–2 15 7.5
Pusa hispida 0–2 12–14 7
Monachus monachus 14–16 26–28 21
Neomonachus

schauinslandi
22–24 28–29 25.5

Neomonachus tropicalis 24–26 29–30 27
Mirounga leonina 0–2 10–16 8
Mirounga angustirostris 4–6 18–20 12
Lobodon carcinophagus 0–2 6–8 4
Ommatophoca rossii 0–2 6–8 4
Hydrurga leptonyx 0–2 6–8 4
Leptonychotes weddellii 0–2 6–8 4
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Table A6. Sea surface temperature (SST) estimate from the area and locality of fossil taxa.

Taxon SST Data Reference

Monotherium wymani 14.7–24 (Median 19.35) Skeletal Oxygen Isotope Barrick et al.
(1993)

Leptophoca proxima 14.7–24 (Median 19.35) Skeletal Oxygen Isotope Barrick et al.
(1993)

Australophoca changorum 15.2 Skeletal Oxygen Isotope Amiot et al. (2008)
Hadrokirus martini 14.8 Skeletal Oxygen Isotope Amiot et al. (2008)
Acrophoca longirostris 14.8 Skeletal Oxygen Isotope Amiot et al. (2008)
Piscophoca pacifica 14.8 Skeletal Oxygen Isotope Amiot et al. (2008)
Sarcodectes magnus 21.5 Biostratigraphy Dowsett and Wiggs

(1992), Dowsett
et al. (2012)

Beaumaris 15–20 (Median 17.5) Biostratigraphy Warne 2005
Eomonachus belegaerensis 17.6 Biostratigraphy Dowsett et al.

(2012)
Motunau 17.68 Isotope (oxygen and

carbon)
Herbert et al.

(2016)
Waipunga 19.06 Isotope (oxygen and

carbon)
Herbert et al.

(2016)
Pliophoca etrusca 25.76 Isotope (oxygen and

carbon)
Herbert et al.

(2016)
Homiphoca capensis 20.79 Isotope (oxygen and

carbon)
Herbert et al.

(2016)
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RRphylo Results

Table A7. OverfitRR analysis of search.shift results, with 100 ancestral state estimation regression simulations. For each clade, values

for p.shift+ and p.shift– are the percentage of simulations that obtained statistically significant (P-value < 0.05) positive or negative

evolutionary rate shifts. “All clades” reports results assuming all nodes evolved under a single rate.

Phylogeny Clade p.shift+ p.shift–

Extant + extinct
maximum TBL

All clades 0.4 0

43 0.4 0.1
44 0.4 0.1
45 0.4 0.1
46 0.4 0.1
47 0.4 0
49 0.4 0
57 0.4 0
61 0.4 0
62 0.4 0
67 0.5 0

Minus ancestor
maximum TBL

All clades 0.13 0

35 0.77 0
44 0 0.92

Extant only
minimum TBL

All clades 0.04 0

27 0.61 0
30 0 0.23

Extant only
maximum TBL

27 0.85 0

Extant + extinct
median SST

All clades 0.89 0

52 0.97 0
43 0.18 0.01

Minus ancestors
median SST

All clades 0.57 0

35 0.1 0.01
39 0 0
42 1 0

Extant only
minimum SST

All clades 0.01 0.12

22 0 0.92
31 0.76 0

Extant only median
SST

All clades 0.74 0

28 0.53 0.01
31 0.6 0

Extant only
maximum SST

All clades 0.12 0.02

28 0.62 0
35 0 0.69
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Figure A1. Clade numbers for overfitRR analysis of all datasets in Table A7.
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Regression Results

Table A8. Linear regression of log total body length and sea surface temperature tolerance for Phocidae. DF = degrees of freedom.

Extant + Extinct Extant Only

TBL ∼ SST Lrg TBL ∼
Max SST

Lrg TBL ∼
Med SST

Lrg TBL ∼
Min SST

Sml TBL ∼
Max SST

Sml TBL ∼
Med SST

Sml TBL ∼
Min SST

Min –0.49 –0.27 –0.27 –0.26 –0.23 –0.22 –0.21
Q1 –0.10 –0.12 –0.14 –0.13 –0.09 –0.11 –0.10
Median –0.02 –0.001 0.03 –0.03 0.33 0.03 –0.03
Q3 0.11 0.08 0.09 0.09 0.10 0.11 0.10
Max 0.39 0.36 0.36 0.38 0.17 0.20 0.21
Intercept 2.41 2.47 2.4 2.37 2.40 2.33 2.31
Slope –0.01 –0.006 –0.003 0.002 –0.005 –0.001 0.003
Standard Error 0.01 0.005 0.006 0.006 0.004 0.004 0.004
T-value –1.24 –1.13 –0.47 0.27 –1.29 –0.27 0.77
P-value 0.23 0.28 0.65 0.79 0.22 0.79 0.45
Residual standard

error
0.17, 29 DF 0.17, 17 DF 0.18, 17 DF 0.18, 17 DF 0.13, 17 DF 0.13, 17 DF 0.13

