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Abstract
Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity

and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hyperten-

sive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We

hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in

hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive

patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following

stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in

our patients with hypertension related LVH. Preliminary findings from Gene Ontology and

pathway analysis of this study confirmed the involvement of the genes known to be function-

ally involved in cardiac development and phenotypes, in line with previously reported tran-

scriptomic studies. Network enrichment analyses suggested that the gene-set was, directly

or indirectly, involved in the transcription factors regulating the “foetal cardiac gene pro-

gramme” which triggered the hypertrophic cascade, confirming previous reports. These

findings suggest that multiple, individually rare copy number variants altering genes may

contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided

further supporting evidence that rare CNV could potentially impact this common and com-

plex disease susceptibility with lower heritability.
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Introduction
Cardiovascular diseases remain the most significant cause of mortality globally, in high- and
middle- or low-income countries [1]. Hypertension is the main driver for this epidemiologic
reality [2,3]. Left ventricular hypertrophy (LVH) is a common outcome of hypertension, espe-
cially when uncontrolled whereby the LV wall thickens and/or LV mass increases in response
to the biomechanical stress rendered by the elevated blood pressure, which is initially compen-
satory to the wall stress [4–6]. Hypertension related LVH is a complex, multifactorial and poly-
genic pathophysiologic condition. Almost a third of hypertensive patients develop LVH, [7],
despite controlled with anti-hypertensive medications in more than half of them [8]. Thus
while elevated blood pressure may explain the development of LVH, there may be other con-
tributory factors. Hereditary may contribute up to 60% of this risk for developing LVH [9,10]

Although LVH can be reversed by pharmacological control of blood pressure such as losar-
tan, identifying those at risk of developing LVHmay have significant impact on the prognosis
of patients with hypertension by providing a means of prevention of its development. Hence
identifying the causative genes and / or the core biological pathway(s) leading to pathogenesis
of LVH in hypertension is crucial in addressing such question.

At present, the fundamental hypothesis for genetic influence on complex diseases predomi-
nantly lies on the “common disease–common variant (CD-CV)”model [11,12] in which a dis-
ease trait is caused by a combination of common alleles (defined as� 5% in a population),
each contributing modest additive effects. Although several GenomeWide Association (GWA)
studies have been conducted, only a handful of SNPs associated with left ventricular hypertro-
phy (LVH) have been identified [13,14] (https://www.genome.gov/). A number of genes
known to play a role in the susceptibility of hypertension related-LVH such as angiotensin con-
verting enzyme have not been able to be detected [15–17]. While another major candidate gene
calcineurin has recently been reported in animal model [18], but it was not found in GWA
studies for human. Recently an alternative hypothesis has been proposed to explain the failure
to detect associations, namely the “missing heritability”, [11] where rarer variants are believed
to carry a relatively larger effect on complex disease susceptibility. In an attempt to map the
susceptible genes of hypertensive LVH, we adopted an alternative approach, with a postulation
that some variants predisposing to hypertension related LVH are highly penetrant, individually
rare or population specific, and of recent origin, even specific to single case [19,20].

Materials and Methods

Sample recruitment
A total of 116 blood samples of the hypertensive subjects were recruited from the PURE (Pro-
spective Urban-Rural Epidemiologic) / REDISCOVER (REsponDing to IncreaSing CardiO-
Vascular disEase pRevalence) Study from 2007 to 2010 carried out in Malaysia [21]. We
defined the control group as those hypertensive patients without LVH; while cases were
defined as those hypertensive patients with LVH. The following inclusion criteria were used for
sample recruitment:

1. 30–60 years of age

2. Hypertension defined as systolic blood pressure�140 mmHg and/or diastolic blood pres-
sure�90 mmHg

The exclusion criteria of the study were:

1. Prescribed anti-hypertensive drugs at the time of enrolment
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2. Smoker

3. Alcohol drinkers

4. Diabetes

Echocardiography
Echocardiographic measurements were made using the Echo Pac in the Non Invasive Cardiac
Lab, Universiti Teknologi MARA, Faculty of Medicine Selayang Campus. Doppler, two-dimen-
sional (2D), and M-mode (2D-guided, in the parasternal short axis view) echocardiograms
were performed using a standard protocol. Measurements were made using a computerized
review station equipped with a digitizing tablet and monitor overlay for calibration and
quantification.

