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The availability of comprehensive genomic datasets across patient populations enables the application of novel methods for
reconstructing tumor evolution within individual patients. To this end, we propose studying autosomal broad copy number
alterations (CNAs) as a framework to better understand early tumor evolution. We compared the broad CNAs and somatic
mutations of patients with 1 to 10 autosomal broad CNAs against the full set of patients, using data from The Cancer Genome
Atlas breast cancer project. We reveal here that the frequency of a chromosome arm obtaining a broad CNA and a genome
acquiring somatic mutations changes as autosomal broad CNAs accumulate. Therefore, we propose that the number of
autosomal broad CNAs is an important characteristic of breast tumors that needs to be taken into consideration when
studying breast tumors. To investigate this idea more in-depth, we next studied the frequency that specific chromosome arms
acquire broad CNAs in patients with 1 to 10 broad CNAs. With this process, we identified the broad CNAs that exhibit the
fastest rates of accumulation across all patients. This finding suggests a likely order of occurrence of these alterations in
patients, which is apparent when we consider a subset of patients with few broad CNAs. Here, we lay the foundation for future
studies to build upon our findings and use autosomal broad CNAs as a method to monitor breast tumor progression in vivo to
further our understanding of how early tumor evolution unfolds.

1. Introduction

In 2020, there were approximately 2.3 million new diagno-
ses of breast cancer and 685,000 deaths due to the disease
worldwide [1]. Current tests and procedures for diagnos-
ing breast cancer are breast exams by a doctor, mammo-
grams, an ultrasound of the breast, or a magnetic
resonance image (MRI) of the breast, which are all defin-
itively confirmed by taking a biopsy of the suspected can-
cerous breast cells [2, 3]. If the biopsy confirms the
presence of breast cancer, it is used to identify the stage
(i.e. the extent of the cancer) and grade (i.e. proliferation
factors and biomarkers like the presence or absence of
estrogen, progesterone, and HER2 receptors). The stage,
grade, hormone sensitivity, size of tumor, and patient’s

health are all considered when selecting one or a combina-
tion of treatments such as surgery (e.g., removing the can-
cer, the lymph nodes, or the breast), chemotherapy,
radiation therapy, hormone therapy, targeted drug treat-
ments, immunotherapy, or palliative care [2].

Increasing our understanding of breast cancer progres-
sion through bioinformatics studies may aid in improving
how doctors diagnose, treat, and understand the progression
of breast cancer. An example of this is the identification of
novel biomarkers. Recent work has used bioinformatics
analyses to identify novel biomarkers, such as specific genes
and microRNAs that act as targets for breast cancer diagno-
sis, treatment, and prognosis [4, 5]. These genes and micro-
RNAs may hopefully be able to be used one day in the same
way as estrogen, progesterone, and HER2 receptor presence
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or absence is currently used. Also, researchers have identi-
fied microRNAs that are capable of predicting the risk of
breast cancer occurrence, efficacy of diet and exercise treat-
ments, and prognosis [6]. Therefore, bioinformatics
approaches towards improving diagnosis and treatment for
breast cancer patients are promising, but also can deepen
our understanding of common occurrences in tumors and
possibly improve our capability of predicting what may
occur next in breast tumors.

By investigating the relationship between copy number
alterations (CNAs) and somatic mutations, we may uncover
common patterns that can aid in predicting events for individ-
ual patients [7, 8]. CNAs are somatic gains or losses of DNA
segments, where narrower ones are defined as focal CNAs
and wider ones are defined as broad CNAs [9, 10]. Somatic
mutations are changes in a DNA sequence [11]. Both of these
genomic events occur after birth and in any cell besides germ
line cells, therefore, they are not hereditary [9–11]. Somatic
mutations are affected by CNAs and vice versa [12, 13].
Though, CNAs do affect a larger fraction of the genome than
somatic mutations and have a recorded history of disease-
causing effects [14]. Furthermore, structural variations, such
as CNAs, in general, have the potential to affect gene dosage,
indirectly affect gene expression, and predispose the genome
to experience further structural changes [15], as well as play
a key role in tumorigenesis [16]. Finally, previous studies have
found that broad CNAs exhibit distinct and frequent patterns
in breast cancer genomes [17–22], and probability distribu-
tions of CNAs have been used to further understand tumor
profiles [10].

For these reasons, we studied the accumulation of broad
CNAs, as well as their relationship with somatic mutations,
to better understand early tumor evolution. To understand
how CNAs progress in breast cancer, under the assumption
that CNAs accumulate over time [13], we test whether the
frequency distributions of CNAs by chromosome arm
change as broad CNAs accumulate [13, 23–30]. Correspond-
ingly, we assume that tumors with a low number of broad
CNAs occurred earlier in the tumor progression. Therefore,
we tested whether the aggregate profile of broad CNAs and
somatic mutations across the tumor genome at the earlier
stage of CNA accumulation was distinct from the aggregate
profile of tumors with many broad CNAs. A positive result
here would indicate that a limited set of broad CNAs and
somatic mutations might be considered early events in
tumor progression, be associated with cancer initiation,
and have distinct properties compared to those CNAs that
occur later in the tumor progression. Therefore, we analyzed
the frequency profiles of CNAs and somatic mutations in
samples from The Cancer Genome Atlas (TCGA), according
to the order of event accumulation. Though the overall pro-
gression of tumors by CNAs and somatic mutations have
been investigated previously [31, 32], our analysis is
designed to test whether all events accumulate according to
their final frequencies or alternatively, that a subset of events
is specific to early stages of the event timeline.

We begin by investigating the qualitative differences
between the frequencies of broad CNAs in tumors with ten
or less broad CNAs versus the frequencies over all patients.