Multiple R2 0.05 0.07 0.01 0.004 0.09 0.004 0.03
Adjusted R2 0.02 0.02 –0.05 –0.05 0.04 –0.05 –0.02
F-statistic 1.53, 1, and 29

DF
1.27, 1, and

17 DF
0.22, 1, and

17 DF
0.07, 1, and

17 DF
1.65, 1, and

17 DF
0.07, 1, and

17 DF
0.59, 1, and

17 DF
P-value 0.23 0.28 0.65 0.79 0.22 0.79 0.45
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Table A9. Phylogenetic generalised least squares regression of log total body length and sea surface temperature tolerance for Phocidae.

Extant +
Extinct

Extant Only

TBL ∼ SST Lrg TBL ∼
Max SST

Lrg TBL ∼
Med SST

Lrg TBL ∼
Min SST

Sml TBL ∼
Max SST

Sml TBL ∼
Med SST

Sml TBL ∼
Min SST

AIC –22.43 –25.97 –26.54 –26.71 –40.04 –40.16 –39.94
BIC –18.13 –23.14 –23.71 –23.88 –37.21 –37.33 –37.10
Log likelihood 14.21 15.99 16.27 16.36 23.02 23.08 22.97
Min –2.24 –1.88 –1.98 –2.06 –2.34 –2.39 –2.36
Q1 –0.63 –1.06 –1.12 –1.28 –1.22 –1.28 –1.38
Median –0.22 –0.17 –0.13 –0.14 –0.10 0.02 –0.09
Q3 0.20 0.28 0.31 0.34 0.62 0.59 0.62
Max 1.46 2.08 2.05 1.97 1.42 1.39 1.46
Intercept 2.41 2.43 2.46 2.44 2.37 2.37 2.36
Slope –0.002 –0.001 –0.004 –0.005 –0.001 –0.002 –0.001
Standard error 0.006 0.004 0.005 0.005 0.003 0.004 0.004
T-value –0.32 –0.32 –0.79 –0.88 –0.37 –0.50 –0.21
P-value 0.75 0.75 0.44 0.39 0.71 0.63 0.84
Residual

standard
error

0.24 0.16 0.16 0.16 0.11 0.11 0.11

Degrees of
freedom

31 total, 29
residual

19 total, 17
residual

19 total, 17
residual

19 total, 17
residual

19 total, 17
residual

19 total, 17
residual

19 total, 17
residual

1280 EVOLUTION JUNE 2022



TRUE SEALS BREAK BERGMANN’S RULE

Ratematrix Results

Table A10. Evolutionary rate matrix for extant + extinct taxa using the package ratematrix. TBL = total body length, SST = sea surface

temperature.

TBL SST

TBL 0.008157 0.019207
SST 0.019207 4.289097

Figure A2. Log-likelihood trace plot and acceptance ratio of first evolutionary rate matrix MCMC chain. MCMC chain ran for 1 million

generations, with the first 25% discarded as burnin and sampling every 1000 generations. Acceptance ratio for the MCMC chain was

∼0.41 (correlation = 0.62; standard deviation = 0.15; root = 0.93).
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Figure A3. The prior distribution of the first evolutionary rate matrix MCMC chain.
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Figure A4. Log-likelihood trace plot and acceptance ratio of the second evolutionary rate matrix MCMC chain. MCMC chain ran for 1

million generations, with the first 25% discarded as burnin and sampling every 1000 generations. Acceptance ratio for the MCMC chain

was ∼0.41 (correlation = 0.62; standard deviation = 0.15; root = 0.93).
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Figure A5. The prior distribution of the second evolutionary rate matrix MCMC chain.
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Figure A6. Histogram of the posterior distribution of evolutionary correlation among log total body length and sea surface temperature,

extracted from the two merged MCMC chains. Minimum = −0.68; 1st quartile = −0.03; Median = 0.09; Mean = 0.09; 3rd quartile = 0.21;

Maximum = 0.79.

Figure A7. Posterior distribution of root values for log total body length (TBL) and sea surface temperature (SST) sampled from the

merged MCMC chains.
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Table A11. Gleman’s R convergence check between the two ratematrix MCMC chains, with potential scale reduction factors for the root

values and evolutionary rate matrices, and effective sample size.

Point Estimate Upper Confidence Interval Effective Sample Size

TBL root 1.00 1.00 251.54
SST root 1.01 1.03 302.44
Matrix TBL-TBL 1.00 1.00 57,230.45
Matrix TBL-SST 1.00 1.00 44,030.33
Matrix SST-TBL 1.00 1.00 44,030.33
Matrix SST-SST 1.00 1.00 61,000.78

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.
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