Transthorasic echocardiogram criteria for LVmass index used the formula: LVmass index =
(0.8 (1:04 ([LVIDD PWTD IVSTD] 3—[LVIDD] 3) (0.6g / Height2) (Devereux Criteria), where:

LVIDD = Left ventricular internal dimension in diastole

PWTD = Posterior wall thickness at end in diastole

IVSTD = Interventricular septal thickness at end-diastole

Subjects were diagnosed as LVH when Left Ventricular Mass Index (LVMI) exceeded 110 g/
m2 in women and 125 g/m2 in men.

All subjects provided written informed consent. Ethics approval was obtained from ethics
committees of the Universiti Teknologi MARA (UiTM)[REC/UITM/2007(10)].

Microarray analysis
Genomic DNA was extracted either from whole, or clotted blood using commercially available
kit. Genotyping was carried out with the Illumina Human 660W-Quad Beadchip (San Diego,
SA, USA). Briefly, 500 ng of genomic DNA was denatured overnight, and enzymatically frag-
mented, precipitated with isopropanol, centrifuged at 4°C, and resuspended in hybridization
buffer. All beadchips were prepared for hybridization in a capillary flow-through chamber.
Samples were loaded to beadchips and incubated overnight in the Illumina Hybridization
Oven. Unhybridized or non-specific products were washed, and beadchips were preceded with
staining and extension. The beadchips were scanned on the Illumina Beadarray Reader using
default settings, and intra-chip normalization was performed using Illumina Genome Studio
with a GenCall cut-off point 0.1 and call rare cut-off of 99%. Built-in controls–both sample
dependent and sample independent, were inspected to assess the quality of the experiment.

CNV detection, quality control and analysis of rare CNV
The Log R ratio (LRR) and B allele frequencies (BAF) were first exported from Genome Studio
(Illumina). The Illumina cluster file comprising>120 HapMap samples was used as reference
to generate intensities and genotypes. Stringent criteria of quality control were applied to the
array [22–24]. Samples were excluded if: (i) genotype call rate of<99%; (ii) LRR values with a
standard deviation above 0.35; (iii) standard deviation for B allele frequencies of>0.13; (iv)
cross samples batch normalized ratio standard deviation>0.27.

Samples passing QC were carried out for further analysis. CNVs were called using three
independent algorithms: CNV partition v2.3.4 (Genome Studio, Illumina), PennCNV (Wang
et al., 2007) and iPattern (The Centre for Applied Genomics, Toronto). The application of
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multiple algorithms minimizes the number of potential false positive discoveries; and thus
increases the chance of obtaining more high confidence calls [24].

CNV analyses were performed using the original array coordinates based on Human
Genome Assembly NCBI (Build hg18). We applied stringent filtering criteria in CNV analysis
by excluding CNVs calls with: (i) less than five consecutive probes; (ii) located in regions with
high GC content (>70%); (iii) approximately 30 kb adjacent to the centromere or telomeres;
(iv) size less than 1 Kb; (iv) sex chromosomes; and (v) called by only one out of the three
algorithms.

In addition, manual visual inspection was used to exclude potential false positives (typically
>1 Mb) due to unknown artefacts. We excluded samples outliers with respect to executive
aggregate length of CNVs.