We recognize breast tumors are commonly studied by sub-
type, but not all the samples in this study in the TCGA were
subtyped and therefore we treated them as one group
[18–20, 33]. Next, we investigate whether the frequency of
a chromosome exhibiting a specific broad CNA is consistent
with patients with 10 or less broad CNAs versus all patients.
Then, we investigate how the frequencies of a chromosome
acquiring a broad CNA and somatic mutations change as
broad CNAs accumulate in tumors using the frequencies of
broad CNAs for all patients to simulate the corresponding
subset of patients with 1 to 10 broad CNAs. Next, we inves-
tigate if the trends we have uncovered while considering the
number of broad CNAs are consistent with what is known
from the literature. Finally, we propose a progression of
broad CNAs by chromosome arm for breast tumors with
up to 10 broad CNAs in TCGA.

2. Materials and Methods

In order to study autosomal broad CNAs, we obtained data
from TCGA which we screened and processed prior to being
used in our study [34, 35]. This data was used to study trends
in broad CNAs found in breast cancer. Due to sex chromo-
somes having a higher median copy number and variance of
alterations [36], we chose to focus on autosomal chromosomes
for this study. Also, we studied whether frequencies of broad
CNAs change as these alterations accumulate by using fre-
quencies of broad CNAs for all patients, regardless of the
number of broad CNAs, to simulate patients with 1 to 10
broad CNAs.

2.1. Data Collection. Data for this study was downloaded on
March 17, 2020 from TCGA data release 22.0 [35] using the
R coding language version 3.5.2 [37] along the TCGAbiolinks
library version 2.15.3 [38–40]. Specifically, we used the data
from the breast tumors in the TCGA project (i.e., TCGA-
BRCA). The primary CNA data utilized in this study con-
sisted of 1,089 breast tumor CNA profiles overall, including
180 profiles that have 1 to 10 broad CNAs, and SNV data for
984 breast tumors, including SNV data for 154 breast
tumors with 1 to 10 broad CNAs. Of the 1,089 breast tumor
CNAs about 1,055 of those patients had at least one type
(i.e., normal matched tissue samples and blood-derived nor-
mal samples) normal CNA profile, which were also col-
lected. Secondary data included biospecimen and clinical
data for screening out duplicate samples and additional sup-
plemental tumor data for subtyping [34]. Centromere loca-
tions by base pair were collected using the GRCh38
reference from the Genome Reference Consortium [41].
Finally, we collected supplemental tumor data from addi-
tional datasets published by TCGA [34].

An advantage of TCGA for this study is its robust data
for hundreds of newly diagnosed, untreated tumors. When
cancers are studied in aggregate, there is evidence of charac-
teristic profiles [34, 42–56]. For our purposes here, we used
the definition of broad CNAs that states that they are greater
than three million base pairs [57, 58]. We assume that the
breast tumors analyzed for TCGA are undergoing the same
stochastic evolutionary process, and that they represent
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cross-sectional data taken from a single biopsy, prior to
treatment, of independent tumors [23, 35, 59–62]. Using this
breast cancer data here, we investigated whether certain
events may occur more frequently in the emergence of
tumors.

2.2. Data Processing

2.2.1. Selecting Somatic Variant Caller. The somatic variant
callers available on TCGA as of March 17, 2020, include
SomaticSniper, Varscan2, MuSE, and Mutect2. Based on
studies regarding the performance of these four somatic var-
iant callers, we elected to use the output of the Mutect2 for
this study [63–65].

2.2.2. Removing Duplicate Samples. Cancer CNA data (1,089
profiles) along with their respective matched normal CNA
profiles (1,055 profiles) were downloaded for all patients in
TCGA-BRCA [34]. For cancer CNA samples, we removed
duplicates in the following order of priority: if the sample
was Formalin-Fixed Paraffin-Embedded (FFPE), if a dupli-
cate had a later date of creation, if a duplicate had a later date
of shipment, and if it was used in any other additional pro-
ject in TCGA. The removed cancer CNA samples, by unique
TCGA barcodes, were TCGA-A7-A0DC-01B-04D-A22Q-
01, TCGA-A7-A13G-01B-04D-A22Q-01, TCGA-A7-A26E-
01A-11D-A275-01, TCGA-A7-A26E-01B-06D-A275-01,
TCGA-A7-A26F-01B-04D-A22Q-01, TCGA-A7-A26J-
01A-11D-A275-01, TCGA-A7-A26J-01B-02D-A275-01,
TCGA-AC-A2QH-01B-04D-A22Q-01, TCGA-AC-A3OD-
01A-11D-A21P-01, and TCGA-B6-A1KC-01A-11D-A13J-
01.

The same criteria were used when processing normal
CNA samples, with an additional three criteria. Duplicates
were saved if they were of a different type (i.e., normal
matched tissue samples and blood-derived normal samples).
So, if a patient had a single normal matched tissue sample
and blood-derived normal sample, neither were removed
and both were labeled by sample type. Second, if a normal
sample appeared contaminated, we removed the sample
even if it was the only normal sample a patient had. Finally,
samples were removed if there was not a corresponding can-
cer CNA sample. The removed normal CNA samples unique
TCGA barcodes were TCGA-A7-A26E-10A-01D-A275-01,
TCGA-A7-A26J-10A-01D-A275-01, TCGA-E2-A1LS-11A-
32D-A160-01, TCGA-A7-A0DC-11A-41D-A092-01,
TCGA-BH-A0BW-11A-12D-A111-01, TCGA-BH-A0H7-
11A-13D-A092-01, TCGA-E2-A158-11A-22D-A12A-01,
TCGA-E2-A15L-11A-31D-A12A-01, TCGA-BH-A0DD-
11A-23D-A12N-01, TCGA-E2-A1LI-11A-23D-A160-01,
TCGA-BH-A18M-11A-33D-A12A-01, TCGA-AC-A2QJ-
11A-12D-A19X-01, TCGA-AC-A2BM-11A-13D-A21P-01,
TCGA-A7-A0CH-11A-32D-A092-01, TCGA-BH-A1EX-
11A-21D-A13N-01, and TCGA-BH-A1EW-11B-33D-
A134-01.

2.2.3. Data Analyses prior to Download. After screening the
samples, we needed to identify somatic CNAs. The open-
access CNA data available by TCGA was obtained after
being derived from Affymetrix 6.0 single nucleotide poly-

morphism (SNP) arrays and noise-reduction via Circular
Binary Segmentation (CBS). After cancer DNA was analyzed
for gains or losses compared to normal DNA for each probe,
corresponding to a SNP with a specific location in the
genome, the CBS algorithm creates segments of probes that
are significantly different [66, 67]. We identified these seg-
ments to be in regions of genome gain, genome loss, or the
sample’s baseline (i.e., the region of the genome with no
gains or losses). In order to identify a sample’s somatic
CNAs, we first identified the samples’ baselines in order to
determine the threshold values that indicate a gain and a
loss. We identified each patient’s baseline separately, because
baselines were found to vary between patients. Additionally,
technical noise had resulted from data analyses prior to
download. Similarly, each sample’s threshold for gains and
losses is different, because each sample has different levels
of normal cells and heterogeneity present.

2.2.4. Approximating CNA Baselines. We first approximated
the baseline for CNA samples. We began with the assump-
tion that a majority of the genome is not gained nor lost
[9]. We then considered all combinations of segments that
represent a majority of the genome by base pair (e.g., up to
51%, of base pairs) and found the mean and standard devi-
ation for each group of segments. The group of segments
with the lowest standard deviation was believed to comprise
the baseline, and the average of these segments was used to
approximate the baseline for a CNA sample.

2.2.5. Deriving CNA Gain and Loss Thresholds. Once we had
an approximate baseline, we needed to decide at what value
above and below a baseline a segment is considered a gain or
loss, respectively. There were difficulties due to the fact that
the tumor samples have varying degrees of noncancer cells,
which is inconsistent between patients and causes diluted
cancer CNA signals. We began by finding a gain threshold
and loss threshold that would exclude all segment heights
in the baseline, when considering the variation of segment
heights in the group. We created these thresholds by first
collecting the segments of all normal cells that were greater
than 3,000,000 base pairs, because CNAs are rare in normal
cells and broad alterations are even rarer. Here, we used the
definition of broad CNAs being over 3,000,000 base pairs
long [9, 57, 58]. As a result, removing these segments leaves
only the few alterations that vary the most from segments in
the baseline. So, we next removed any outlier segment
heights from this collection of segments. This collection is
what we assumed segments without gains or losses are most
similar to. For each sample, we approximated the baseline of
this entire collection of segments from all normal samples.
We added the maximum segment height of the remaining
collected segments and the corresponding standard devia-
tion to the approximate baseline to create a conservative
gain threshold. Similarly, we subtracted the minimum seg-
ment height of the remaining collected segments and the
standard deviation between these segment heights from the
approximate baseline to create a conservative loss threshold.
These thresholds represent how far a segment height has to
be from the approximate baseline to be considered a gain or
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loss and is applied to all samples when screening for
alterations.

To account for technical noise, we determined the
approximate baseline of each sample and the standard devi-
ation of the segment means in that group, and then we
added the standard deviation to both the gain threshold
and loss threshold. Then, to combat noise due to heteroge-
neity, any alteration that was less than one-eighth of the
most extreme segment mean, either the maximum gain or
minimum lost, was assumed to not be part of the major
clonal population. As a result, they were removed and not
considered for our analyses. Consecutive alterations (i.e.,
alterations that occur without returning to the baseline
between alterations) were recognized if the segment was
approximately one-fourth of the extreme segment mean
more or less than the neighboring segments. These methods
were applied to chromosomes of each patient CNA sample
to recognize CNAs and acquire a sum of autosomal broad
CNAs.

2.2.6. CNA Data Visualization. All plots of data that have
undergone preprocessing presented in this article were cre-
ated using the base graph functions found in the R language
version 3.5.2 [37]. The R library scales version 1.1.0 was used
for introducing various color options to present chromo-
some arm alterations together on one plot [68]. Trends dis-
playing the frequencies of patients with a specific alteration
by chromosome, on the y-axis, over number of autosomal
broad CNAs, on the x-axis, were depicted using local regres-
sion with an automatic smoothing parameter selection (i.e.,
Akaike information criterion) which was accomplished by
the loess.as function found in the fANCOVA library version
0.5-1 for R [69].

2.3. Simulating Patients by Event Counts of Subsets of
Patients from Event Frequencies of All Patients. To test
whether we could approximate the frequencies of broad
CNAs for patients with 1 to 10 broad CNAs using the fre-
quencies of CNAs from all, we simulated patients with 1 to
10 broad CNAs using the frequencies of broad CNAs from
all patients. We began by sampling all patients by calculating
their cumulative frequency by broad CNAs over all chromo-
some arms. We generated a random value between 0 and 1
using the uniform distribution to represent each autosomal
broad CNAs in each patient in the subset. From the value
generated, we assigned the broad CNA based on the value
in relation to the distribution of cumulative frequencies.
Once we have the same number of simulated patients as
the number of patients in the subset, that iteration is com-
plete. This process is repeated for 1,000 iterations. Though
we recognize this manner of generating simulated patients
may produce a patient with both a gain and loss on the same
chromosome arm, this scenario is unlikely, and if it does
occur, it would only introduce minimal amounts of error.
Finally, we chose to compare the frequencies for all patients
to those of the subset of patients over various intervals of
broad CNAs and the simulated patients over the same inter-
vals of broad CNAs, using the Kendall Correlation. Kendall
was preferred over Pearson due to the presence of outliers

and over Spearman due to the robustness and efficiency of
Kendall in comparison [70]. This process is repeated for
the somatic mutations of patients over various intervals of
broad CNAs.