CNVs that passed all QCs were considered rare or novel if they: (i) did not overlap with any
known copy number polymorphism (frequency>1%); (ii) had<50% reciprocal overlap (by
length) with CNVs reported in Database for Genomic Variants (DGV), whereby the ‘case’
CNV overlapped with at least 50% of the control CNV and the conversely, the control CNV
overlapped with at least 50% of the case CNV [23]; (iii) occurred as singleton in the 116 sam-
ples genotyped in this study. In other word, this means the rare CNVs in this study are
uniquely identified for both length and locus, via the comparison to known variants with less
than 50% overlap. Recurrent CNVs specific to case group in this study were also identified.

The rare and/or recurrent CNVs specific to the case group identified in this study were fur-
ther assessed by comparing to control sample datasets from HapMap3 and subsequently from
Singapore Genome Variation Project (SGVP, http://www.statgen.nus.edu.sg/~SGVP/) as the
population matched controls. CNVs in cases with>50% reciprocal overlap to these control
datasets were excluded. We limited our rare CNVs cut-off size of>1 kb, instead of>30 kb sug-
gested by most authors [19,20,24].

Replication study
We replicated the study on additional 143 samples, consisting 51 case and 92 controls. CNV
typing was carried out using Illumina OmniExpress (San Diego, SA, USA), comprising
>750,000 SNV probes according to the manufacturer’s protocols. Criteria for CNV calls were
as mentioned above. The CNVs were called using PennCNV, QuantiSNP [25] and iPattern.

Pathway analysis
Gene Ontology (GO) analysis was carried out using, the DAVID (Database for Annotation,
Visualization and Integrated Discovery, version 6.7) (david.abcc.ncifcrf.gov), Ingenuity (http://
www.ingenuity.com/) and GeneGOMetacore (https://portal.genego.com/). An interaction net-
work was generated on the”case-specific” genes, using MetaCore (GeneGo).

qPCR Validation
Candidate genes of interest harbouring the rare CNVs were validated by quantitative Real-
Time PCR (qPCR) SyBr Green assay. Primers were designed using Primer3 (http://frodo.wi.
mit.edu/primer3/) and checked with UCSC Genome Browser. Detailed information of the
primer designed is shown in S1 Table. Normalization to the control gene Forkhead Box P2
(FOXP2) (primers: 5'-TGACATGCCAGCTTATCTGTTT-3' and 5'-GAGAAAAGCAATTTT
CACAGTCC-3') was used to give an estimate of copy number.
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Results

Clinical demographic data
Table 1 shows the clinical and phenotypic data of the recruited subjects in the stage 1 study.
Forty-four subjects were diagnosed as hypertension with LVH (denoted herein as case), while 72
were hypertension without LVH (denoted herein as control). There was no significant difference
between the case and control groups with regards to ethnicity, age, systolic and diastolic blood
pressure. As expected, significant differences were observed between case and control groups
with regards to LVmass, IVSD and LVMI, indicating well characterized samples between cases
and controls. BMI showed a significant difference between the case and controls, as expected.
Males are significantly higher in case group than the females in our study cohort. This is in line
with the previous studies, suggesting gender differences in the pathogenesis of LVH [26].

Characterization of CNVs
Fig 1 describes the experimental workflow for identification of CNV specific to subjects hyper-
tension related LVH. Of the 116 hypertensive subjects studied, 29,472, 33,473 and 33,203
CNVs were called by CNVPartition, PennCNV, and iPattern, respectively (Table 2). A total of
22,337 CNVs were successfully merged with at least two algorithms (referred as “stringent
calls”), corresponding to an average of 202.9 CNVs per genome, with a median size of 3,893 bp
(average size 19,428 bp) (Table 2). The number of CNVs per genome was relatively higher
than previous reports [22,27,28] but in line with Pinto et al. (2011) which reported an average
of 240 calls genome for the Illumina 660W platform. This could be due to several reasons: (i)
different platforms utilized for CNV detection and its resolution; ii) levels of QC stringency
applied during CNV call; iii) the algorithms applied when performing CNV call; [29]. Of par-
ticular note, the Illumina 660W is a platform seeded with probes to allow detection for com-
mon CNVs, thus expected to have higher sensitivity. A total of 1,973 CNVs unique to our

Table 1. Description of the study population.