3. Results

3.1. Autosomal Broad CNAs in Breast Cancer Patients. We
began our study by visualizing the most common CNAs,
both broad and focal, and somatic mutations among 1,089
patients in the breast cancer project of the TCGA and
TCGA-BRCA (Figures 1(a) and 1(b)). The most common
CNA is the chromosome 1 arm q broad gain (1qG), which
nearly encompasses the entire arm and occurs in approxi-
mately 80% of all patients, whereas the most common
somatic mutation, the mutation to the TP53 gene, occurs
in less than 40% of the 984 patients with somatic variant cal-
ler data of the 1,089 patients curated here. Therefore, we
suggest that the most frequent events that occur between
all patients are broad CNAs as opposed to any other CNAs
and somatic mutations.

We then turned our focus to patients with 1 to 10 auto-
somal broad CNAs to investigate whether a difference exists
among frequencies of CNAs and somatic mutations when
compared to observing all patients regardless of the number
of broad CNAs. To this end, we extracted the group of
patients with 1 to 10 autosomal broad CNAs from all
patients in the TCGA-BRCA and identified the frequency
of patients with copy number alterations (i.e., 180 patients)
and somatic mutations (i.e., 154 patients) across their
genome (Figures 1(c) and 1(d)). We found that the chromo-
some 16 arm q broad loss (16qL) is the most common CNA
and occurs in approximately 80% of patients in the subset.
The most frequent somatic mutation among patients in the
subset with somatic variant caller data is PIK3CA at less
than 40%, which is also 10% more common than any other
somatic mutation among patients with 1 to 10 broad CNAs
in TCGA-BRCA.

We then examined the specific similarities and differ-
ences between the frequencies of patients in the subset exhi-
biting 1 to 10 broad CNAs and frequencies of all patients.
One similarity is the high frequency of the chromosome 16
arm p broad gain (16pG), 1qG, and 16qL in the two plots
(Figures 1(a) and 1(c)). In addition, the chromosome 8
arm p broad loss (8pL), chromosome 8 arm q broad gain
(8qG), chromosome 11 arm q broad loss (11qL), chromo-
some 17 arm p broad loss (17pL), and chromosome 22
arm q broad loss (22qL) exhibit higher frequencies in both
the subset of 1 to 10 broad CNAs and all patients as opposed
to other CNAs. Also, we see that there are alterations with a
frequency that is almost as low as 0 in the subset of patients
with 1 to 10 broad CNAs, but these same alterations have
frequencies noticeably larger in the group of all patients.
Considering the assumption that alterations accumulate
over the lifetime of the tumor [13], these alterations are
thought to be later broad alterations of breast cancer, which
is why they do not appear in the subset of patients with 1 to
10 broad CNAs. Most notably, PIK3CA has the highest fre-
quency among patients in the subset with 1 to 10 broad
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Figure 1: Continued.

5International Journal of Genomics



CNAs but is second only to TP53 among frequencies for all
patients. This suggests that patients who acquire the muta-
tion to the PIK3CA gene are more likely to acquire it early
on in the development of their tumor, but the mutation to
the TP53 mutation tends to occur later and possibly at a
higher rate.

3.2. The Frequency of Broad CNAs and Mutations Change as
Autosomal Broad CNAs Accumulate. Because our results
indicated that the most frequent broad CNA was 16qL in
the subset of patients with 1 to 10 autosomal broad CNAs
and 1qG in all patients, we next chose to investigate if the
frequency a chromosome arm acquires a broad alteration
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Figure 1: Frequency of all patients by genomic events. (a) Frequency of all patients (1,089 patients) gains (greater than 0 and green) and
losses (less than 0 and red) for each SNP location on the Affymetrix SNP6.0 Microarray. (b) Frequency of all patients (984 patients)
somatic mutations for any somatic mutation present in over 5% of all patients. (c) Frequency of the gains (greater than 0 and green) and
losses (less than 0 and red) in patients, with 1 to 10 autosomal broad CNAs (180 patients), for each SNP location on the Affymetrix
SNP6.0 Microarray. (d) Frequency of somatic mutations for any somatic mutation present in over 5% of patients in the subset in
patients, with 1 to 10 autosomal broad CNAs (154 patients).
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Figure 2: Frequencies by chromosome arm. (a) Frequency of all patients that exhibit broad CNAs by chromosome arm. (b) Frequency of
patients with 1 to 10 autosomal broad CNAs that exhibit broad CNAs by chromosome arm. (c) Frequency of broad CNAs of all patients by
chromosome arm. (d) Frequency of broad CNAs of patients with 1 to 10 autosomal broad CNAs by chromosome arm. (e) Average
frequency of broad CNAs, with error bars representing 1 standard deviation, from 1,000 iterations of randomly sampling all patients to
recreate the number of broad CNAs in patients with 1 to 10 autosomal broad CNAs by chromosome arm.
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changes as the genome acquires more broad alterations
overall. Keeping our focus on autosomal broad CNAs, we
re-binned the data by chromosome arm as opposed to SNP
location for all patients (Figure 2(a)) and for the subset of
patients with 1 to 10 broad CNAs (Figure 2(b)). We found
the frequency of patients with a broad alteration on each
chromosome arm for both groups is consistent with the pat-
terns prior to rebinning.

We then investigated the frequency of autosomal broad
CNAs by chromosome arm, versus the frequency of patients
by chromosome arm above (Figures 2(a) and 2(b)), for all
patients (Figure 2(c)) and the patients in the subset of 1 to
10 broad CNAs (Figure 2(d)). The frequency of autosomal
broad CNAs in all patients appears to have a nearly uniform
distribution between arms, while the frequency of autosomal
broad CNAs in the subset of patients with 1 to 10 broad
CNAs displays certain arms experiencing broad alterations
more than others (e.g., 1qG, 16pG, and 16qL). So, we next
tested whether the distribution of the frequency of autoso-
mal broad CNAs for all patients (Figure 2(c)) is approxi-
mately the population proportions of the distribution of
frequency of autosomal broad CNAs for the subset of
patients (Figure 2(d)). If the frequency of autosomal broad
CNAs for all patients is approximately the population pro-
portion, then, these autosomal broad CNA frequencies
should be able to simulate all 180 patients in the subset
and their respective number of autosomal broad CNAs
(totaling 1,150 autosomal broad CNAs) and to acquire a dis-
tribution that is approximately the same as the patients with
1 to 10 broad CNAs (Figure 2(d)).

We begin by hypothesizing the distribution of frequencies
of broad CNAs for all patients (Figure 2(c)) is the same no
matter the total number of broad CNAs over a subset. Then,
we randomly generated broad CNAs, using the frequencies
of autosomal broad CNAs in all patients by chromosome
arm, to simulate the number of broad CNAs of each patient
with 1 to 10 broad CNAs. We repeat this process 1,000 times
and then average the frequencies of autosomal broad CNAs
over all 1,000 iterations (Figure 2(e)). This distribution more
closely matches the distribution of frequencies of broad CNAs
for all patients as opposed to the frequency of broad CNAs for
the subset of patients with 1 to 10 broad CNAs. We found that
the Kendall correlation between the mean frequencies of the
simulated distribution of patients with 1 to 10 broad CNAs
and all patients is 0.994 versus 0.544 when correlated with
patients with 1 to 10 broad CNAs in the subset. Also, the cor-
relation between all patients and the subset of patients with 1
to 10 broad CNAs is 0.546. The correlation values are very
similar for the comparison between the subset of patients with
1 to 10 broad CNAs to all patients (0.546) and the subset of
patients to the simulated patients (0.544). Because the fre-
quencies of autosomal broad CNAs for all patients were
unable to accurately simulate patients with 1 to 10 broad
CNAs with a similar number of alterations for the same num-
ber of patients, we reject that the distribution of frequencies of
autosomal broad CNAs for all patients is approximately the
population proportion. Therefore, we propose the frequency
of broad alterations change as the number of broad alterations
accumulates.

We then repeated the same test for frequencies of
somatic mutations. Similarly, we hypothesized that the dis-
tribution of frequencies of somatic mutations for all patients
is the same no matter the number of autosomal broad CNAs
over a subset. We repeated the same simulation as above,
now using the frequencies of somatic mutations to randomly
generate somatic mutations for each patient, and their
respective number of somatic mutations, in the subset of
patients with 1 to 10 broad CNAs. We repeated this process
1,000 times and averaged the frequency for each somatic
mutation. The Kendall correlation between the mean fre-
quencies of somatic mutations for the simulated distribution
of patients with 1 to 10 broad CNAs and all patients is 0.965
versus 0.463 when correlated with the frequencies of somatic
mutations for patients with 1 to 10 broad CNAs in the sub-
set. The correlation is 0.480 for all patients and the subset of
patients, which is much more similar to the correlation of
simulated patients and the subset of patients. So, we once
again reject the hypothesis that the distribution of frequen-
cies of somatic mutations for all patients is approximately
the population proportion. Therefore, we propose the fre-
quency of somatic mutations change as the number of broad
alterations accumulates.

3.3. Broad CNA and Mutation Frequencies Vary with Few
Autosomal Broad CNAs. Next, we investigated the change
of frequencies of autosomal broad CNAs and somatic muta-
tions in a subset of patients with an increasing number of
events (i.e., 1 to 5, 1 to 10, and 1 to 15), and we determine
whether these groups correlate to the results from all
patients or if they gradually converge to the pattern in all
patients as more autosomal broad CNAs are included. To
this end, we ran the same simulation as above for subsets
of patients with 1 to 5, 1 to 10, 1 to 15, and so on up to 1
to 120 broad CNAs. We then calculated the Kendall correla-
tions for each simulated subset and the actual subset of
patients with the respective interval of autosomal broad
CNAs for both broad CNAs and somatic mutations
(Figures 3(a) and 3(b)). In the plot of Kendall correlations
over increasing subset size (Figure 3(a)), we show that the
correlations converge to one as the interval increases. There-
fore, there is not a random or discrete growth of correlation
as the intervals of broad CNAs of patients increase, but
instead, more of a continuous growth as the interval
expands. Biologically, this is significant, because we can see
that if we analyze tumors without considering the number
of autosomal broad CNAs, we may make conclusions about
aspects of a tumor type, such as what are the frequencies of
alterations and mutations, which are not consistent for
tumors with fewer number of autosomal broad CNAs. The
gradual increase of correlation as the subset increases allows
us to recognize at what upper limit of autosomal broad
CNAs the frequencies begin to appear similar to all patients
regardless of the number of broad CNAs versus intervals
with up to 5 or 10 autosomal broad CNAs.

The highest rate of change is among subsets with a lower
upper bound of autosomal broad CNAs, and gradually, the
correlation becomes more similar to all patients when the
maximum number of autosomal broad CNAs is over 30.
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Once the subset has 1 to 30 broad CNAs and higher, the cor-
relation is over 0.900 and becomes approximately 1.000
when the subset has 1 to 80 broad CNAs and higher. After
the upper limit of autosomal broad CNAs in our interval
reaches 30 broad CNAs, the frequencies of chromosome
arms with broad CNAs are more correlated with all patients
regardless of the number of broad CNAs versus the intervals
up to 5 or 10 broad CNAs. Overall, the curve approaches a
correlation of 1.000 logarithmically as the interval grows to
include all patients.