Case Control Total P-value

N 44 72 116

Ethnicity

Malay 39 59 113 0.579

Chinese 3 7

Indian 1 4

Gender

Male 37 48 115 0.028*

Female 6 24

Age (years) 53.79 52.76 0.398

BMI (kg/m2) 28.12 26.22 0.040*

Systolic blood pressure (mmHg) 155.58 149.88 0.168

Diastolic blood pressure (mmHg) 93.16 94.53 0.846

LV mass (g) 239.17 162.07 <0.001*

IVSD 1.25 0.92 <0.001*

LVMI 143.89 92.71 <0.001

Abbreviations: BMI, body mass index; LV, left ventricular; IVSD, interventricular septum diastolic; LVMI, left ventricular mass index. Case, hypertension

with LVH; control, hypertension without LVH.

* significantly different at P < 0.05

doi:10.1371/journal.pone.0148755.t001
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Fig 1. Experimental workflow describes the procedure for identifying CNV in subjects with
hypertension related LVH.

doi:10.1371/journal.pone.0148755.g001

Rare CNV of Hypertension LVH

PLOSONE | DOI:10.1371/journal.pone.0148755 March 1, 2016 6 / 19



study subjects remained after applying the QC filtering steps by excluding known polymorphic
CNVs (copy number polymorphism, CNP), calls adjacent to telomere and centromere regions,
and those reported in DGV and SGVP. The pre-defined criterion of 50% reciprocal overlapped
was applied, whereby a CNV that was at least 50% unique by length when compared to every
CNV in the control datasets was taken as putative novel [23]. This included 851 CNVs in cases
(74 gain, 777 loss) and 1,122 in controls (162 gain, 960 loss). The length distribution of the
CNVs observed is shown in Fig 2.

Table 2. General characteristics of CNV among the 116 genomes of hypertension subjects from Peninsular Malaysia.

CNVpartition PennCNV iPattern Merged*

Total CNV count:

Gain 1,687 10,134 10,152 1,917

Loss 27,785 23,339 23,051 21,420

Total 29,472 33,473 33,203 23,337

Average number per genome:

Gain 14.7 88.1 88.3 16.7

Loss 241.6 202.9 200.4 186.3

Total 256.3 291.1 288.7 202.9

Size (bp):

Min 1,001 1,000 1,000 1,004

Max 3,908,024 935,550 1,015,980 1,015,981

Abbreviations: CNV, copy number variant; bp, base pair.

* Merged: stringent CNV calls by at least 2 out of 3 algorithms applied

doi:10.1371/journal.pone.0148755.t002

Fig 2. Histogram displaying the length distribution (in percentage) of the CNVs calls.

doi:10.1371/journal.pone.0148755.g002
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qPCR was performed as an independent technical validation. FOXP2 was used as the refer-
ence gene. Results of the qPCR validation are shown in S1 Table. Seven out of 9 (77%) of the
loci validated were positive calls. Candidate genes underlying these CNVs were excluded in the
subsequent pathway analysis.

Case- and control-specific CNV
We further identified from the dataset, 208 CNVs specific to cases (35 gains; 173 losses) and
283 specific to controls (75 gains; 208 losses), which corresponded to an average of 4.72 and
3.93 CNV per genome in case and control groups, respectively. The overall CNV length distri-
bution between case and control was similar between the cases and controls (average length
50,152.94 bp vs 53,194.88 bp) (P = 0.163) suggesting that CNV length may have minimal
impact to LVH development. Recurrent CNVs for gene LOC348021, was observed in 3 cases;
while CDH15 and KCNIP4 were observed in 2 cases, respectively (Fig 3, S2 Table). We per-
formed targeted dosage analysis with qPCR for these candidate genes in additional 36 cases
recruited from the same cohort, but no CNVs were detected.

Gene Ontology and Pathway Analysis
Gene ontology and pathway analyses were then performed on the genes specific to case using 3
approaches.

DAVID pathway analysis
We first performed analysis with DAVID. It is a publicly available threshold-based ontology
analysis, which provides extensive option for interrogation of approximately 40 databases
including KEGG, Interpro etc [30]. Results presented by DAVID are based upon the use of
functional annotation clustering and the top five single terms among clusters will be reported.

Forty two case-specific genes were found involve in “ion binding” (GO:0043167)
(P = 0.029); whereas “translational initiation” (GO:006413) (P = 0.003) and “translational fac-
tor activity / nucleic acid biding” (GO:0008135) (P = 0.037) were presented as the most signifi-
cant GO processes (S3 Table).

Ingenuity Pathway Analysis (IPA)
IPA is a JAVA based commercialized web-based system. Its annotations of genes and pathways
are based on its own database built on the findings from various literatures and publicly avail-
able databases including GO and Entrez Gene. Enrichment analyses of IPA are carried out
using the right-tailed Fisher’s exact test and Benjamini-Hochberg multiple testing corrections
[30].

The “case-specific” genes identified in this study were enriched in diseases involved in
inflammatory response (P = 3.43E-04), cancer (P = 2.87E-03), respiratory disease (P = 2.87E-
03) connective tissue disorder (P = 5.56E-03) and skeletal and muscular disorders (P = 5.56E-
03) (S4 Table). Functional enrichment analyses of IPA revealed top two most significant
enriched genes in cell-to-cell signalling interaction (P = 3.43E-04–4.65E-02), and tissue devel-
opment (P = 1.04E-04–4.91E-02) (S3 Table). Network analysis revealed UBC signalling as the
major interacting network (Fig 4).

GeneGOMetaCore analysis
GeneGOMetacore pathway analysis is a commercial web-delivered application based on
unique, cur-rated database from Thompson Reuters containing approximately 20 validated
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functional ontologies that can be used for filtering and enrichment, as well as interactive
canonical pathways capturing ~200,000 pathways.

Metacore analysis identified 69 genes most significantly involved in heart development
(P = 1.47E-57); whereas another two most relevant tissue groups involved were skeletal muscle
(67 genes; P = 1.64E-52), and smooth muscle (66 genes; P = 7.72E-52). The GO process were
most significant with: “regulation of purine nucleotide metabolic process” (P = 1.28E-06), “reg-
ulation of neuron migration” (P = 5.00E-06), “intracellular signal transduction” (P = 1.22E-
05), “negative regulation of renin secretion into blood stream” (P = 4.03E-05), and “hydrogen
peroxide catabolic process” (P = 4.35E-05).

We then predicted the most probable networks that may involve in LVH pathogenesis by
pooling the 3 most enriched pathways fromMetacore canonical network analysis. It was found

Fig 3. UCSCGenome browser view of rare CNV in the regions (A) KCNIP4; (B) F2R, as designated by black bar. Figures produced with custom tracks
listing CNV calls and uploaded to http://genome.ucsc.edu. The hypertensive LVH cases are designated as black bars.

doi:10.1371/journal.pone.0148755.g003
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that the gene-set was, directly or indirectly related to the transcription factors Sp1, p53 and
CREB1, and androgen receptor signalling cascades (Fig 5).

Replication
The subsequent replication with an independent group of samples was carried out using Illu-
mina Omni Express SNP microarray, and the CNV was called using the stringent criteria pipe-
line is as described above, except that the CNVpartition was replaced by QuantiSNP, owing to
its sensitivity in identifying CNVs from this platform (only a total of 829 CNVs were identified
using CNVpartition from Genome Studio).