Next, we plotted the Kendall correlations over increasing
subset size of the frequency of somatic mutations
(Figure 3(b)), and we found that these correlations also con-
verge to one as the interval increases. Similar to that of broad
CNAs, we see a continuous growth, as opposed to random
or discrete growth, between intervals of subsets of autosomal
broad CNAs. Again, we were curious at what upper limit of
autosomal broad CNAs do the frequencies of somatic muta-
tions appear more like all patients regardless of the number

of broad. We found that once the subset has 1 to 30 and
more autosomal broad CNAs, the correlation exceeds
0.900. Once again, when the upper limit of broad CNAs in
our interval reaches 30 broad CNAs, it appears that the fre-
quencies of chromosome arms with broad CNAs are more
correlated with all patients than the groups of intervals up
to 5 or 10 broad CNAs. The key difference is that the rate of
change between the correlations as the subsets grow seems
to be faster for the frequencies of somatic mutations than fre-
quencies of broad CNAs, because the correlation is approxi-
mately 1.000 when the subset has 1 to 70 broad CNAs and
higher. This difference may be attributed to the greater vari-
ability of the number of autosomal broad CNAs or the larger
number of somatic mutations versus autosomal broad CNAs.
Once again, the curve approaches a correlation of 1.000 loga-
rithmically as the interval grows to include all patients.

3.4. Validating Early Alterations When Considering Number
of Autosomal Broad Alterations. Based on our findings
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Figure 3: Kendall correlations between subset of patients and simulated patients. (a) The correlation between the broad CNAs by
chromosome arm of the subset of patients with 1 to x autosomal broad CNAs, where x is the maximum number of autosomal broad
CNAs in the interval and the corresponding simulated subset of patients. (b) The correlation between the somatic mutations of a subset
of patients with 1 to x autosomal broad CNAs, where x is the maximum number of autosomal broad CNAs in the interval, and the
corresponding simulated subset of patients.
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above, we chose to move forward by not considering autoso-
mal broad CNAs from all patients all together but instead
from patients with few autosomal broad CNAs. These
patients with fewer broad CNAs appear to have the most dif-
ferent distribution of broad CNAs and somatic mutations
(Figure 3) from patients who have more mature tumors with
more broad CNAs. Therefore, there are distinct characteris-
tics of a tumor based on the number of broad CNAs, further
illustrating the need for autosomal broad CNAs to be con-
sidered when studying tumors. To this end, we continued
by focusing on patients with only two autosomal broad
CNAs, to validate if what we find in patients of the TCGA-
BRCA project by the number of autosomal broad CNAs
aligns with known early breast tumor events presented in
the literature.

Previously, researchers have been able to capture and
record early CNAs in breast cancer cells by observing the
variation mid-alteration [71–73]. When studying these cells,
they consistently recorded two initial alterations, 1qG and
16qL. Therefore, we decided to examine if patients in the
TCGA-BRCA exhibit these broad CNAs at high frequencies
when there are 2 or less autosomal broad CNAs present.
First, we studied the frequency of patients with 2 or less
autosomal broad CNAs with an alteration for each SNP
location on the Affymetrix SNP6.0 Microarray
(Figure 4(a)). There are only 14 patients with 2 or less auto-
somal broad CNAs present in the TCGA-BRCA, which
aligns with our assumption that alterations accumulate as
the tumor matures, because an individual would have to rec-
ognize they have a tumor and have a biopsy of their tumor
analyzed in its earlier stages for us to have such data. That
being said, we use this dataset of 14 patients to compare to
what was seen previously in the literature. Over half of the
patients have 1qG and over 40% have 16qL which are five
and four times more than any other alterations present,
respectively. We see that 25% of patients with 1 broad
CNA (i.e., 1 patient out of 4 with 1 autosomal broad CNA)
acquired 1qG as their only alteration and then 70% of
patients with 2 broad CNAs (i.e., 7 patients out of 10 with
2 autosomal broad CNAs) have a 1qG (Figure 4(b)). Alter-
natively, the frequency of 16qL is 0% in patients with 1
broad CNA and is 60% at 2 broad CNAs (i.e., 6 patients
out of 10 with 2 autosomal broad CNAs). This result indi-
cates that only patients with 2 broad CNAs exhibited 16qL
in this group, and it occurs at a high frequency
(Figure 4(b)). Our results here align with previous findings
that 1qG and 16qL most commonly occur together and early
[71–73].

Only ten somatic mutations occurred in at least 2 of the
14 (i.e., over 10%) patients with 1 or 2 broad CNAs
(Figure 4(c)). The two most common mutations exhibited
among these alterations were AKT1, with 3 patients, and
GATA3, with 5 patients. Although GATA3 has been recog-
nized as a prominent mutation in breast cancer [34], it still
occurs at a lower frequency than both 1qG and 16qL in this
subset.

We hypothesize here how a normal cell may acquire 1qG
and 16qL, which may be the first two alterations leading to
breast cancer. Following an Occam’s Razor approach, we

considered what would be the lowest number of genomic
imbalance events a normal cell would exhibit to acquire
1qG and 16qL. The fewest number of events possible is
two. These events would occur during mitosis in which first
a translocation of the q arms of an allele of chromosome 1
and an allele of chromosome 16 occur followed by a separation
error during division (Figure 4(d)). The separation would pro-
duce one daughter cell with the correct number of p arms for
both chromosome 1 and chromosome 16 but an extra q arm
of chromosome 16 and a missing q arm of chromosome 1.
However, this daughter cell is not commonly observed. We
believe this may be due to this daughter cell dying or not pro-
liferating to a level we can recognize it. The other daughter cell
becomes the CNA profile with the proposed initial broad alter-
ations, 1qG and 16qL, found at a high frequency here and pre-
viously in the literature [71–73].

3.5. Ordering Autosomal Broad CNAs of Patients with up to
10 Autosomal Broad CNAs. Here, we expand upon our find-
ings above and propose other early alterations that may
occur in breast tumors and in what order in terms of the
number of autosomal broad CNAs. We group patients by
increasing number of autosomal broad CNAs, up to 10
broad CNAs, and investigate the trends in frequency of
broad CNAs by chromosome arm that are most frequently
found in patients with less than 10 broad CNAs. By recog-
nizing these trends, we propose a possible order for what
chromosome arms acquire broad CNAs.