Rare CNVs were detected in 128 out of the 148 subjected included in the replication study.
An average of 11 CNVs per genome were identified, ranging from 2 to 27 CNVs per genome
(Table 3). The lower number of CNV detected in the replication stage is expected, since Omni
Express was not designed for the detection of CNV, unlike the 660W which was a hybrid plat-
form (i.e. seeded with probes for common CNV detection), thus lower power in CNV detec-
tion. A total of 303 CNVs unique to our study subjects remained after applying the QC
filtering steps as mentioned in the methodology. These included 111 CNVs specific in cases
(55 gain, 56 loss; 2.52 CNVs per genome) and 113 control specific CNVs (80 gain, 112 loss;
1.35 CNVs per genome) (P = 0.1895) (S6 Table). qPCR validation on 5 randomly selected
CNVs identified in this replication stage revealed 100% positive calls (S1 Table).

Fig 4. Network analyses of rare CNVs in the cases from stage-1 analysis. Network was generated by Ingenuity Pathway Analysis by merging up the top
canonical pathways with default settings. Network analysis revealed UBC signalling as the major interacting network.

doi:10.1371/journal.pone.0148755.g004
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Notably, SUMF1, F2R and IQGAP2 (found in the case group) and ACSF3 (found in the con-
trol group) identified in the initial study were replicated in the replication cohort, suggesting
potential role of these genes in pathophysiology of hypertension related LVH.

Fig 5. Network analyses of rare CNVs in cases from stage-1 analysis.Network was generated by GeneGoMetacore pathway analysis programme by
merging the top canonical pathways with default settings.

doi:10.1371/journal.pone.0148755.g005

Table 3. General characteristics of CNV among the 128 genomes of hypertension subjects from Peninsular Malaysia in the replication study.

QuantiSNP PennCNV iPattern Merged*

Total CNV count:

Gain 1,223 906 3,906 644

Loss 1,253 4,304 6,015 794

Total 2,476 5,210 9,920 1,438

Average number per genome:

Gain 9.6 7.1 30.5 5.0

Loss 9.8 33.6 47.0 6.2

Total 19.3 40.7 77.5 11.2

Size (bp):

Min 1,031 1,030 1,058 1,038

Max 2,388,965 1,740,417 2,410,163 1,740,417

Abbreviations: CNV, copy number variant; bp, base pair.

* Merged: stringent CNV calls by at least 2 out of 3 algorithms applied

doi:10.1371/journal.pone.0148755.t003
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Gene Ontology and pathway enrichment analyses were carried out using DAVID and IPA.
This analysis was carried out in 2 stages: (i) we first assessed the gene list revealed from the rep-
lication cohort; (ii) subsequently the gene list was combined from the “Illumina 660W” cohort
and the “Illumina Omni Express” replication cohort (S7 Table). DAVID pathway analysis
revealed the “case-specific” genes significantly enriched in EGF signalling (IPR:013111)
(P = 0.0179); and “activation of protein kinase activity (GO:0032147)” (P = 0.0064). When the
two stages were combined, EGF-like domain (IPR:006210) (P = 1.36E-03) remained the most
significant enrichment; whilst the category “ion-binding” (GO:0043167) comprised the most
number of genes (P = 0.040; 53 genes).

IPA analyses revealed significant enrichment in diseases related to infectious diseases
(P = 7.73E-07–4.77E-02) and respiratory diseases (P = 7.73E-02–4.10E-02), suggesting disease
mechanism may be related to immune inflammatory response, in line with the finding during
the earlier stage (S4 Table). Interestingly, the most significant enrichment on physiological sys-
tem development and function was “cardiovascular system development and function”
(P = 7.48E-04–3.77E-02) (S7 Table). When merging the top 3 networks from IPA, Ubiquitin C
(UBC) related signalling appeared to be the major network (Fig 6), and remained as the major
interacting network analysis when gene lists from both stages were combined (Fig 5).

We note that some of the genes observed might not have any direct functional involvement
with LVH or hypertension. However, collective findings from this study was connected though
via biological interactions with numerous genes, many of which are known to be functionally
involved in cardiac phenotypes in “foetal gene programmes” [31–33].

To ensure that the pathways and ontologies identified are unique in case, we performed a
pathway analysis on the candidate genes identified in the control groups using DAVID. Appar-
ently none of the pathways or ontologies identified were similar to the case groups (S9 Table).

Discussion
In this study we applied an alternative approach for discovery of candidate genes involved in
hypertension related-LVH. To our knowledge, this is the first report to evaluate the impact of
rare CNVs on hypertension related-LVH conducted in the Southeast Asia population. We
have provided further supporting evidence to show that rare CNVmay have impact on com-
mon and complex disease susceptibility [22,27,34]. In addition our results also supported the
previously reported signalling pathways for the development of LVH in the hypertensive sub-
jects [5,31,35].

Several candidate genes were of interest and postulated to play a role in the LVH develop-
ment. The coagulation factor II, F2R, is a G-protein coupled receptor family member (Fig 3, S2
Table). This gene was thought to function as a transmembrane receptor involved in the regula-
tion of thrombotic response (http://www.ncbi.nlm.nih.gov/gene/2149), and may play a role in
platelet activation and vascular development. Studies found that F2R interacts with IL-6 in the
susceptibility of myocardial infarction [36,37], and coronary heart disease in hypertensive
patients [38]. However its role in the inflammatory mechanism of cardiac hypertrophy is not
well understood. IQGAP2, a neighbouring gene of F2R, binds with CALM1 [39] and it regu-
lates cell morphology and motility via interactions with components of cytoskeleton, cell adhe-
sion and several other signalling molecules (http://www.ncbi.nlm.nih.gov/gene/10788), hence
believed to be involved in the process of cardiac development. A recent study on whole genome
exome sequencing reported a mutation of IQGAP2 that caused LVH (Zhi et al., 2012). Both
F2R and IQGAP2 were found recurrent in our replication cohort. KCNIP4, a member of the
voltage-gated potassium (Kv) channel-interacting protein family, has been reported to be asso-
ciated with ischemic heart disease [40]. It was found to be associated with LVMI amongst the
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Fig 6. Network analyses of rare CNVs in cases. Network was generated by Ingenuity Pathway Analysis by merging up the top canonical pathways with
default settings. Network analysis revealed UBC signalling as the major interacting network.

doi:10.1371/journal.pone.0148755.g006
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isolated Amish cohort in a genome-wide association study, though the signal was not significant
in subsequent replication study [41]. KCNIP4 is essential to the low repetitive firing and back
propagation of action potential in neurons and shapes the action potential in the heart [42].

We observed several recurrent case specific CNVs, and attempted to further replicate these
CNVs with additional 36 independent samples with qPCR on top of the 148 samples replicated
with Illumina Omni Express. None of these samples however, were copy number variable, thus
suggesting that these case-specific CNVs may be at a very low frequency. This postulation is
indeed reasonable, considering that most rare / de novo CNVs occur less than 1% in a popula-
tion [43–45].

Research of life sciences has shifted from gene identification to gene annotations including
functions, interactions and the involvement of pathways [22,30,46–48]. Our exploratory data
support the findings implicating the immune system and inflammation pathways in the aetiol-
ogy of stressed induced cardiac hypertrophy [31,49]. At present, there is no single specific sig-
nalling pathway that could explain entirely the functional changes leading to cardiac
hypertrophy. However, a number of transcription factor signalling pathways have been sug-
gested [50]. Among these, the involvement of cAMP response element binding protein 1
(CREB1) transcription factor signalling as an important regulator in cardiac hypertrophy has
been well acknowledged [14,51,52].

Specificity protein 1 (SP1) transcription factor and its signalling pathway is a major compo-
nent during the foetal stage of cardiac development in human. It was identified as a transcrip-
tional regulatory mechanism in the reduction of foetal metabolic programme during pressure
overload induced cardiac hypertrophy [32].

Transcription factor p53 and its signalling are known to mediate apoptosis induced by mul-
tiple stresses [53], and crucially involved in cardiac hypertrophy [54].