We begin our analysis of frequency of patients with
broad CNAs by chromosome arm by only considering chro-
mosome arms that have alterations in more than 80% of
patients with 1 to 10 autosomal broad CNAs. The only two
chromosome arms with broad CNAs with such a high fre-
quency are 1qG, with 134 patients out of 180 patients with
1 to 10 broad CNAs, and 16qL, with 143 patients out of
180 patients with 1 to 10 broad CNAs (Figure 1(c)). The
trends of frequencies (the bold lines) for the raw frequencies
(the faded lines) of broad CNAs by chromosome arm over
the number of broad CNAs of the patient (up to 10) rapidly
converge around 2 broad CNAs (Figure 5(a)). Hence, these
frequencies tend to occur before other broad CNAs in this
dataset, remaining consistent with our findings above.

Next, we turn our focus to the frequent broad CNA
among patients, after 1qG and 16qL, by chromosome arm
for chromosome arms that have alterations in approximately
50% of patients with 1 to 10 autosomal broad CNAs
(Figure 5(b)). The only chromosome arm, not previously
discussed, to experience a broad alteration among this fre-
quency of patients is 16pG, which 85 patients out of 180
patients with 1 to 10 broad CNAs exhibit (Figure 1(c)).
Although the trend (the bold lines fitted by local regression)
seems to converge early at approximately 50% of broad
CNAs by chromosome arm, we can see that the raw data
(the faded lines) appears to indicate a rise at a slower rate
than 1qG and 16qL (Figure 4(a)). This suggests patients with
1 to 10 broad CNAs acquire 16pG at a slower rate than 1qG
and 16qL, and therefore, 16pG occurs after 1qG and 16qL.

Lastly, we bring our attention to the most frequent broad
CNAs among patients, after 1qG, 16qL, and 16pG, by
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chromosome arm for chromosome arms that have alterations
that are approximately within 20% to 30% of patients with 1 to
10 broad CNAs (Figure 5(c)). This group has six chromosome
arms with broad CNAs for the 180 patients in this subset:
chromosome 6 arm q broad loss (6qL) in 43 patients, 8qG in
32 patients, 8pL in 44 patients, 11qL in 38 patients, 17pL in
43 patients, and 22qL in 51 patients (Figure 5(c)). The raw

data (the faded lines) depict all five gradually increase their fre-
quency of patients over the number of broad CNAs. Once we
fit this raw data to their respective trend lines (the bold lines
fitted by local regression), we see the trends suggest an order
of occurrence for these broad CNAs, which is first 22qL, then,
either 6qL, 8pL, 11qL, or 17pL in what currently appears to be
an undiscernible order, and finally 8qG.
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Figure 4: Initial two events in most breast cancer patients appear to be 1qG and 16qL. (a) Frequency of gains (greater than 0 and green) and
losses (less than 0 and red) of patients, with 1 to 2 autosomal broad CNAs (14 patients), for each SNP location on the Affymetrix SNP6.0
Microarray. (b) Frequency of patients with 1qG (cyan) and 16qL (red) by number of autosomal broad CNAs. (c) Frequency of somatic
mutations for any somatic mutation present in over 10% of patients in the subset of patients, with 1 to 2 autosomal broad CNAs (14
patients). (d) The fewest structural variation events required for a full arm centromere recombination-based alteration to create a 1qG
and 16qL in a normal breast cell.
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4. Discussion

We have found here that the distributions of broad CNAs
change as autosomal broad CNAs accumulate and demon-
strated that the frequency profiles of broad CNAs and
somatic mutations in tumors early in their progression are
distinct compared to the aggregate profiles of more genomi-
cally complex tumors. We interpret this to mean that broad
CNAs and somatic mutations do not occur randomly during
tumor progression, but instead present in generally predict-

able patterns. Our results further demonstrate that the most
frequent early alterations in the breast tumors are 1qG and
16qL followed by 16pG. We expanded the proposed mecha-
nism of how a normal cell initially acquires 1qG and 16qL by
adding the next alteration, 16pG (Figure 6(a)). Only one
structural variation event is required, an additional separa-
tion error, for 16pG to occur after 1qG and 16qL. After
16pG, we found that the most likely alterations are 6qL,
8pL, 8qG, 11qL, 17pL, and 22qL, with a possible order, from
raw data, of 22qL followed by 6qL, 8pL, 11qL, and 17pL in
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Figure 5: Frequency of patients by number of autosomal broad CNAs from 1 to 10 by chromosome arm and type of alteration. Lighter
colored lines represent raw data while bolder colored lines represent trends of the data, fitted by local regression, for each plot. (a)
Frequency of patients by number of autosomal broad CNAs for chromosome arm alterations greater than approximately 80% of all
patients with 1 to 10 autosomal broad CNAs. (b) Frequency of patients by number of autosomal broad CNAs for chromosome arm
alterations greater than approximately 40% but less than approximately 50% of all patients with 1 to 10 autosomal broad CNAs. (c)
Frequency of patients by number of autosomal broad CNAs for chromosome arm alterations greater than approximately 20% but less
than approximately 30% of all patients with 1 to 10 autosomal broad CNAs.
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no discernable order and then finally 8qG. The trends for
6qL, 8pL, 8qG, 11qL, and 17pL appear to differentiate the
most around 10 broad CNAs, possibly indicating something
inherent to breast tumors changing the order these CNAs
occur.

We found that the relationship between the number of
autosomal broad CNAs and molecular subtypes follow com-
monly observed patterns of CNAs in breast cancer [18–20,
33]. Of the 74 patients with 1 to 10 autosomal broad CNAs
who have known molecular subtypes (out of 180 patients
with 1 to 10 autosomal broad CNAs), 60 of them are Lumi-
nal A (i.e., 81%), 11 of them are Luminal B (i.e., 15%), 0 of
them are HER2-enriched (i.e., 0%), 2 of them are Normal-
like (i.e., 3%), and 1 is Basal-like (i.e., 1%). This group is
dominated by Luminal A tumors, which may be due to
Luminal A tumors having low histological grade, low gene
proliferation, and a good prognostic among these subtypes
[33]. Due to these characteristics, Luminal A tumors may
be more easily detected at an earlier state with 10 or fewer
broad CNAs. Also, a common pattern of CNAs in Luminal
A tumors is 1qG and 16qL, which validates our findings here
[22]. In contrast, of the 447 patients with greater than 10
broad CNAs who have known molecular subtypes (out of
909 patients with greater than 10 autosomal broad CNAs),
171 of them are Luminal A (i.e., 38%), 116 of them are

Luminal B (i.e., 26%), 57 of them are HER2-enriched (i.e.,
13%), 6 of them are Normal-like (i.e., 1%), and 97 of them
are Basal-like (i.e., 22%). All subtypes besides Luminal A
and Normal-like see an increased frequency, with Basal-
like tumors having the greatest increase. This aligns with
our understanding of Basal-like tumors, because they have
high histological grade, high gene proliferation, and a poor
prognosis among these subtypes [33]. Accordingly, Basal-
like tumors are more difficult to detect with 10 or fewer
broad CNAs. The change in distribution of molecular sub-
types could explain why the trend lines for 6qL, 8pL, 8qG,
11qL, and 17pL change around 10 broad CNAs. Future work
will seek to separate patients by classifications of breast can-
cer, such as molecular subtypes, to investigate if likelihoods
of chromosome arms obtaining broad CNAs change by clas-
sifications and possibly add new perspective to these classifi-
cations [74].

Future work includes refining and improving the algo-
rithm we developed and used to identify autosomal broad
CNAs as newer data, tools, and methods are released. Fur-
thermore, we plan to study all chromosome arms’ likeli-
hoods of broad CNAs, and which chromosome arms’
frequencies trend together. One way to do this would be to
adapt longitudinal data clustering techniques, in which we
treat the number of autosomal broad CNAs as temporal data
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Figure 6: Mechanism leading to patterns of broad copy number alterations in breast cancer. (a) The fewest structural variation events
required for a full arm centromere recombination-based alteration to create 1qG, 16pG, and 16qL. (b) The fewest structural variation
events required for a full arm centromere recombination-based alteration to create 8qG, 8pL, 16pG, and 16qL.
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and use a parameterization that clusters over frequency and
number of autosomal broad CNAs [75]. Lastly, we will
model the progression of disease [7, 76, 77, 78] using
cross-sectional data [23, 59–62] to find likelihoods for the
order of onset of broad CNAs in breast cancer.

One limitation of our study is that our findings need to
be validated by independent datasets to confirm our conclu-
sions. A possible dataset is the Molecular Taxonomy of
Breast Cancer International Consortium [20], which
requires application for access, because it is controlled data.
Also, we used the output of somatic variant caller Mutect2,
because it outperformed the other variant callers available
[63–65], but a combination of other somatic variant callers
available from TCGA may produce more accurate depic-
tions of somatic mutations [79, 80]. If so, our results should
be tested against these findings. Our results may also be
improved by using newer data that was collected and proc-
essed by newer technology for identifying autosomal broad
CNAs. The CNAs detected in the tumors used in this study
came from microarrays, specifically the Affymetrix SNP 6.0
[66], but using next-generation sequencing (NGS) to detect
CNAs is preferable because of the advantages of being able
to better recognize novel CNAs as well as increased accuracy
in estimating copy numbers [81, 82]. Therefore, our conclu-
sions should be tested specifically against data collected from
NGS.

We recognized a majority of patients appear to first
obtain 1qG and 16qL, which is consistent with previous
findings even though there have been other common, but
less frequent, initial alteration patterns in breast cancer. Spe-
cifically, the second most common initial alteration pattern
in breast cancer patients is 8pL, 8qG, 16pG, and 16qL [17].
We hypothesize that the simplest mechanism of the full
arm centromere recombination-based alteration for 8pL,
8qG, 16pG, and 16qL would be similar to 1qG and 16qL
(Figure 6(b)). Currently, it is difficult to study this initial pat-
tern of broad CNAs because these sorts of datasets are at a
coarse level, where we can study these CNAs without also
including 1qG and 16qL, which dominate the population
of breast cancer. By identifying initial broad CNAs patterns
in breast cancer, we may investigate if broad CNAs and
somatic mutations present differently depending on initial
pattern, further validate the mechanisms of early alterations
proposed here, and study why different separation errors in
normal breast cells lead to cancer (e.g., 1qG and 16qL) and
why their compliment (e.g., chromosome 1 arm q broad loss
and chromosome 16 arm q broad gain) do not. Furthermore,
somatic copy number alteration patterns are not unique to
breast cancer but appear in many cancer types [34, 42–56].
Future studies like this on other cancer types may reveal
whether initial patterns of chromosome arms with autoso-
mal broad CNAs are similar or unique between various can-
cers [56, 83, 84]. This may open the door to explore whether
cancers emerge in similar or different ways and if they con-
verge to similar or different patterns of broad CNAs as alter-
ations accumulate.

The results of this work support that the number of
autosomal broad CNAs must be considered in cancer
research and cancer diagnosis. Moving forward, we plan to

build on our understanding of how the dynamics of autoso-
mal broad CNAs affect the progression of breast cancer and
could contribute to more accurate diagnosis of individual
patients. This work highlights how autosomal broad CNAs
can be used as a framework to help expand our understand-
ing of how early breast cancer evolved in vivo leading to a
more symmetric response to an individual’s current state
of disease.
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