The influence of androgen receptor signalling in cardiac hypertrophy has been proposed
earlier [55–57], either by acting directly on the heart or by affecting the vascular system [58–
61]. However, little is known about its role and the underlying molecular mechanism in cardiac
hypertrophy as findings remain contradicting [28,55,57,62]

The Ubiquitin C (UBC) via its ubiquitination activities has been reported to play numerous
physiological functions including that causing hypertrophic response [63–65]. The promotion
of ubiquitination activities via expression of Atrogin-1 (FBXO32) and repression of calcineurin
A apparently leads to inhibition of cardiac hypertrophy [66].

Numerous studies have provided evidence that induction of Ang II promotes the growth of
cardiomyocytes via transactivation of EGF signalling subsequently activation of MAPK signal-
ling [67]. It is interesting to note that transactivation EGF receptor signalling by AT1R activates
CREB1 [68,69].

Several potential limitations have been identified in this study. First, relatively a small sam-
ple size, therefore statistical and functional analyses could not be carried out. Secondely, rare
CNVs (defined as frequency<1%) could hardly reach a significant number eligible for statisti-
cal analyses [70]. Therefore it is difficult to replicate the findings in independent studies.
Thirdly, false negative results probably due to stringent filtering criteria for CNV calls, thus
potentially limiting discovery of novel and informative findings. On top of that, inclusion of
smaller CNVs in this study. We included all CNVs sized>1 kb instead of>30 kb as practiced
by most reports [20,22,27,28,34,71,72]. We believed that selection of larger CNVs might intro-
duced potential bias to the impact of CNVs in disease pathogenesis especially in complex dis-
eases with lower inheritability such as hypertension related LVH, and presuming that smaller
CNV may well contribute equal impact with the larger ones especially when exons or splicing
sites of a gene is being disrupted by CNV breakpoints. However, smaller CNVs causes higher
false discovery rate due to poor signal to noise ratio, thus data should handle with caution.
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Lastly, The biological replication of the rare CNV was carried out using a different platfrom
(Illumina OmniExpress, which was not meant for CNV detection), leading to a significant
drop in CNVs calls per sample. (and decrease in unique CNVs), indicating that the replication
was not as powerful as it was expected, therefore the lowered the power of CNV detection.
However, this does not increase the false positive rate of this study, therefore the results
reported are considerable accurate.

Despite this, our data was analysed with a most stringent QC criteria by comparing with
several datasets including DGV, HapMap3 and the SGVP, involving more than 1,300 samples,
and were subsequently selectively validated. As such, our CNV call is considered reliable. How-
ever, we acknowledge the potential constraint of these datasets as they were genotyped with dif-
ferent platforms therefore further interpretation of the finding should be taken cautiously.

It should be noted that this study however does not attempt to prove the involvement with the
disease of any specific variants or even any specific genes or pathways. Rather, it provides insights
that common diseases like hypertension related LVH can be affected by rare CNVs that influence
or disrupt the underlying genes in the relevant pathways. In other word, rare CNVs identified in
this study are not proven to be the causative variants, rather they may contribute as a portion of
risk factor to the common disease susceptibility such as hypertension-related LVH. An indepen-
dent cohort with larger number of samples is crucial to warrant the findings of this study. Func-
tional studies characterizing the role in cardiac development of genes within these rare CNVs are
a priority to illuminate the mechanisms of LVH development in hypertensive patients.

In summary, this study delivers two major messages. First, we show that rare variant plays a
role in the susceptibility of common and complex diseases such as LVH. Indeed, using the rare
CNV strategy, we have demonstrated further supporting evidence of the previously identified
signalling pathways leading to cardiac hypertrophy. In particular, collective results of this
study further support the activation of foetal cardiac gene programme during cardiac hypertro-
phy. Second, LVH is a complex event that depends on the activation of different signalling
pathways. The finding of this work may eventually lead on to work concerning differences in
response to drugs, which can prevent the development of LVH in patients with hypertension.
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